Apache HTTP Server Version 2.5
Authentication is any process by which you verify that someone is who they claim they are. Authorization is any process by which someone is allowed to be where they want to go, or to have information that they want to have.
For general access control, see the Access Control How-To.
There are three types of modules involved in the authentication and authorization process. You will usually need to choose at least one module from each group.
AuthType
directive)
AuthBasicProvider
and
AuthDigestProvider
directives)
Require
directive)
In addition to these modules, there are also
mod_authn_core
and
mod_authz_core
. These module implement core
directives that are core to all auth modules.
The module mod_authnz_ldap
is both an
authentication and authorization provider. The module
mod_authz_host
provides authorization
and access control based on hostname, IP address or characteristics
of the request, but is not part of the authentication provider
system. For backwards compatibility with the mod_access, there is
a new module mod_access_compat
.
You probably also want to take a look at the Access Control howto, which discusses the various ways to control access to your server.
If you have information on your web site that is sensitive or intended for only a small group of people, the techniques in this article will help you make sure that the people that see those pages are the people that you wanted to see them.
This article covers the "standard" way of protecting parts of your web site that most of you are going to use.
If your data really needs to be secure, consider using
mod_ssl
in addition to any authentication.
The directives discussed in this article will need to go
either in your main server configuration file (typically in a
<Directory>
section), or
in per-directory configuration files (.htaccess
files).
If you plan to use .htaccess
files, you will
need to have a server configuration that permits putting
authentication directives in these files. This is done with the
AllowOverride
directive, which
specifies which directives, if any, may be put in per-directory
configuration files.
Since we're talking here about authentication, you will need
an AllowOverride
directive like the
following:
AllowOverride AuthConfig
Or, if you are just going to put the directives directly in your main server configuration file, you will of course need to have write permission to that file.
And you'll need to know a little bit about the directory structure of your server, in order to know where some files are kept. This should not be terribly difficult, and I'll try to make this clear when we come to that point.
You will also need to make sure that the modules
mod_authn_core
and mod_authz_core
have either been built into the httpd binary or loaded by the
httpd.conf configuration file. Both of these modules provide core
directives and functionality that are critical to the configuration
and use of authentication and authorization in the web server.
Here's the basics of password protecting a directory on your server.
First, you need to create a password file. Exactly how you do this will vary depending on what authentication provider you have chosen. More on that later. To start with, we'll use a text password file.
This file should be
placed somewhere not accessible from the web. This is so that
folks cannot download the password file. For example, if your
documents are served out of /usr/local/apache/htdocs
you
might want to put the password file(s) in
/usr/local/apache/passwd
.
To create the file, use the htpasswd
utility that
came with Apache. This will be located in the bin
directory
of wherever you installed Apache. If you have installed Apache from
a third-party package, it may be in your execution path.
To create the file, type:
htpasswd -c /usr/local/apache/passwd/passwords rbowen
htpasswd
will ask you for the password, and
then ask you to type it again to confirm it:
# htpasswd -c /usr/local/apache/passwd/passwords rbowen
New password: mypassword
Re-type new password: mypassword
Adding password for user rbowen
If htpasswd
is not in your path, of course
you'll have to type the full path to the file to get it to run.
With a default installation, it's located at
/usr/local/apache2/bin/htpasswd
Next, you'll need to configure the server to request a
password and tell the server which users are allowed access.
You can do this either by editing the httpd.conf
file or using an .htaccess
file. For example, if
you wish to protect the directory
/usr/local/apache/htdocs/secret
, you can use the
following directives, either placed in the file
/usr/local/apache/htdocs/secret/.htaccess
, or
placed in httpd.conf
inside a <Directory
/usr/local/apache/htdocs/secret> section.
AuthType Basic
AuthName "Restricted Files"
# (Following line optional)
AuthBasicProvider file
AuthUserFile /usr/local/apache/passwd/passwords
Require user rbowen
Let's examine each of those directives individually. The AuthType
directive selects
that method that is used to authenticate the user. The most
common method is Basic
, and this is the method
implemented by mod_auth_basic
. It is important to be aware,
however, that Basic authentication sends the password from the client to
the server unencrypted. This method should therefore not be used for
highly sensitive data, unless accompanied by mod_ssl
.
Apache supports one other authentication method:
AuthType Digest
. This method is implemented by mod_auth_digest
and is much more secure. Most recent
browsers support Digest authentication.
The AuthName
directive sets
the Realm to be used in the authentication. The realm serves
two major functions. First, the client often presents this information to
the user as part of the password dialog box. Second, it is used by the
client to determine what password to send for a given authenticated
area.
So, for example, once a client has authenticated in the
"Restricted Files"
area, it will automatically
retry the same password for any area on the same server that is
marked with the "Restricted Files"
Realm.
Therefore, you can prevent a user from being prompted more than
once for a password by letting multiple restricted areas share
the same realm. Of course, for security reasons, the client
will always need to ask again for the password whenever the
hostname of the server changes.
The AuthBasicProvider
is,
in this case, optional, since file
is the default value
for this directive. You'll need to use this directive if you are
choosing a different source for authentication, such as
mod_authn_dbm
or mod_authn_dbd
.
The AuthUserFile
directive sets the path to the password file that we just
created with htpasswd
. If you have a large number
of users, it can be quite slow to search through a plain text
file to authenticate the user on each request. Apache also has
the ability to store user information in fast database files.
The mod_authn_dbm
module provides the AuthDBMUserFile
directive. These
files can be created and manipulated with the dbmmanage
program. Many
other types of authentication options are available from third
party modules in the Apache Modules
Database.
Finally, the Require
directive provides the authorization part of the process by
setting the user that is allowed to access this region of the
server. In the next section, we discuss various ways to use the
Require
directive.
The directives above only let one person (specifically
someone with a username of rbowen
) into the
directory. In most cases, you'll want to let more than one
person in. This is where the AuthGroupFile
comes in.
If you want to let more than one person in, you'll need to create a group file that associates group names with a list of users in that group. The format of this file is pretty simple, and you can create it with your favorite editor. The contents of the file will look like this:
GroupName: rbowen dpitts sungo rshersey
That's just a list of the members of the group in a long line separated by spaces.
To add a user to your already existing password file, type:
htpasswd /usr/local/apache/passwd/passwords dpitts
You'll get the same response as before, but it will be
appended to the existing file, rather than creating a new file.
(It's the -c
that makes it create a new password
file).
Now, you need to modify your .htaccess
file to
look like the following:
AuthType Basic
AuthName "By Invitation Only"
# Optional line:
AuthBasicProvider file
AuthUserFile /usr/local/apache/passwd/passwords
AuthGroupFile /usr/local/apache/passwd/groups
Require group GroupName
Now, anyone that is listed in the group GroupName
,
and has an entry in the password
file, will be let in, if
they type the correct password.
There's another way to let multiple users in that is less specific. Rather than creating a group file, you can just use the following directive:
Require valid-user
Using that rather than the Require user rbowen
line will allow anyone in that is listed in the password file,
and who correctly enters their password. You can even emulate
the group behavior here, by just keeping a separate password
file for each group. The advantage of this approach is that
Apache only has to check one file, rather than two. The
disadvantage is that you have to maintain a bunch of password
files, and remember to reference the right one in the
AuthUserFile
directive.
Because of the way that Basic authentication is specified, your username and password must be verified every time you request a document from the server. This is even if you're reloading the same page, and for every image on the page (if they come from a protected directory). As you can imagine, this slows things down a little. The amount that it slows things down is proportional to the size of the password file, because it has to open up that file, and go down the list of users until it gets to your name. And it has to do this every time a page is loaded.
A consequence of this is that there's a practical limit to how many users you can put in one password file. This limit will vary depending on the performance of your particular server machine, but you can expect to see slowdowns once you get above a few hundred entries, and may wish to consider a different authentication method at that time.
Because storing passwords in plain text files has the above problems, you may wish to store your passwords somewhere else, such as in a database.
mod_authn_dbm
and mod_authn_dbd
are two
modules which make this possible. Rather than selecting
, instead
you can choose AuthBasicProvider
filedbm
or dbd
as your storage
format.
To select a dbd file rather than a text file, for example:
<Directory /www/docs/private>
AuthName "Private"
AuthType Basic
AuthBasicProvider dbm
AuthDBMUserFile /www/passwords/passwd.dbm
Require valid-user
</Directory>
Other options are available. Consult the
mod_authn_dbm
documentation for more details.
With the introduction of the new provider based authentication and authorization architecture, you are no longer locked into a single authentication or authorization method. In fact any number of the providers can be mixed and matched to provide you with exactly the scheme that meets your needs. In the following example, both the file and LDAP based authentication providers are being used.
<Directory /www/docs/private>
AuthName "Private"
AuthType Basic
AuthBasicProvider file ldap
AuthUserFile /usr/local/apache/passwd/passwords
AuthLDAPURL ldap://ldaphost/o=yourorg
Require valid-user
</Directory>
In this example the file provider will attempt to authenticate the user first. If it is unable to authenticate the user, the LDAP provider will be called. This allows the scope of authentication to be broadened if your organization implements more than one type of authentication store. Other authentication and authorization scenarios may include mixing one type of authentication with a different type of authorization. For example, authenticating against a password file yet authorizing against an LDAP directory.
Just as multiple authentication providers can be implemented, multiple authorization methods can also be used. In this example both file group authorization as well as LDAP group authorization is being used.
<Directory /www/docs/private>
AuthName "Private"
AuthType Basic
AuthBasicProvider file
AuthUserFile /usr/local/apache/passwd/passwords
AuthLDAPURL ldap://ldaphost/o=yourorg
AuthGroupFile /usr/local/apache/passwd/groups
Require group GroupName
Require ldap-group cn=mygroup,o=yourorg
</Directory>
To take authorization a little further, authorization container
directives such as
<RequireAll>
and
<RequireAny>
allow logic to be applied so that the order in which authorization
is handled can be completely controled through the configuration.
See Authorization
Containers for an example of they may be applied.
The way that authorization can be apply is now much more flexible than just a single check against a single data store. Ordering, logic and choosing how authorization will be done is now possible.
Controling how and in what order authorization will be applied
has been a bit of a mystery in the past. In Apache 2.2 a provider-based
authentication mechanism was introduced to decouple the actual
authentication process from authorization and supporting functionality.
One of the side benefits was that authentication providers could be
configured and called in a specific order which didn't depend on the
load order of the auth module itself. This same provider based mechanism
has been brought forward into authorization as well. What this means is
that the Require
directive
not only specifies which authorization methods should be used, it also
specifies the order in which they are called. Multiple authorization
methods are called in the same order in which the
Require
directives
appear in the configuration.
With the introduction of authorization container directives
such as
<RequireAll>
and
<RequireAny>
,
the configuration also has control over when the
authorization methods are called and what criteria determines when
access is granted. See
Authorization Containers
for an example of how they may be used to express complex
authorization logic.
By default all
Require
directives are handled as though contained within a
<RequireAny>
container directive. In other words, if
any of the specified authorization methods succeed, then authorization
is granted.
Authentication by username and password is only part of the story. Frequently you want to let people in based on something other than who they are. Something such as where they are coming from.
The authorization providers
all
,
env
,
host
and
ip
let you allow or deny access based other host based
criteria such as host name or ip address of the machine requesting
a document.
The usage of these providers is specified through the
Require
directive.
This directive registers the authorization providers
that will be called during the authorization stage of the request
processing. For example:
Require ip address
where address is an IP address (or a partial IP address) or:
Require host domain_name
where domain_name is a fully qualified domain name (or a partial domain name); you may provide multiple addresses or domain names, if desired.
For example, if you have someone spamming your message board, and you want to keep them out, you could do the following:
<RequireAll>
Require all granted
Require not ip 10.252.46.165
</RequireAll>
Visitors coming from that address will not be able to see the content covered by this directive. If, instead, you have a machine name, rather than an IP address, you can use that.
<RequireAll>
Require all granted
Require not host host.example.com
</RequireAll>
And, if you'd like to block access from an entire domain, you can specify just part of an address or domain name:
<RequireAll>
Require all granted
<RequireNone>
Require ip 192.168.205
Require host phishers.example.com moreidiots.example
Require host ke
</RequireNone>
</RequireAll>
The above example uses the <RequireNone>
directive
to make sure that none of the
Require
directives
contained within it
match their parameters before granting access.
One of the side effects of adopting a provider based mechanism for
authentication is that the need for the previous access control directives
Order
,
Allow
,
Deny
and
Satisfy
are no longer needed.
However to provide backwards compatibility for older configurations, these
directives have been moved to the mod_access_compat
module.
There may be times when authentication puts an unacceptable load
on a provider or on your network. This is most likely to affect users
of mod_authn_dbd
(or third-party/custom providers).
To deal with this, HTTPD 2.3/2.4 introduces a new cacheing provider
mod_authn_socache
to cache credentials and reduce
the load on the origin provider(s).
This may offer a substantial performance boost to some users.
You should also read the documentation for
mod_auth_basic
and mod_authz_host
which
contain some more information about how this all works.
The directive <AuthnProviderAlias>
can also help in simplifying certain authentication configurations.
The various ciphers supported by Apache for authentication data are explained in Password Encryptions.
And you may want to look at the Access Control howto, which discusses a number of related topics.