/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef __mod_h2__h2_mplx__ #define __mod_h2__h2_mplx__ /** * The stream multiplexer. It pushes buckets from the connection * thread to the stream threads and vice versa. It's thread-safe * to use. * * There is one h2_mplx instance for each h2_session, which sits on top * of a particular httpd conn_rec. Input goes from the connection to * the stream tasks. Output goes from the stream tasks to the connection, * e.g. the client. * * For each stream, there can be at most "H2StreamMaxMemSize" output bytes * queued in the multiplexer. If a task thread tries to write more * data, it is blocked until space becomes available. * * Naming Convention: * "h2_mplx_m_" are methods only to be called by the main connection * "h2_mplx_s_" are method only to be called by a secondary connection * "h2_mplx_t_" are method only to be called by a task handler (can be master or secondary) */ struct apr_pool_t; struct apr_thread_mutex_t; struct apr_thread_cond_t; struct h2_bucket_beam; struct h2_config; struct h2_ihash_t; struct h2_task; struct h2_stream; struct h2_request; struct apr_thread_cond_t; struct h2_workers; struct h2_iqueue; #include typedef struct h2_mplx h2_mplx; struct h2_mplx { long id; conn_rec *c; apr_pool_t *pool; server_rec *s; /* server for master conn */ unsigned int event_pending; unsigned int aborted; unsigned int is_registered; /* is registered at h2_workers */ struct h2_ihash_t *streams; /* all streams currently processing */ struct h2_ihash_t *shold; /* all streams done with task ongoing */ struct h2_ihash_t *spurge; /* all streams done, ready for destroy */ struct h2_iqueue *q; /* all stream ids that need to be started */ struct h2_ififo *readyq; /* all stream ids ready for output */ struct h2_ihash_t *redo_tasks; /* all tasks that need to be redone */ int max_streams; /* max # of concurrent streams */ int max_stream_started; /* highest stream id that started processing */ int tasks_active; /* # of tasks being processed from this mplx */ int limit_active; /* current limit on active tasks, dynamic */ int max_active; /* max, hard limit # of active tasks in a process */ apr_time_t last_mood_change; /* last time, we worker limit changed */ apr_interval_time_t mood_update_interval; /* how frequent we update at most */ int irritations_since; /* irritations (>0) or happy events (<0) since last mood change */ apr_thread_mutex_t *lock; struct apr_thread_cond_t *added_output; struct apr_thread_cond_t *join_wait; apr_size_t stream_max_mem; apr_pool_t *spare_io_pool; apr_array_header_t *spare_secondary; /* spare secondary connections */ struct h2_workers *workers; }; /******************************************************************************* * From the main connection processing: h2_mplx_m_* ******************************************************************************/ apr_status_t h2_mplx_m_child_init(apr_pool_t *pool, server_rec *s); /** * Create the multiplexer for the given HTTP2 session. * Implicitly has reference count 1. */ h2_mplx *h2_mplx_m_create(conn_rec *c, server_rec *s, apr_pool_t *master, struct h2_workers *workers); /** * Decreases the reference counter of this mplx and waits for it * to reached 0, destroy the mplx afterwards. * This is to be called from the thread that created the mplx in * the first place. * @param m the mplx to be released and destroyed * @param wait condition var to wait on for ref counter == 0 */ void h2_mplx_m_release_and_join(h2_mplx *m, struct apr_thread_cond_t *wait); /** * Shut down the multiplexer gracefully. Will no longer schedule new streams * but let the ongoing ones finish normally. * @return the highest stream id being/been processed */ int h2_mplx_m_shutdown(h2_mplx *m); /** * Notifies mplx that a stream has been completely handled on the main * connection and is ready for cleanup. * * @param m the mplx itself * @param stream the stream ready for cleanup */ apr_status_t h2_mplx_m_stream_cleanup(h2_mplx *m, struct h2_stream *stream); /** * Waits on output data from any stream in this session to become available. * Returns APR_TIMEUP if no data arrived in the given time. */ apr_status_t h2_mplx_m_out_trywait(h2_mplx *m, apr_interval_time_t timeout, struct apr_thread_cond_t *iowait); apr_status_t h2_mplx_m_keep_active(h2_mplx *m, struct h2_stream *stream); /** * Process a stream request. * * @param m the multiplexer * @param stream the identifier of the stream * @param r the request to be processed * @param cmp the stream priority compare function * @param ctx context data for the compare function */ apr_status_t h2_mplx_m_process(h2_mplx *m, struct h2_stream *stream, h2_stream_pri_cmp *cmp, void *ctx); /** * Stream priorities have changed, reschedule pending requests. * * @param m the multiplexer * @param cmp the stream priority compare function * @param ctx context data for the compare function */ apr_status_t h2_mplx_m_reprioritize(h2_mplx *m, h2_stream_pri_cmp *cmp, void *ctx); typedef apr_status_t stream_ev_callback(void *ctx, struct h2_stream *stream); /** * Check if the multiplexer has events for the master connection pending. * @return != 0 iff there are events pending */ int h2_mplx_m_has_master_events(h2_mplx *m); /** * Dispatch events for the master connection, such as ± @param m the multiplexer * @param on_resume new output data has arrived for a suspended stream * @param ctx user supplied argument to invocation. */ apr_status_t h2_mplx_m_dispatch_master_events(h2_mplx *m, stream_ev_callback *on_resume, void *ctx); int h2_mplx_m_awaits_data(h2_mplx *m); typedef int h2_mplx_stream_cb(struct h2_stream *s, void *ctx); apr_status_t h2_mplx_m_stream_do(h2_mplx *m, h2_mplx_stream_cb *cb, void *ctx); apr_status_t h2_mplx_m_client_rst(h2_mplx *m, int stream_id); /** * Master connection has entered idle mode. * @param m the mplx instance of the master connection * @return != SUCCESS iff connection should be terminated */ apr_status_t h2_mplx_m_idle(h2_mplx *m); /******************************************************************************* * From a secondary connection processing: h2_mplx_s_* ******************************************************************************/ apr_status_t h2_mplx_s_pop_task(h2_mplx *m, struct h2_task **ptask); void h2_mplx_s_task_done(h2_mplx *m, struct h2_task *task, struct h2_task **ptask); /******************************************************************************* * From a h2_task owner: h2_mplx_s_* * (a task is transfered from master to secondary connection and back in * its normal lifetime). ******************************************************************************/ /** * Opens the output for the given stream with the specified response. */ apr_status_t h2_mplx_t_out_open(h2_mplx *mplx, int stream_id, struct h2_bucket_beam *beam); /** * Get the stream that belongs to the given task. */ struct h2_stream *h2_mplx_t_stream_get(h2_mplx *m, struct h2_task *task); #endif /* defined(__mod_h2__h2_mplx__) */