/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fdqueue.h" #include "apr_atomic.h" static const apr_uint32_t zero_pt = APR_UINT32_MAX/2; typedef struct recycled_pool { apr_pool_t *pool; struct recycled_pool *next; } recycled_pool; struct fd_queue_info_t { apr_uint32_t idlers; /** * >= zero_pt: number of idle worker threads * < zero_pt: number of threads blocked waiting * for an idle worker */ apr_thread_mutex_t *idlers_mutex; apr_thread_cond_t *wait_for_idler; int terminated; int max_idlers; int max_recycled_pools; apr_uint32_t recycled_pools_count; recycled_pool *recycled_pools; }; static apr_status_t queue_info_cleanup(void *data_) { fd_queue_info_t *qi = data_; apr_thread_cond_destroy(qi->wait_for_idler); apr_thread_mutex_destroy(qi->idlers_mutex); /* Clean up any pools in the recycled list */ for (;;) { struct recycled_pool *first_pool = qi->recycled_pools; if (first_pool == NULL) { break; } if (apr_atomic_casptr ((void*) &(qi->recycled_pools), first_pool->next, first_pool) == first_pool) { apr_pool_destroy(first_pool->pool); } } return APR_SUCCESS; } apr_status_t ap_queue_info_create(fd_queue_info_t ** queue_info, apr_pool_t * pool, int max_idlers, int max_recycled_pools) { apr_status_t rv; fd_queue_info_t *qi; qi = apr_pcalloc(pool, sizeof(*qi)); rv = apr_thread_mutex_create(&qi->idlers_mutex, APR_THREAD_MUTEX_DEFAULT, pool); if (rv != APR_SUCCESS) { return rv; } rv = apr_thread_cond_create(&qi->wait_for_idler, pool); if (rv != APR_SUCCESS) { return rv; } qi->recycled_pools = NULL; qi->max_recycled_pools = max_recycled_pools; qi->max_idlers = max_idlers; qi->idlers = zero_pt; apr_pool_cleanup_register(pool, qi, queue_info_cleanup, apr_pool_cleanup_null); *queue_info = qi; return APR_SUCCESS; } apr_status_t ap_queue_info_set_idle(fd_queue_info_t * queue_info, apr_pool_t * pool_to_recycle) { apr_status_t rv; ap_push_pool(queue_info, pool_to_recycle); /* If other threads are waiting on a worker, wake one up */ if (apr_atomic_inc32(&queue_info->idlers) < zero_pt) { rv = apr_thread_mutex_lock(queue_info->idlers_mutex); if (rv != APR_SUCCESS) { AP_DEBUG_ASSERT(0); return rv; } rv = apr_thread_cond_signal(queue_info->wait_for_idler); if (rv != APR_SUCCESS) { apr_thread_mutex_unlock(queue_info->idlers_mutex); return rv; } rv = apr_thread_mutex_unlock(queue_info->idlers_mutex); if (rv != APR_SUCCESS) { return rv; } } return APR_SUCCESS; } apr_status_t ap_queue_info_try_get_idler(fd_queue_info_t * queue_info) { /* Don't block if there isn't any idle worker. * apr_atomic_add32(x, -1) does the same as dec32(x), except * that it returns the previous value (whereas dec32 is a bool). * * XXX: why don't we consume the last idler? */ if (apr_atomic_add32(&(queue_info->idlers), -1) <= zero_pt + 1) { apr_atomic_inc32(&(queue_info->idlers)); /* back out dec */ return APR_EAGAIN; } return APR_SUCCESS; } apr_status_t ap_queue_info_wait_for_idler(fd_queue_info_t * queue_info, int *had_to_block) { apr_status_t rv; /* Block if there isn't any idle worker. * apr_atomic_add32(x, -1) does the same as dec32(x), except * that it returns the previous value (whereas dec32 is a bool). */ if (apr_atomic_add32(&queue_info->idlers, -1) <= zero_pt) { rv = apr_thread_mutex_lock(queue_info->idlers_mutex); if (rv != APR_SUCCESS) { AP_DEBUG_ASSERT(0); apr_atomic_inc32(&(queue_info->idlers)); /* back out dec */ return rv; } /* Re-check the idle worker count to guard against a * race condition. Now that we're in the mutex-protected * region, one of two things may have happened: * - If the idle worker count is still negative, the * workers are all still busy, so it's safe to * block on a condition variable. * - If the idle worker count is non-negative, then a * worker has become idle since the first check * of queue_info->idlers above. It's possible * that the worker has also signaled the condition * variable--and if so, the listener missed it * because it wasn't yet blocked on the condition * variable. But if the idle worker count is * now non-negative, it's safe for this function to * return immediately. * * A "negative value" (relative to zero_pt) in * queue_info->idlers tells how many * threads are waiting on an idle worker. */ if (queue_info->idlers < zero_pt) { *had_to_block = 1; rv = apr_thread_cond_wait(queue_info->wait_for_idler, queue_info->idlers_mutex); if (rv != APR_SUCCESS) { apr_status_t rv2; AP_DEBUG_ASSERT(0); rv2 = apr_thread_mutex_unlock(queue_info->idlers_mutex); if (rv2 != APR_SUCCESS) { return rv2; } return rv; } } rv = apr_thread_mutex_unlock(queue_info->idlers_mutex); if (rv != APR_SUCCESS) { return rv; } } if (queue_info->terminated) { return APR_EOF; } else { return APR_SUCCESS; } } apr_uint32_t ap_queue_info_get_idlers(fd_queue_info_t * queue_info) { apr_uint32_t val; val = apr_atomic_read32(&queue_info->idlers); if (val <= zero_pt) return 0; return val - zero_pt; } void ap_push_pool(fd_queue_info_t * queue_info, apr_pool_t * pool_to_recycle) { struct recycled_pool *new_recycle; /* If we have been given a pool to recycle, atomically link * it into the queue_info's list of recycled pools */ if (!pool_to_recycle) return; if (queue_info->max_recycled_pools >= 0) { apr_uint32_t cnt = apr_atomic_read32(&queue_info->recycled_pools_count); if (cnt >= queue_info->max_recycled_pools) { apr_pool_destroy(pool_to_recycle); return; } apr_atomic_inc32(&queue_info->recycled_pools_count); } apr_pool_clear(pool_to_recycle); new_recycle = (struct recycled_pool *) apr_palloc(pool_to_recycle, sizeof (*new_recycle)); new_recycle->pool = pool_to_recycle; for (;;) { /* * Save queue_info->recycled_pool in local variable next because * new_recycle->next can be changed after apr_atomic_casptr * function call. For gory details see PR 44402. */ struct recycled_pool *next = queue_info->recycled_pools; new_recycle->next = next; if (apr_atomic_casptr((void*) &(queue_info->recycled_pools), new_recycle, next) == next) break; } } void ap_pop_pool(apr_pool_t ** recycled_pool, fd_queue_info_t * queue_info) { /* Atomically pop a pool from the recycled list */ /* This function is safe only as long as it is single threaded because * it reaches into the queue and accesses "next" which can change. * We are OK today because it is only called from the listener thread. * cas-based pushes do not have the same limitation - any number can * happen concurrently with a single cas-based pop. */ *recycled_pool = NULL; /* Atomically pop a pool from the recycled list */ for (;;) { struct recycled_pool *first_pool = queue_info->recycled_pools; if (first_pool == NULL) { break; } if (apr_atomic_casptr ((void*) &(queue_info->recycled_pools), first_pool->next, first_pool) == first_pool) { *recycled_pool = first_pool->pool; if (queue_info->max_recycled_pools >= 0) apr_atomic_dec32(&queue_info->recycled_pools_count); break; } } } apr_status_t ap_queue_info_term(fd_queue_info_t * queue_info) { apr_status_t rv; rv = apr_thread_mutex_lock(queue_info->idlers_mutex); if (rv != APR_SUCCESS) { return rv; } queue_info->terminated = 1; apr_thread_cond_broadcast(queue_info->wait_for_idler); return apr_thread_mutex_unlock(queue_info->idlers_mutex); } /** * Detects when the fd_queue_t is full. This utility function is expected * to be called from within critical sections, and is not threadsafe. */ #define ap_queue_full(queue) ((queue)->nelts == (queue)->bounds) /** * Detects when the fd_queue_t is empty. This utility function is expected * to be called from within critical sections, and is not threadsafe. */ #define ap_queue_empty(queue) ((queue)->nelts == 0 && APR_RING_EMPTY(&queue->timers ,timer_event_t, link)) /** * Callback routine that is called to destroy this * fd_queue_t when its pool is destroyed. */ static apr_status_t ap_queue_destroy(void *data) { fd_queue_t *queue = data; /* Ignore errors here, we can't do anything about them anyway. * XXX: We should at least try to signal an error here, it is * indicative of a programmer error. -aaron */ apr_thread_cond_destroy(queue->not_empty); apr_thread_mutex_destroy(queue->one_big_mutex); return APR_SUCCESS; } /** * Initialize the fd_queue_t. */ apr_status_t ap_queue_init(fd_queue_t * queue, int queue_capacity, apr_pool_t * a) { int i; apr_status_t rv; if ((rv = apr_thread_mutex_create(&queue->one_big_mutex, APR_THREAD_MUTEX_DEFAULT, a)) != APR_SUCCESS) { return rv; } if ((rv = apr_thread_cond_create(&queue->not_empty, a)) != APR_SUCCESS) { return rv; } APR_RING_INIT(&queue->timers, timer_event_t, link); queue->data = apr_palloc(a, queue_capacity * sizeof(fd_queue_elem_t)); queue->bounds = queue_capacity; queue->nelts = 0; queue->in = 0; queue->out = 0; /* Set all the sockets in the queue to NULL */ for (i = 0; i < queue_capacity; ++i) queue->data[i].sd = NULL; apr_pool_cleanup_register(a, queue, ap_queue_destroy, apr_pool_cleanup_null); return APR_SUCCESS; } /** * Push a new socket onto the queue. * * precondition: ap_queue_info_wait_for_idler has already been called * to reserve an idle worker thread */ apr_status_t ap_queue_push(fd_queue_t * queue, apr_socket_t * sd, event_conn_state_t * ecs, apr_pool_t * p) { fd_queue_elem_t *elem; apr_status_t rv; if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } AP_DEBUG_ASSERT(!queue->terminated); AP_DEBUG_ASSERT(!ap_queue_full(queue)); elem = &queue->data[queue->in]; queue->in++; if (queue->in >= queue->bounds) queue->in -= queue->bounds; elem->sd = sd; elem->ecs = ecs; elem->p = p; queue->nelts++; apr_thread_cond_signal(queue->not_empty); if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } return APR_SUCCESS; } apr_status_t ap_queue_push_timer(fd_queue_t * queue, timer_event_t *te) { apr_status_t rv; if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } AP_DEBUG_ASSERT(!queue->terminated); APR_RING_INSERT_TAIL(&queue->timers, te, timer_event_t, link); apr_thread_cond_signal(queue->not_empty); if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } return APR_SUCCESS; } /** * Retrieves the next available socket from the queue. If there are no * sockets available, it will block until one becomes available. * Once retrieved, the socket is placed into the address specified by * 'sd'. */ apr_status_t ap_queue_pop_something(fd_queue_t * queue, apr_socket_t ** sd, event_conn_state_t ** ecs, apr_pool_t ** p, timer_event_t ** te_out) { fd_queue_elem_t *elem; apr_status_t rv; if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } /* Keep waiting until we wake up and find that the queue is not empty. */ if (ap_queue_empty(queue)) { if (!queue->terminated) { apr_thread_cond_wait(queue->not_empty, queue->one_big_mutex); } /* If we wake up and it's still empty, then we were interrupted */ if (ap_queue_empty(queue)) { rv = apr_thread_mutex_unlock(queue->one_big_mutex); if (rv != APR_SUCCESS) { return rv; } if (queue->terminated) { return APR_EOF; /* no more elements ever again */ } else { return APR_EINTR; } } } *te_out = NULL; if (!APR_RING_EMPTY(&queue->timers, timer_event_t, link)) { *te_out = APR_RING_FIRST(&queue->timers); APR_RING_REMOVE(*te_out, link); } else { elem = &queue->data[queue->out]; queue->out++; if (queue->out >= queue->bounds) queue->out -= queue->bounds; queue->nelts--; *sd = elem->sd; *ecs = elem->ecs; *p = elem->p; #ifdef AP_DEBUG elem->sd = NULL; elem->p = NULL; #endif /* AP_DEBUG */ } rv = apr_thread_mutex_unlock(queue->one_big_mutex); return rv; } apr_status_t ap_queue_interrupt_all(fd_queue_t * queue) { apr_status_t rv; if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } apr_thread_cond_broadcast(queue->not_empty); return apr_thread_mutex_unlock(queue->one_big_mutex); } apr_status_t ap_queue_term(fd_queue_t * queue) { apr_status_t rv; if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } /* we must hold one_big_mutex when setting this... otherwise, * we could end up setting it and waking everybody up just after a * would-be popper checks it but right before they block */ queue->terminated = 1; if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } return ap_queue_interrupt_all(queue); }