/* ==================================================================== * The Apache Software License, Version 1.1 * * Copyright (c) 2000-2002 The Apache Software Foundation. All rights * reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. The end-user documentation included with the redistribution, * if any, must include the following acknowledgment: * "This product includes software developed by the * Apache Software Foundation (http://www.apache.org/)." * Alternately, this acknowledgment may appear in the software itself, * if and wherever such third-party acknowledgments normally appear. * * 4. The names "Apache" and "Apache Software Foundation" must * not be used to endorse or promote products derived from this * software without prior written permission. For written * permission, please contact apache@apache.org. * * 5. Products derived from this software may not be called "Apache", * nor may "Apache" appear in their name, without prior written * permission of the Apache Software Foundation. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * ==================================================================== * * This software consists of voluntary contributions made by many * individuals on behalf of the Apache Software Foundation. For more * information on the Apache Software Foundation, please see * . * * Portions of this software are based upon public domain software * originally written at the National Center for Supercomputing Applications, * University of Illinois, Urbana-Champaign. */ #define CORE_PRIVATE #include "mod_cache.h" #include "cache_pqueue.h" #include "cache_cache.h" #include "ap_mpm.h" #include "apr_thread_mutex.h" #if APR_HAVE_UNISTD_H #include #endif #if !APR_HAS_THREADS #error This module does not currently compile unless you have a thread-capable APR. Sorry! #endif module AP_MODULE_DECLARE_DATA mem_cache_module; typedef enum { CACHE_TYPE_FILE = 1, CACHE_TYPE_HEAP, CACHE_TYPE_MMAP } cache_type_e; typedef struct { char* hdr; char* val; } cache_header_tbl_t; typedef struct mem_cache_object { cache_type_e type; apr_ssize_t num_header_out; apr_ssize_t num_subprocess_env; apr_ssize_t num_notes; apr_ssize_t num_req_hdrs; cache_header_tbl_t *header_out; cache_header_tbl_t *subprocess_env; cache_header_tbl_t *notes; cache_header_tbl_t *req_hdrs; /* for Vary negotiation */ apr_size_t m_len; void *m; apr_os_file_t fd; apr_int32_t flags; /* File open flags */ long priority; /**< the priority of this entry */ long total_refs; /**< total number of references this entry has had */ #ifdef USE_ATOMICS apr_atomic_t pos; /**< the position of this entry in the cache */ #else apr_ssize_t pos; #endif } mem_cache_object_t; typedef struct { apr_thread_mutex_t *lock; cache_cache_t *cache_cache; apr_size_t cache_size; apr_size_t object_cnt; /* Fields set by config directives */ apr_size_t min_cache_object_size; /* in bytes */ apr_size_t max_cache_object_size; /* in bytes */ apr_size_t max_cache_size; /* in bytes */ apr_size_t max_object_cnt; cache_pqueue_set_priority cache_remove_algorithm; } mem_cache_conf; static mem_cache_conf *sconf; #define DEFAULT_MAX_CACHE_SIZE 100*1024 #define DEFAULT_MIN_CACHE_OBJECT_SIZE 0 #define DEFAULT_MAX_CACHE_OBJECT_SIZE 10000 #define DEFAULT_MAX_OBJECT_CNT 1009 #define CACHEFILE_LEN 20 /* Forward declarations */ static int remove_entity(cache_handle_t *h); static apr_status_t write_headers(cache_handle_t *h, request_rec *r, cache_info *i); static apr_status_t write_body(cache_handle_t *h, request_rec *r, apr_bucket_brigade *b); static apr_status_t read_headers(cache_handle_t *h, request_rec *r); static apr_status_t read_body(cache_handle_t *h, apr_pool_t *p, apr_bucket_brigade *bb); static void cleanup_cache_object(cache_object_t *obj); static long memcache_get_priority(void*a) { cache_object_t *obj = (cache_object_t *)a; mem_cache_object_t *mobj = obj->vobj; return mobj->priority; } static void memcache_inc_frequency(void*a) { cache_object_t *obj = (cache_object_t *)a; mem_cache_object_t *mobj = obj->vobj; mobj->total_refs++; mobj->priority = 0; } static void memcache_set_pos(void *a, apr_ssize_t pos) { cache_object_t *obj = (cache_object_t *)a; mem_cache_object_t *mobj = obj->vobj; #ifdef USE_ATOMICS apr_atomic_set(&mobj->pos, pos); #else mobj->pos = pos; #endif } static apr_ssize_t memcache_get_pos(void *a) { cache_object_t *obj = (cache_object_t *)a; mem_cache_object_t *mobj = obj->vobj; #ifdef USE_ATOMICS return apr_atomic_read(&mobj->pos); #else return mobj->pos; #endif } static apr_size_t memcache_cache_get_size(void*a) { cache_object_t *obj = (cache_object_t *)a; mem_cache_object_t *mobj = obj->vobj; return mobj->m_len; } /** callback to get the key of a item */ static const char* memcache_cache_get_key(void*a) { cache_object_t *obj = (cache_object_t *)a; return obj->key; } /** * callback to free an entry * There is way too much magic in this code. Right now, this callback * is only called out of cache_insert() which is called under protection * of the sconf->lock, which means that we do not (and should not) * attempt to obtain the lock recursively. */ static void memcache_cache_free(void*a) { cache_object_t *obj = (cache_object_t *)a; /* Cleanup the cache object. Object should be removed from the cache * now. Increment the refcount before setting cleanup to avoid a race * condition. A similar pattern is used in remove_url() */ #ifdef USE_ATOMICS apr_atomic_inc(&obj->refcount); #else obj->refcount++; #endif obj->cleanup = 1; #ifdef USE_ATOMICS if (!apr_atomic_dec(&obj->refcount)) { cleanup_cache_object(obj); } #else obj->refcount--; if (!obj->refcount) { cleanup_cache_object(obj); } #endif } /* * functions return a 'negative' score as lower is better in a priority Q */ static long memcache_lru_algorithm(long queue_clock, void *a) { cache_object_t *obj = (cache_object_t *)a; mem_cache_object_t *mobj = obj->vobj; if (mobj->priority == 0) mobj->priority = ((long)(queue_clock + mobj->total_refs)); /* * a 'proper' LRU function would just be * mobj->priority = mobj->total_refs; */ return -1*mobj->priority; } static long memcache_gdsf_algorithm(long queue_clock, void *a) { cache_object_t *obj = (cache_object_t *)a; mem_cache_object_t *mobj = obj->vobj; if (mobj->priority == 0) mobj->priority = queue_clock + (long)(mobj->total_refs*1000 / mobj->m_len); return -1*mobj->priority; } static void cleanup_cache_object(cache_object_t *obj) { mem_cache_object_t *mobj = obj->vobj; /* TODO: * We desperately need a more efficient way of allocating objects. We're * making way too many malloc calls to create a fully populated * cache object... */ /* Cleanup the cache_object_t */ if (obj->key) { free(obj->key); } if (obj->info.content_type) { free(obj->info.content_type); } if (obj->info.etag) { free(obj->info.etag); } if (obj->info.lastmods) { free(obj->info.lastmods); } if (obj->info.filename) { free(obj->info.filename); } free(obj); /* Cleanup the mem_cache_object_t */ if (mobj) { if (mobj->type == CACHE_TYPE_HEAP && mobj->m) { free(mobj->m); } if (mobj->type == CACHE_TYPE_FILE && mobj->fd) { #ifdef WIN32 CloseHandle(mobj->fd); #else close(mobj->fd); #endif } if (mobj->header_out) { if (mobj->header_out[0].hdr) free(mobj->header_out[0].hdr); free(mobj->header_out); } if (mobj->subprocess_env) { if (mobj->subprocess_env[0].hdr) free(mobj->subprocess_env[0].hdr); free(mobj->subprocess_env); } if (mobj->notes) { if (mobj->notes[0].hdr) free(mobj->notes[0].hdr); free(mobj->notes); } if (mobj->req_hdrs) { if (mobj->req_hdrs[0].hdr) free(mobj->req_hdrs[0].hdr); free(mobj->req_hdrs); } free(mobj); } } static apr_status_t decrement_refcount(void *arg) { cache_object_t *obj = (cache_object_t *) arg; /* If obj->complete is not set, the cache update failed and the * object needs to be removed from the cache then cleaned up. */ if (!obj->complete) { mem_cache_object_t *mobj = (mem_cache_object_t *) obj->vobj; if (sconf->lock) { apr_thread_mutex_lock(sconf->lock); } /* Remember, objects marked for cleanup are, by design, already * removed from the cache. remove_url() could have already * removed the object from the cache (and set obj->cleanup) */ if (!obj->cleanup) { cache_remove(sconf->cache_cache, obj); sconf->object_cnt--; sconf->cache_size -= mobj->m_len; obj->cleanup = 1; } if (sconf->lock) { apr_thread_mutex_unlock(sconf->lock); } } /* Cleanup the cache object */ #ifdef USE_ATOMICS if (!apr_atomic_dec(&obj->refcount)) { if (obj->cleanup) { cleanup_cache_object(obj); } } #else if (sconf->lock) { apr_thread_mutex_lock(sconf->lock); } obj->refcount--; /* If the object is marked for cleanup and the refcount * has dropped to zero, cleanup the object */ if ((obj->cleanup) && (!obj->refcount)) { cleanup_cache_object(obj); } if (sconf->lock) { apr_thread_mutex_unlock(sconf->lock); } #endif return APR_SUCCESS; } static apr_status_t cleanup_cache_mem(void *sconfv) { cache_object_t *obj; mem_cache_conf *co = (mem_cache_conf*) sconfv; if (!co) { return APR_SUCCESS; } if (!co->cache_cache) { return APR_SUCCESS; } if (sconf->lock) { apr_thread_mutex_lock(sconf->lock); } obj = cache_pop(co->cache_cache); while (obj) { /* Iterate over the cache and clean up each entry */ /* Free the object if the recount == 0 */ #ifdef USE_ATOMICS apr_atomic_inc(&obj->refcount); obj->cleanup = 1; if (!apr_atomic_dec(&obj->refcount)) { #else obj->cleanup = 1; if (!obj->refcount) { #endif cleanup_cache_object(obj); } obj = cache_pop(co->cache_cache); } /* Cache is empty, free the cache table */ cache_free(co->cache_cache); if (sconf->lock) { apr_thread_mutex_unlock(sconf->lock); } return APR_SUCCESS; } /* * TODO: enable directives to be overridden in various containers */ static void *create_cache_config(apr_pool_t *p, server_rec *s) { sconf = apr_pcalloc(p, sizeof(mem_cache_conf)); sconf->min_cache_object_size = DEFAULT_MIN_CACHE_OBJECT_SIZE; sconf->max_cache_object_size = DEFAULT_MAX_CACHE_OBJECT_SIZE; /* Number of objects in the cache */ sconf->max_object_cnt = DEFAULT_MAX_OBJECT_CNT; sconf->object_cnt = 0; /* Size of the cache in bytes */ sconf->max_cache_size = DEFAULT_MAX_CACHE_SIZE; sconf->cache_size = 0; sconf->cache_cache = NULL; sconf->cache_remove_algorithm = memcache_gdsf_algorithm; return sconf; } static int create_entity(cache_handle_t *h, request_rec *r, const char *type, const char *key, apr_off_t len) { cache_object_t *obj, *tmp_obj; mem_cache_object_t *mobj; cache_type_e type_e; apr_size_t key_len; if (!strcasecmp(type, "mem")) { type_e = CACHE_TYPE_HEAP; } else if (!strcasecmp(type, "fd")) { type_e = CACHE_TYPE_FILE; } else { return DECLINED; } /* In principle, we should be able to dispense with the cache_size checks * when caching open file descriptors. However, code in cache_insert() and * other places does not make the distinction whether a file's content or * descriptor is being cached. For now, just do all the same size checks * regardless of what we are caching. */ if (len < sconf->min_cache_object_size || len > sconf->max_cache_object_size) { ap_log_error(APLOG_MARK, APLOG_DEBUG, 0, r->server, "cache_mem: URL %s failed the size check, " "or is incomplete", key); return DECLINED; } if (type_e == CACHE_TYPE_FILE) { /* CACHE_TYPE_FILE is only valid for local content handled by the * default handler. Need a better way to check if the file is * local or not. */ if (!r->filename) { return DECLINED; } } /* Allocate and initialize cache_object_t */ obj = calloc(1, sizeof(*obj)); if (!obj) { return DECLINED; } key_len = strlen(key) + 1; obj->key = malloc(key_len); if (!obj->key) { cleanup_cache_object(obj); return DECLINED; } memcpy(obj->key, key, key_len); /* Safe cast: We tested < sconf->max_cache_object_size above */ obj->info.len = (apr_size_t)len; /* Allocate and init mem_cache_object_t */ mobj = calloc(1, sizeof(*mobj)); if (!mobj) { cleanup_cache_object(obj); return DECLINED; } /* Finish initing the cache object */ #ifdef USE_ATOMICS apr_atomic_set(&obj->refcount, 1); #else obj->refcount = 1; #endif mobj->total_refs = 1; obj->complete = 0; obj->cleanup = 0; obj->vobj = mobj; /* Safe cast: We tested < sconf->max_cache_object_size above */ mobj->m_len = (apr_size_t)len; mobj->type = type_e; /* Place the cache_object_t into the hash table. * Note: Perhaps we should wait to put the object in the * hash table when the object is complete? I add the object here to * avoid multiple threads attempting to cache the same content only * to discover at the very end that only one of them will suceed. * Furthermore, adding the cache object to the table at the end could * open up a subtle but easy to exploit DoS hole: someone could request * a very large file with multiple requests. Better to detect this here * rather than after the cache object has been completely built and * initialized... * XXX Need a way to insert into the cache w/o such coarse grained locking */ if (sconf->lock) { apr_thread_mutex_lock(sconf->lock); } tmp_obj = (cache_object_t *) cache_find(sconf->cache_cache, key); if (!tmp_obj) { cache_insert(sconf->cache_cache, obj); sconf->object_cnt++; /* Safe cast: Must fit in cache_size or alloc would have failed */ sconf->cache_size += (apr_size_t)len; } if (sconf->lock) { apr_thread_mutex_unlock(sconf->lock); } if (tmp_obj) { /* This thread collided with another thread loading the same object * into the cache at the same time. Defer to the other thread which * is further along. */ cleanup_cache_object(obj); return DECLINED; } apr_pool_cleanup_register(r->pool, obj, decrement_refcount, apr_pool_cleanup_null); /* Populate the cache handle */ h->cache_obj = obj; h->read_body = &read_body; h->read_headers = &read_headers; h->write_body = &write_body; h->write_headers = &write_headers; h->remove_entity = &remove_entity; return OK; } static int open_entity(cache_handle_t *h, request_rec *r, const char *type, const char *key) { cache_object_t *obj; /* Look up entity keyed to 'url' */ if (strcasecmp(type, "mem") && strcasecmp(type, "fd")) { return DECLINED; } if (sconf->lock) { apr_thread_mutex_lock(sconf->lock); } obj = (cache_object_t *) cache_find(sconf->cache_cache, key); if (obj) { if (obj->complete) { request_rec *rmain=r, *rtmp; #ifdef USE_ATOMICS apr_atomic_inc(&obj->refcount); #else obj->refcount++; #endif /* cache is worried about overall counts, not 'open' ones */ cache_update(sconf->cache_cache, obj); /* If this is a subrequest, register the cleanup against * the main request. This will prevent the cache object * from being cleaned up from under the request after the * subrequest is destroyed. */ rtmp = r; while (rtmp) { rmain = rtmp; rtmp = rmain->main; } apr_pool_cleanup_register(rmain->pool, obj, decrement_refcount, apr_pool_cleanup_null); } else { obj = NULL; } } if (sconf->lock) { apr_thread_mutex_unlock(sconf->lock); } if (!obj) { return DECLINED; } /* Initialize the cache_handle */ h->read_body = &read_body; h->read_headers = &read_headers; h->write_body = &write_body; h->write_headers = &write_headers; h->remove_entity = &remove_entity; h->cache_obj = obj; h->req_hdrs = NULL; /* Pick these up in read_headers() */ return OK; } static int remove_entity(cache_handle_t *h) { cache_object_t *obj = h->cache_obj; /* Remove the cache object from the cache under protection */ if (sconf->lock) { apr_thread_mutex_lock(sconf->lock); } /* If the object is not already marked for cleanup, remove * it from the cache and mark it for cleanup. Remember, * an object marked for cleanup is by design not in the * hash table. */ if (!obj->cleanup) { mem_cache_object_t *mobj = (mem_cache_object_t *) obj->vobj; cache_remove(sconf->cache_cache, obj); sconf->object_cnt--; sconf->cache_size -= mobj->m_len; obj->cleanup = 1; ap_log_error(APLOG_MARK, APLOG_INFO, 0, NULL, "gcing a cache entry"); } if (sconf->lock) { apr_thread_mutex_unlock(sconf->lock); } return OK; } static apr_status_t serialize_table(cache_header_tbl_t **obj, apr_ssize_t *nelts, apr_table_t *table) { const apr_array_header_t *elts_arr = apr_table_elts(table); apr_table_entry_t *elts = (apr_table_entry_t *) elts_arr->elts; apr_ssize_t i; apr_size_t len = 0; apr_size_t idx = 0; char *buf; *nelts = elts_arr->nelts; if (*nelts == 0 ) { *obj=NULL; return APR_SUCCESS; } *obj = malloc(sizeof(cache_header_tbl_t) * elts_arr->nelts); if (NULL == *obj) { return APR_ENOMEM; } for (i = 0; i < elts_arr->nelts; ++i) { len += strlen(elts[i].key); len += strlen(elts[i].val); len += 2; /* Extra space for NULL string terminator for key and val */ } /* Transfer the headers into a contiguous memory block */ buf = malloc(len); if (!buf) { *obj = NULL; return APR_ENOMEM; } for (i = 0; i < *nelts; ++i) { (*obj)[i].hdr = &buf[idx]; len = strlen(elts[i].key) + 1; /* Include NULL terminator */ memcpy(&buf[idx], elts[i].key, len); idx+=len; (*obj)[i].val = &buf[idx]; len = strlen(elts[i].val) + 1; memcpy(&buf[idx], elts[i].val, len); idx+=len; } return APR_SUCCESS; } static int unserialize_table( cache_header_tbl_t *ctbl, int num_headers, apr_table_t *t ) { int i; for (i = 0; i < num_headers; ++i) { apr_table_addn(t, ctbl[i].hdr, ctbl[i].val); } return APR_SUCCESS; } /* Define request processing hook handlers */ static int remove_url(const char *type, const char *key) { cache_object_t *obj; if (strcasecmp(type, "mem") && strcasecmp(type, "fd")) { return DECLINED; } /* Order of the operations is important to avoid race conditions. * First, remove the object from the cache. Remember, all additions * deletions from the cache are protected by sconf->lock. * Increment the ref count on the object to indicate our thread * is accessing the object. Then set the cleanup flag on the * object. Remember, the cleanup flag is NEVER set on an * object in the hash table. If an object has the cleanup * flag set, it is guaranteed to NOT be in the hash table. */ if (sconf->lock) { apr_thread_mutex_lock(sconf->lock); } obj = cache_find(sconf->cache_cache, key); if (obj) { mem_cache_object_t *mobj; cache_remove(sconf->cache_cache, obj); mobj = (mem_cache_object_t *) obj->vobj; sconf->object_cnt--; sconf->cache_size -= mobj->m_len; #ifdef USE_ATOMICS /* Refcount increment in this case MUST be made under * protection of the lock */ apr_atomic_inc(&obj->refcount); #else if (!obj->refcount) { cleanup_cache_object(obj); obj = NULL; } #endif if (obj) { obj->cleanup = 1; } } if (sconf->lock) { apr_thread_mutex_unlock(sconf->lock); } #ifdef USE_ATOMICS if (obj) { if (!apr_atomic_dec(&obj->refcount)) { cleanup_cache_object(obj); } } #endif return OK; } static apr_status_t read_headers(cache_handle_t *h, request_rec *r) { int rc; mem_cache_object_t *mobj = (mem_cache_object_t*) h->cache_obj->vobj; h->req_hdrs = apr_table_make(r->pool, mobj->num_req_hdrs); r->headers_out = apr_table_make(r->pool, mobj->num_header_out); r->subprocess_env = apr_table_make(r->pool, mobj->num_subprocess_env); r->notes = apr_table_make(r->pool, mobj->num_notes); rc = unserialize_table(mobj->req_hdrs, mobj->num_req_hdrs, h->req_hdrs); rc = unserialize_table( mobj->header_out, mobj->num_header_out, r->headers_out); rc = unserialize_table( mobj->subprocess_env, mobj->num_subprocess_env, r->subprocess_env); rc = unserialize_table( mobj->notes, mobj->num_notes, r->notes); /* Content-Type: header may not be set if content is local since * CACHE_IN runs before header filters.... */ ap_set_content_type(r, apr_pstrdup(r->pool, h->cache_obj->info.content_type)); return rc; } static apr_status_t read_body(cache_handle_t *h, apr_pool_t *p, apr_bucket_brigade *bb) { apr_bucket *b; mem_cache_object_t *mobj = (mem_cache_object_t*) h->cache_obj->vobj; if (mobj->type == CACHE_TYPE_FILE) { /* CACHE_TYPE_FILE */ apr_file_t *file; apr_os_file_put(&file, &mobj->fd, mobj->flags, p); b = apr_bucket_file_create(file, 0, mobj->m_len, p, bb->bucket_alloc); } else { /* CACHE_TYPE_HEAP */ b = apr_bucket_immortal_create(mobj->m, mobj->m_len, bb->bucket_alloc); } APR_BRIGADE_INSERT_TAIL(bb, b); b = apr_bucket_eos_create(bb->bucket_alloc); APR_BRIGADE_INSERT_TAIL(bb, b); return APR_SUCCESS; } static apr_status_t write_headers(cache_handle_t *h, request_rec *r, cache_info *info) { cache_object_t *obj = h->cache_obj; mem_cache_object_t *mobj = (mem_cache_object_t*) obj->vobj; int rc; /* * The cache needs to keep track of the following information: * - Date, LastMod, Version, ReqTime, RespTime, ContentLength * - The original request headers (for Vary) * - The original response headers (for returning with a cached response) * - The body of the message */ rc = serialize_table(&mobj->req_hdrs, &mobj->num_req_hdrs, r->headers_in); if (rc != APR_SUCCESS) { return rc; } /* Precompute how much storage we need to hold the headers */ rc = serialize_table(&mobj->header_out, &mobj->num_header_out, ap_cache_cacheable_hdrs_out(r)); if (rc != APR_SUCCESS) { return rc; } rc = serialize_table(&mobj->subprocess_env, &mobj->num_subprocess_env, r->subprocess_env ); if (rc != APR_SUCCESS) { return rc; } rc = serialize_table(&mobj->notes, &mobj->num_notes, r->notes); if (rc != APR_SUCCESS) { return rc; } /* Init the info struct */ if (info->date) { obj->info.date = info->date; } if (info->lastmod) { obj->info.lastmod = info->lastmod; } if (info->response_time) { obj->info.response_time = info->response_time; } if (info->request_time) { obj->info.request_time = info->request_time; } if (info->expire) { obj->info.expire = info->expire; } if (info->content_type) { apr_size_t len = strlen(info->content_type) + 1; obj->info.content_type = (char*) malloc(len); if (!obj->info.content_type) { return APR_ENOMEM; } memcpy(obj->info.content_type, info->content_type, len); } if ( info->filename) { apr_size_t len = strlen(info->filename) + 1; obj->info.filename = (char*) malloc(len); if (!obj->info.filename ) { return APR_ENOMEM; } memcpy(obj->info.filename, info->filename, len); } return APR_SUCCESS; } static apr_status_t write_body(cache_handle_t *h, request_rec *r, apr_bucket_brigade *b) { apr_status_t rv; cache_object_t *obj = h->cache_obj; mem_cache_object_t *mobj = (mem_cache_object_t*) obj->vobj; apr_read_type_e eblock = APR_BLOCK_READ; apr_bucket *e; char *cur; int eos = 0; if (mobj->type == CACHE_TYPE_FILE) { apr_file_t *file = NULL; int fd = 0; int other = 0; /* We can cache an open file descriptor if: * - the brigade contains one and only one file_bucket && * - the brigade is complete && * - the file_bucket is the last data bucket in the brigade */ APR_BRIGADE_FOREACH(e, b) { if (APR_BUCKET_IS_EOS(e)) { eos = 1; } else if (APR_BUCKET_IS_FILE(e)) { apr_bucket_file *a = e->data; fd++; file = a->fd; } else { other++; } } if (fd == 1 && !other && eos) { apr_file_t *tmpfile; const char *name; /* Open a new XTHREAD handle to the file */ apr_file_name_get(&name, file); mobj->flags = ((APR_SENDFILE_ENABLED & apr_file_flags_get(file)) | APR_READ | APR_BINARY | APR_XTHREAD | APR_FILE_NOCLEANUP); rv = apr_file_open(&tmpfile, name, mobj->flags, APR_OS_DEFAULT, r->pool); if (rv != APR_SUCCESS) { return rv; } apr_file_unset_inherit(tmpfile); apr_os_file_get(&(mobj->fd), tmpfile); /* Open for business */ obj->complete = 1; return APR_SUCCESS; } /* Content not suitable for fd caching. Cache in-memory instead. */ mobj->type = CACHE_TYPE_HEAP; /* Check to make sure the object will not exceed configured thresholds */ if (mobj->m_len < sconf->min_cache_object_size || mobj->m_len > sconf->max_cache_object_size) { return APR_ENOMEM; /* ?? DECLINED; */ } if ((sconf->cache_size + mobj->m_len) > sconf->max_cache_size) { return APR_ENOMEM; /* ?? DECLINED; */ } sconf->cache_size += mobj->m_len; } /* * FD cacheing is not enabled or the content was not * suitable for fd caching. */ if (mobj->m == NULL) { mobj->m = malloc(mobj->m_len); if (mobj->m == NULL) { return APR_ENOMEM; } obj->count = 0; } cur = (char*) mobj->m + obj->count; /* Iterate accross the brigade and populate the cache storage */ APR_BRIGADE_FOREACH(e, b) { const char *s; apr_size_t len; if (APR_BUCKET_IS_EOS(e)) { /* Open for business */ obj->complete = 1; break; } rv = apr_bucket_read(e, &s, &len, eblock); if (rv != APR_SUCCESS) { return rv; } if (len) { /* Check for buffer overflow */ if ((obj->count + len) > mobj->m_len) { return APR_ENOMEM; } else { memcpy(cur, s, len); cur+=len; obj->count+=len; } } /* This should not fail, but if it does, we are in BIG trouble * cause we just stomped all over the heap. */ AP_DEBUG_ASSERT(obj->count <= mobj->m_len); } return APR_SUCCESS; } /** * Configuration and start-up */ static int mem_cache_post_config(apr_pool_t *p, apr_pool_t *plog, apr_pool_t *ptemp, server_rec *s) { int threaded_mpm; /* Sanity check the cache configuration */ if (sconf->min_cache_object_size >= sconf->max_cache_object_size) { ap_log_error(APLOG_MARK, APLOG_CRIT, 0, s, "MCacheMaxObjectSize must be greater than MCacheMinObjectSize"); return DONE; } if (sconf->max_cache_object_size >= sconf->max_cache_size) { ap_log_error(APLOG_MARK, APLOG_CRIT, 0, s, "MCacheSize must be greater than MCacheMaxObjectSize"); return DONE; } ap_mpm_query(AP_MPMQ_IS_THREADED, &threaded_mpm); if (threaded_mpm) { apr_thread_mutex_create(&sconf->lock, APR_THREAD_MUTEX_DEFAULT, p); } sconf->cache_cache = cache_init(sconf->max_object_cnt, sconf->max_cache_size, memcache_get_priority, sconf->cache_remove_algorithm, memcache_get_pos, memcache_set_pos, memcache_inc_frequency, memcache_cache_get_size, memcache_cache_get_key, memcache_cache_free); apr_pool_cleanup_register(p, sconf, cleanup_cache_mem, apr_pool_cleanup_null); if (sconf->cache_cache) return OK; return -1; } static const char *set_max_cache_size(cmd_parms *parms, void *in_struct_ptr, const char *arg) { apr_size_t val; if (sscanf(arg, "%" APR_SIZE_T_FMT, &val) != 1) { return "MCacheSize argument must be an integer representing the max cache size in KBytes."; } sconf->max_cache_size = val*1024; return NULL; } static const char *set_min_cache_object_size(cmd_parms *parms, void *in_struct_ptr, const char *arg) { apr_size_t val; if (sscanf(arg, "%" APR_SIZE_T_FMT, &val) != 1) { return "MCacheMinObjectSize value must be an integer (bytes)"; } sconf->min_cache_object_size = val; return NULL; } static const char *set_max_cache_object_size(cmd_parms *parms, void *in_struct_ptr, const char *arg) { apr_size_t val; if (sscanf(arg, "%" APR_SIZE_T_FMT, &val) != 1) { return "MCacheMaxObjectSize value must be an integer (bytes)"; } sconf->max_cache_object_size = val; return NULL; } static const char *set_max_object_count(cmd_parms *parms, void *in_struct_ptr, const char *arg) { apr_size_t val; if (sscanf(arg, "%" APR_SIZE_T_FMT, &val) != 1) { return "MCacheMaxObjectCount value must be an integer"; } sconf->max_object_cnt = val; return NULL; } static const char *set_cache_removal_algorithm(cmd_parms *parms, void *name, const char *arg) { if (strcasecmp("LRU", arg)) { sconf->cache_remove_algorithm = memcache_lru_algorithm; } else { if (strcasecmp("GDSF", arg)) { sconf->cache_remove_algorithm = memcache_gdsf_algorithm; } else { return "currently implemented algorithms are LRU and GDSF"; } } return NULL; } static const command_rec cache_cmds[] = { AP_INIT_TAKE1("MCacheSize", set_max_cache_size, NULL, RSRC_CONF, "The maximum amount of memory used by the cache in KBytes"), AP_INIT_TAKE1("MCacheMaxObjectCount", set_max_object_count, NULL, RSRC_CONF, "The maximum number of objects allowed to be placed in the cache"), AP_INIT_TAKE1("MCacheMinObjectSize", set_min_cache_object_size, NULL, RSRC_CONF, "The minimum size (in bytes) of an object to be placed in the cache"), AP_INIT_TAKE1("MCacheMaxObjectSize", set_max_cache_object_size, NULL, RSRC_CONF, "The maximum size (in bytes) of an object to be placed in the cache"), AP_INIT_TAKE1("MCacheRemovalAlgorithm", set_cache_removal_algorithm, NULL, RSRC_CONF, "The algorithm used to remove entries from the cache (default: GDSF)"), {NULL} }; static void register_hooks(apr_pool_t *p) { ap_hook_post_config(mem_cache_post_config, NULL, NULL, APR_HOOK_MIDDLE); /* cache initializer */ /* cache_hook_init(cache_mem_init, NULL, NULL, APR_HOOK_MIDDLE); */ cache_hook_create_entity(create_entity, NULL, NULL, APR_HOOK_MIDDLE); cache_hook_open_entity(open_entity, NULL, NULL, APR_HOOK_MIDDLE); cache_hook_remove_url(remove_url, NULL, NULL, APR_HOOK_MIDDLE); } module AP_MODULE_DECLARE_DATA mem_cache_module = { STANDARD20_MODULE_STUFF, NULL, /* create per-directory config structure */ NULL, /* merge per-directory config structures */ create_cache_config, /* create per-server config structure */ NULL, /* merge per-server config structures */ cache_cmds, /* command apr_table_t */ register_hooks };