1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
|
#!/usr/bin/env python3
from __future__ import unicode_literals
'''Expands an unclosed UFO stroke font into monoline forms with a fixed width'''
__url__ = 'https://github.com/silnrsi/pysilfont'
__copyright__ = 'Copyright (c) 2017 SIL International (https://www.sil.org), based on outlinerRoboFontExtension Copyright (c) 2016 Frederik Berlaen'
__license__ = 'Released under the MIT License (https://opensource.org/licenses/MIT)'
__author__ = 'Victor Gaultney'
# Usage: psfexpandstroke ifont ofont expansion
# expansion is the number of units added to each side of the stroke
# To Do
# - Simplify to assume round caps and corners
# main input, output, and execution handled by pysilfont framework
from silfont.core import execute
from fontTools.pens.basePen import BasePen
from fontTools.misc.bezierTools import splitCubicAtT
from robofab.world import OpenFont
from robofab.pens.pointPen import AbstractPointPen
from robofab.pens.reverseContourPointPen import ReverseContourPointPen
from robofab.pens.adapterPens import PointToSegmentPen
from defcon import Glyph
from math import sqrt, cos, sin, acos, asin, degrees, radians, pi
suffix = '_expanded'
argspec = [
('ifont',{'help': 'Input font file'}, {'type': 'filename'}),
('ofont',{'help': 'Output font file','nargs': '?' }, {'type': 'filename', 'def': "_"+suffix}),
('thickness',{'help': 'Stroke thickness'}, {}),
('-l','--log',{'help': 'Log file'}, {'type': 'outfile', 'def': suffix+'.log'})]
# The following functions are straight from outlinerRoboFontExtension
def roundFloat(f):
error = 1000000.
return round(f*error)/error
def checkSmooth(firstAngle, lastAngle):
if firstAngle is None or lastAngle is None:
return True
error = 4
firstAngle = degrees(firstAngle)
lastAngle = degrees(lastAngle)
if int(firstAngle) + error >= int(lastAngle) >= int(firstAngle) - error:
return True
return False
def checkInnerOuter(firstAngle, lastAngle):
if firstAngle is None or lastAngle is None:
return True
dirAngle = degrees(firstAngle) - degrees(lastAngle)
if dirAngle > 180:
dirAngle = 180 - dirAngle
elif dirAngle < -180:
dirAngle = -180 - dirAngle
if dirAngle > 0:
return True
if dirAngle <= 0:
return False
def interSect((seg1s, seg1e), (seg2s, seg2e)):
denom = (seg2e.y - seg2s.y)*(seg1e.x - seg1s.x) - (seg2e.x - seg2s.x)*(seg1e.y - seg1s.y)
if roundFloat(denom) == 0:
# print 'parallel: %s' % denom
return None
uanum = (seg2e.x - seg2s.x)*(seg1s.y - seg2s.y) - (seg2e.y - seg2s.y)*(seg1s.x - seg2s.x)
ubnum = (seg1e.x - seg1s.x)*(seg1s.y - seg2s.y) - (seg1e.y - seg1s.y)*(seg1s.x - seg2s.x)
ua = uanum / denom
# ub = ubnum / denom
x = seg1s.x + ua*(seg1e.x - seg1s.x)
y = seg1s.y + ua*(seg1e.y - seg1s.y)
return MathPoint(x, y)
def pointOnACurve((x1, y1), (cx1, cy1), (cx2, cy2), (x2, y2), value):
dx = x1
cx = (cx1 - dx) * 3.0
bx = (cx2 - cx1) * 3.0 - cx
ax = x2 - dx - cx - bx
dy = y1
cy = (cy1 - dy) * 3.0
by = (cy2 - cy1) * 3.0 - cy
ay = y2 - dy - cy - by
mx = ax*(value)**3 + bx*(value)**2 + cx*(value) + dx
my = ay*(value)**3 + by*(value)**2 + cy*(value) + dy
return MathPoint(mx, my)
class MathPoint(object):
def __init__(self, x, y=None):
if y is None:
x, y = x
self.x = x
self.y = y
def __repr__(self):
return "<MathPoint x:%s y:%s>" % (self.x, self.y)
def __getitem__(self, index):
if index == 0:
return self.x
if index == 1:
return self.y
raise IndexError
def __iter__(self):
for value in [self.x, self.y]:
yield value
def __add__(self, p): # p+ p
if not isinstance(p, self.__class__):
return self.__class__(self.x + p, self.y + p)
return self.__class__(self.x + p.x, self.y + p.y)
def __sub__(self, p): # p - p
if not isinstance(p, self.__class__):
return self.__class__(self.x - p, self.y - p)
return self.__class__(self.x - p.x, self.y - p.y)
def __mul__(self, p): # p * p
if not isinstance(p, self.__class__):
return self.__class__(self.x * p, self.y * p)
return self.__class__(self.x * p.x, self.y * p.y)
def __div__(self, p):
if not isinstance(p, self.__class__):
return self.__class__(self.x / p, self.y / p)
return self.__class__(self.x / p.x, self.y / p.y)
def __eq__(self, p): # if p == p
if not isinstance(p, self.__class__):
return False
return roundFloat(self.x) == roundFloat(p.x) and roundFloat(self.y) == roundFloat(p.y)
def __ne__(self, p): # if p != p
return not self.__eq__(p)
def copy(self):
return self.__class__(self.x, self.y)
def round(self):
self.x = round(self.x)
self.y = round(self.y)
def distance(self, p):
return sqrt((p.x - self.x)**2 + (p.y - self.y)**2)
def angle(self, other, add=90):
# returns the angle of a Line in radians
b = other.x - self.x
a = other.y - self.y
c = sqrt(a**2 + b**2)
if c == 0:
return None
if add is None:
return b/c
cosAngle = degrees(acos(b/c))
sinAngle = degrees(asin(a/c))
if sinAngle < 0:
cosAngle = 360 - cosAngle
return radians(cosAngle + add)
class CleanPointPen(AbstractPointPen):
def __init__(self, pointPen):
self.pointPen = pointPen
self.currentContour = None
def processContour(self):
pointPen = self.pointPen
contour = self.currentContour
index = 0
prevAngle = None
toRemove = []
for data in contour:
if data["segmentType"] in ["line", "move"]:
prevPoint = contour[index-1]
if prevPoint["segmentType"] in ["line", "move"]:
angle = MathPoint(data["point"]).angle(MathPoint(prevPoint["point"]))
if prevAngle is not None and angle is not None and roundFloat(prevAngle) == roundFloat(angle):
prevPoint["uniqueID"] = id(prevPoint)
toRemove.append(prevPoint)
prevAngle = angle
else:
prevAngle = None
else:
prevAngle = None
index += 1
for data in toRemove:
contour.remove(data)
pointPen.beginPath()
for data in contour:
pointPen.addPoint(data["point"], **data)
pointPen.endPath()
def beginPath(self):
assert self.currentContour is None
self.currentContour = []
self.onCurve = []
def endPath(self):
assert self.currentContour is not None
self.processContour()
self.currentContour = None
def addPoint(self, pt, segmentType=None, smooth=False, name=None, **kwargs):
data = dict(point=pt, segmentType=segmentType, smooth=smooth, name=name)
data.update(kwargs)
self.currentContour.append(data)
def addComponent(self, glyphName, transform):
assert self.currentContour is None
self.pointPen.addComponent(glyphName, transform)
# The following class has been been adjusted to work around how outline types use closePath() and endPath(),
# to remove unneeded bits, and hard-code some assumptions.
class OutlinePen(BasePen):
pointClass = MathPoint
magicCurve = 0.5522847498
def __init__(self, glyphSet, offset=10, contrast=0, contrastAngle=0, connection="round", cap="round", miterLimit=None, optimizeCurve=True):
BasePen.__init__(self, glyphSet)
self.offset = abs(offset)
self.contrast = abs(contrast)
self.contrastAngle = contrastAngle
self._inputmiterLimit = miterLimit
if miterLimit is None:
miterLimit = self.offset * 2
self.miterLimit = abs(miterLimit)
self.optimizeCurve = optimizeCurve
self.connectionCallback = getattr(self, "connection%s" % (connection.title()))
self.capCallback = getattr(self, "cap%s" % (cap.title()))
self.originalGlyph = Glyph()
self.originalPen = self.originalGlyph.getPen()
self.outerGlyph = Glyph()
self.outerPen = self.outerGlyph.getPen()
self.outerCurrentPoint = None
self.outerFirstPoint = None
self.outerPrevPoint = None
self.innerGlyph = Glyph()
self.innerPen = self.innerGlyph.getPen()
self.innerCurrentPoint = None
self.innerFirstPoint = None
self.innerPrevPoint = None
self.prevPoint = None
self.firstPoint = None
self.firstAngle = None
self.prevAngle = None
self.shouldHandleMove = True
self.components = []
self.drawSettings()
def _moveTo(self, (x, y)):
if self.offset == 0:
self.outerPen.moveTo((x, y))
self.innerPen.moveTo((x, y))
return
self.originalPen.moveTo((x, y))
p = self.pointClass(x, y)
self.prevPoint = p
self.firstPoint = p
self.shouldHandleMove = True
def _lineTo(self, (x, y)):
if self.offset == 0:
self.outerPen.lineTo((x, y))
self.innerPen.lineTo((x, y))
return
self.originalPen.lineTo((x, y))
currentPoint = self.pointClass(x, y)
if currentPoint == self.prevPoint:
return
self.currentAngle = self.prevPoint.angle(currentPoint)
thickness = self.getThickness(self.currentAngle)
self.innerCurrentPoint = self.prevPoint - self.pointClass(cos(self.currentAngle), sin(self.currentAngle)) * thickness
self.outerCurrentPoint = self.prevPoint + self.pointClass(cos(self.currentAngle), sin(self.currentAngle)) * thickness
if self.shouldHandleMove:
self.shouldHandleMove = False
self.innerPen.moveTo(self.innerCurrentPoint)
self.innerFirstPoint = self.innerCurrentPoint
self.outerPen.moveTo(self.outerCurrentPoint)
self.outerFirstPoint = self.outerCurrentPoint
self.firstAngle = self.currentAngle
else:
self.buildConnection()
self.innerCurrentPoint = currentPoint - self.pointClass(cos(self.currentAngle), sin(self.currentAngle)) * thickness
self.innerPen.lineTo(self.innerCurrentPoint)
self.innerPrevPoint = self.innerCurrentPoint
self.outerCurrentPoint = currentPoint + self.pointClass(cos(self.currentAngle), sin(self.currentAngle)) * thickness
self.outerPen.lineTo(self.outerCurrentPoint)
self.outerPrevPoint = self.outerCurrentPoint
self.prevPoint = currentPoint
self.prevAngle = self.currentAngle
def _curveToOne(self, (x1, y1), (x2, y2), (x3, y3)):
if self.optimizeCurve:
curves = splitCubicAtT(self.prevPoint, (x1, y1), (x2, y2), (x3, y3), .5)
else:
curves = [(self.prevPoint, (x1, y1), (x2, y2), (x3, y3))]
for curve in curves:
p1, h1, h2, p2 = curve
self._processCurveToOne(h1, h2, p2)
def _processCurveToOne(self, (x1, y1), (x2, y2), (x3, y3)):
if self.offset == 0:
self.outerPen.curveTo((x1, y1), (x2, y2), (x3, y3))
self.innerPen.curveTo((x1, y1), (x2, y2), (x3, y3))
return
self.originalPen.curveTo((x1, y1), (x2, y2), (x3, y3))
p1 = self.pointClass(x1, y1)
p2 = self.pointClass(x2, y2)
p3 = self.pointClass(x3, y3)
if p1 == self.prevPoint:
p1 = pointOnACurve(self.prevPoint, p1, p2, p3, 0.01)
if p2 == p3:
p2 = pointOnACurve(self.prevPoint, p1, p2, p3, 0.99)
a1 = self.prevPoint.angle(p1)
a2 = p2.angle(p3)
self.currentAngle = a1
tickness1 = self.getThickness(a1)
tickness2 = self.getThickness(a2)
a1bis = self.prevPoint.angle(p1, 0)
a2bis = p3.angle(p2, 0)
intersectPoint = interSect((self.prevPoint, self.prevPoint + self.pointClass(cos(a1), sin(a1)) * 100),
(p3, p3 + self.pointClass(cos(a2), sin(a2)) * 100))
self.innerCurrentPoint = self.prevPoint - self.pointClass(cos(a1), sin(a1)) * tickness1
self.outerCurrentPoint = self.prevPoint + self.pointClass(cos(a1), sin(a1)) * tickness1
if self.shouldHandleMove:
self.shouldHandleMove = False
self.innerPen.moveTo(self.innerCurrentPoint)
self.innerFirstPoint = self.innerPrevPoint = self.innerCurrentPoint
self.outerPen.moveTo(self.outerCurrentPoint)
self.outerFirstPoint = self.outerPrevPoint = self.outerCurrentPoint
self.firstAngle = a1
else:
self.buildConnection()
h1 = None
if intersectPoint is not None:
h1 = interSect((self.innerCurrentPoint, self.innerCurrentPoint + self.pointClass(cos(a1bis), sin(a1bis)) * tickness1), (intersectPoint, p1))
if h1 is None:
h1 = p1 - self.pointClass(cos(a1), sin(a1)) * tickness1
self.innerCurrentPoint = p3 - self.pointClass(cos(a2), sin(a2)) * tickness2
h2 = None
if intersectPoint is not None:
h2 = interSect((self.innerCurrentPoint, self.innerCurrentPoint + self.pointClass(cos(a2bis), sin(a2bis)) * tickness2), (intersectPoint, p2))
if h2 is None:
h2 = p2 - self.pointClass(cos(a1), sin(a1)) * tickness1
self.innerPen.curveTo(h1, h2, self.innerCurrentPoint)
self.innerPrevPoint = self.innerCurrentPoint
########
h1 = None
if intersectPoint is not None:
h1 = interSect((self.outerCurrentPoint, self.outerCurrentPoint + self.pointClass(cos(a1bis), sin(a1bis)) * tickness1), (intersectPoint, p1))
if h1 is None:
h1 = p1 + self.pointClass(cos(a1), sin(a1)) * tickness1
self.outerCurrentPoint = p3 + self.pointClass(cos(a2), sin(a2)) * tickness2
h2 = None
if intersectPoint is not None:
h2 = interSect((self.outerCurrentPoint, self.outerCurrentPoint + self.pointClass(cos(a2bis), sin(a2bis)) * tickness2), (intersectPoint, p2))
if h2 is None:
h2 = p2 + self.pointClass(cos(a1), sin(a1)) * tickness1
self.outerPen.curveTo(h1, h2, self.outerCurrentPoint)
self.outerPrevPoint = self.outerCurrentPoint
self.prevPoint = p3
self.currentAngle = a2
self.prevAngle = a2
def _closePath(self):
if self.shouldHandleMove:
return
self.originalPen.endPath()
self.innerPen.endPath()
self.outerPen.endPath()
innerContour = self.innerGlyph[-1]
outerContour = self.outerGlyph[-1]
innerContour.reverse()
innerContour[0].segmentType = "line"
outerContour[0].segmentType = "line"
self.buildCap(outerContour, innerContour)
for point in innerContour:
outerContour.addPoint((point.x, point.y), segmentType=point.segmentType, smooth=point.smooth)
self.innerGlyph.removeContour(innerContour)
def _endPath(self):
# The current way glyph outlines are processed means that _endPath() would not be called
# _closePath() is used instead
pass
def addComponent(self, glyphName, transform):
self.components.append((glyphName, transform))
# thickness
def getThickness(self, angle):
a2 = angle + pi * .5
f = abs(sin(a2 + radians(self.contrastAngle)))
f = f ** 5
return self.offset + self.contrast * f
# connections
def buildConnection(self, close=False):
if not checkSmooth(self.prevAngle, self.currentAngle):
if checkInnerOuter(self.prevAngle, self.currentAngle):
self.connectionCallback(self.outerPrevPoint, self.outerCurrentPoint, self.outerPen, close)
self.connectionInnerCorner(self.innerPrevPoint, self.innerCurrentPoint, self.innerPen, close)
else:
self.connectionCallback(self.innerPrevPoint, self.innerCurrentPoint, self.innerPen, close)
self.connectionInnerCorner(self.outerPrevPoint, self.outerCurrentPoint, self.outerPen, close)
def connectionRound(self, first, last, pen, close):
angle_1 = radians(degrees(self.prevAngle)+90)
angle_2 = radians(degrees(self.currentAngle)+90)
tempFirst = first - self.pointClass(cos(angle_1), sin(angle_1)) * self.miterLimit
tempLast = last + self.pointClass(cos(angle_2), sin(angle_2)) * self.miterLimit
newPoint = interSect((first, tempFirst), (last, tempLast))
if newPoint is None:
pen.lineTo(last)
return
distance1 = newPoint.distance(first)
distance2 = newPoint.distance(last)
if roundFloat(distance1) > self.miterLimit + self.contrast:
distance1 = self.miterLimit + tempFirst.distance(tempLast) * .7
if roundFloat(distance2) > self.miterLimit + self.contrast:
distance2 = self.miterLimit + tempFirst.distance(tempLast) * .7
distance1 *= self.magicCurve
distance2 *= self.magicCurve
bcp1 = first - self.pointClass(cos(angle_1), sin(angle_1)) * distance1
bcp2 = last + self.pointClass(cos(angle_2), sin(angle_2)) * distance2
pen.curveTo(bcp1, bcp2, last)
def connectionInnerCorner(self, first, last, pen, close):
if not close:
pen.lineTo(last)
# caps
def buildCap(self, firstContour, lastContour):
first = firstContour[-1]
last = lastContour[0]
first = self.pointClass(first.x, first.y)
last = self.pointClass(last.x, last.y)
self.capCallback(firstContour, lastContour, first, last, self.prevAngle)
first = lastContour[-1]
last = firstContour[0]
first = self.pointClass(first.x, first.y)
last = self.pointClass(last.x, last.y)
angle = radians(degrees(self.firstAngle)+180)
self.capCallback(lastContour, firstContour, first, last, angle)
def capRound(self, firstContour, lastContour, first, last, angle):
hookedAngle = radians(degrees(angle)+90)
p1 = first - self.pointClass(cos(hookedAngle), sin(hookedAngle)) * self.offset
p2 = last - self.pointClass(cos(hookedAngle), sin(hookedAngle)) * self.offset
oncurve = p1 + (p2-p1)*.5
roundness = .54
h1 = first - self.pointClass(cos(hookedAngle), sin(hookedAngle)) * self.offset * roundness
h2 = oncurve + self.pointClass(cos(angle), sin(angle)) * self.offset * roundness
firstContour[-1].smooth = True
firstContour.addPoint((h1.x, h1.y))
firstContour.addPoint((h2.x, h2.y))
firstContour.addPoint((oncurve.x, oncurve.y), smooth=True, segmentType="curve")
h1 = oncurve - self.pointClass(cos(angle), sin(angle)) * self.offset * roundness
h2 = last - self.pointClass(cos(hookedAngle), sin(hookedAngle)) * self.offset * roundness
firstContour.addPoint((h1.x, h1.y))
firstContour.addPoint((h2.x, h2.y))
lastContour[0].segmentType = "curve"
lastContour[0].smooth = True
def drawSettings(self, drawOriginal=False, drawInner=False, drawOuter=True):
self.drawOriginal = drawOriginal
self.drawInner = drawInner
self.drawOuter = drawOuter
def drawPoints(self, pointPen):
if self.drawInner:
reversePen = ReverseContourPointPen(pointPen)
self.innerGlyph.drawPoints(CleanPointPen(reversePen))
if self.drawOuter:
self.outerGlyph.drawPoints(CleanPointPen(pointPen))
if self.drawOriginal:
if self.drawOuter:
pointPen = ReverseContourPointPen(pointPen)
self.originalGlyph.drawPoints(CleanPointPen(pointPen))
for glyphName, transform in self.components:
pointPen.addComponent(glyphName, transform)
def draw(self, pen):
pointPen = PointToSegmentPen(pen)
self.drawPoints(pointPen)
def getGlyph(self):
glyph = Glyph()
pointPen = glyph.getPointPen()
self.drawPoints(pointPen)
return glyph
# The following functions have been decoupled from the outlinerRoboFontExtension and
# effectively de-parameterized, with built-in assumptions
def calculate(glyph, strokewidth):
tickness = strokewidth
contrast = 0
contrastAngle = 0
keepBounds = False
optimizeCurve = True
miterLimit = None #assumed
corner = "round" #assumed - other options not supported
cap = "round" #assumed - other options not supported
drawOriginal = False
drawInner = True
drawOuter = True
pen = OutlinePen(glyph.getParent(),
tickness,
contrast,
contrastAngle,
connection=corner,
cap=cap,
miterLimit=miterLimit,
optimizeCurve=optimizeCurve)
glyph.draw(pen)
pen.drawSettings(drawOriginal=drawOriginal,
drawInner=drawInner,
drawOuter=drawOuter)
result = pen.getGlyph()
return result
def expandGlyph(glyph, strokewidth):
defconGlyph = glyph
outline = calculate(defconGlyph, strokewidth)
glyph.clearContours()
outline.drawPoints(glyph.getPointPen())
glyph.round()
def expandFont(targetfont, strokewidth):
font = targetfont
for glyph in font:
expandGlyph(glyph, strokewidth)
def doit(args):
infont = OpenFont(args.ifont)
outfont = args.ofont
# add try to catch bad input
strokewidth = int(args.thickness)
expandFont(infont, strokewidth)
infont.save(outfont)
return infont
def cmd() : execute(None,doit,argspec)
if __name__ == "__main__": cmd()
|