/* Copyright 2000-2004 The Apache Software Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* The purpose of this file is to store the code that MOST mpm's will need * this does not mean a function only goes into this file if every MPM needs * it. It means that if a function is needed by more than one MPM, and * future maintenance would be served by making the code common, then the * function belongs here. * * This is going in src/main because it is not platform specific, it is * specific to multi-process servers, but NOT to Unix. Which is why it * does not belong in src/os/unix */ #include "apr.h" #include "apr_thread_proc.h" #include "apr_signal.h" #include "apr_strings.h" #define APR_WANT_STRFUNC #include "apr_want.h" #include "apr_getopt.h" #include "apr_optional.h" #include "apr_allocator.h" #include "httpd.h" #include "http_config.h" #include "http_log.h" #include "http_main.h" #include "mpm.h" #include "mpm_common.h" #include "ap_mpm.h" #include "ap_listen.h" #include "mpm_default.h" #ifdef AP_MPM_WANT_SET_SCOREBOARD #include "scoreboard.h" #endif #ifdef HAVE_PWD_H #include #endif #ifdef HAVE_GRP_H #include #endif #if APR_HAVE_UNISTD_H #include #endif #ifdef AP_MPM_WANT_RECLAIM_CHILD_PROCESSES typedef enum {DO_NOTHING, SEND_SIGTERM, SEND_SIGKILL, GIVEUP} action_t; typedef struct extra_process_t { struct extra_process_t *next; pid_t pid; } extra_process_t; static extra_process_t *extras; void ap_register_extra_mpm_process(pid_t pid) { extra_process_t *p = (extra_process_t *)malloc(sizeof(extra_process_t)); p->next = extras; p->pid = pid; extras = p; } int ap_unregister_extra_mpm_process(pid_t pid) { extra_process_t *cur = extras; extra_process_t *prev = NULL; while (cur && cur->pid != pid) { prev = cur; cur = cur->next; } if (cur) { if (prev) { prev->next = cur->next; } else { extras = cur->next; } free(cur); return 1; /* found */ } else { /* we don't know about any such process */ return 0; } } static int reclaim_one_pid(pid_t pid, action_t action) { apr_proc_t proc; apr_status_t waitret; proc.pid = pid; waitret = apr_proc_wait(&proc, NULL, NULL, APR_NOWAIT); if (waitret != APR_CHILD_NOTDONE) { return 1; } switch(action) { case DO_NOTHING: break; case SEND_SIGTERM: /* ok, now it's being annoying */ ap_log_error(APLOG_MARK, APLOG_WARNING, 0, ap_server_conf, "child process %" APR_PID_T_FMT " still did not exit, " "sending a SIGTERM", pid); kill(pid, SIGTERM); break; case SEND_SIGKILL: ap_log_error(APLOG_MARK, APLOG_ERR, 0, ap_server_conf, "child process %" APR_PID_T_FMT " still did not exit, " "sending a SIGKILL", pid); #ifndef BEOS kill(pid, SIGKILL); #else /* sending a SIGKILL kills the entire team on BeOS, and as * httpd thread is part of that team it removes any chance * of ever doing a restart. To counter this I'm changing to * use a kinder, gentler way of killing a specific thread * that is just as effective. */ kill_thread(pid); #endif break; case GIVEUP: /* gave it our best shot, but alas... If this really * is a child we are trying to kill and it really hasn't * exited, we will likely fail to bind to the port * after the restart. */ ap_log_error(APLOG_MARK, APLOG_ERR, 0, ap_server_conf, "could not make child process %" APR_PID_T_FMT " exit, " "attempting to continue anyway", pid); break; } return 0; } void ap_reclaim_child_processes(int terminate) { apr_time_t waittime = 1024 * 16; int i; extra_process_t *cur_extra; int not_dead_yet; int max_daemons; apr_time_t starttime = apr_time_now(); /* this table of actions and elapsed times tells what action is taken * at which elapsed time from starting the reclaim */ struct { action_t action; apr_time_t action_time; } action_table[] = { {DO_NOTHING, 0}, /* dummy entry for iterations where we reap * children but take no action against * stragglers */ {SEND_SIGTERM, apr_time_from_sec(3)}, {SEND_SIGTERM, apr_time_from_sec(5)}, {SEND_SIGTERM, apr_time_from_sec(7)}, {SEND_SIGKILL, apr_time_from_sec(9)}, {GIVEUP, apr_time_from_sec(10)} }; int cur_action; /* index of action we decided to take this * iteration */ int next_action = 1; /* index of first real action */ ap_mpm_query(AP_MPMQ_MAX_DAEMON_USED, &max_daemons); do { apr_sleep(waittime); /* don't let waittime get longer than 1 second; otherwise, we don't * react quickly to the last child exiting, and taking action can * be delayed */ waittime = waittime * 4; if (waittime > apr_time_from_sec(1)) { waittime = apr_time_from_sec(1); } /* see what action to take, if any */ if (action_table[next_action].action_time <= apr_time_now() - starttime) { cur_action = next_action; ++next_action; } else { cur_action = 0; /* nothing to do */ } /* now see who is done */ not_dead_yet = 0; for (i = 0; i < max_daemons; ++i) { pid_t pid = MPM_CHILD_PID(i); if (pid == 0) { continue; /* not every scoreboard entry is in use */ } if (reclaim_one_pid(pid, action_table[cur_action].action)) { MPM_NOTE_CHILD_KILLED(i); } else { ++not_dead_yet; } } cur_extra = extras; while (cur_extra) { extra_process_t *next = cur_extra->next; if (reclaim_one_pid(cur_extra->pid, action_table[cur_action].action)) { AP_DEBUG_ASSERT(1 == ap_unregister_extra_mpm_process(cur_extra->pid)); } else { ++not_dead_yet; } cur_extra = next; } #if APR_HAS_OTHER_CHILD apr_proc_other_child_refresh_all(APR_OC_REASON_RESTART); #endif } while (not_dead_yet > 0 && action_table[cur_action].action != GIVEUP); } #endif /* AP_MPM_WANT_RECLAIM_CHILD_PROCESSES */ #ifdef AP_MPM_WANT_WAIT_OR_TIMEOUT /* number of calls to wait_or_timeout between writable probes */ #ifndef INTERVAL_OF_WRITABLE_PROBES #define INTERVAL_OF_WRITABLE_PROBES 10 #endif static int wait_or_timeout_counter; void ap_wait_or_timeout(apr_exit_why_e *status, int *exitcode, apr_proc_t *ret, apr_pool_t *p) { apr_status_t rv; ++wait_or_timeout_counter; if (wait_or_timeout_counter == INTERVAL_OF_WRITABLE_PROBES) { wait_or_timeout_counter = 0; } rv = apr_proc_wait_all_procs(ret, exitcode, status, APR_NOWAIT, p); if (APR_STATUS_IS_EINTR(rv)) { ret->pid = -1; return; } if (APR_STATUS_IS_CHILD_DONE(rv)) { return; } #ifdef NEED_WAITPID if ((ret = reap_children(exitcode, status)) > 0) { return; } #endif apr_sleep(SCOREBOARD_MAINTENANCE_INTERVAL); ret->pid = -1; return; } #endif /* AP_MPM_WANT_WAIT_OR_TIMEOUT */ #ifdef AP_MPM_WANT_PROCESS_CHILD_STATUS int ap_process_child_status(apr_proc_t *pid, apr_exit_why_e why, int status) { int signum = status; const char *sigdesc = apr_signal_description_get(signum); /* Child died... if it died due to a fatal error, * we should simply bail out. The caller needs to * check for bad rc from us and exit, running any * appropriate cleanups. * * If the child died due to a resource shortage, * the parent should limit the rate of forking */ if (APR_PROC_CHECK_EXIT(why)) { if (status == APEXIT_CHILDSICK) { return status; } if (status == APEXIT_CHILDFATAL) { ap_log_error(APLOG_MARK, APLOG_ALERT, 0, ap_server_conf, "Child %" APR_PID_T_FMT " returned a Fatal error... server is exiting!", pid->pid); return APEXIT_CHILDFATAL; } return 0; } if (APR_PROC_CHECK_SIGNALED(why)) { switch (signum) { case SIGTERM: case SIGHUP: case AP_SIG_GRACEFUL: case SIGKILL: break; default: if (APR_PROC_CHECK_CORE_DUMP(why)) { ap_log_error(APLOG_MARK, APLOG_NOTICE, 0, ap_server_conf, "child pid %ld exit signal %s (%d), " "possible coredump in %s", (long)pid->pid, sigdesc, signum, ap_coredump_dir); } else { ap_log_error(APLOG_MARK, APLOG_NOTICE, 0, ap_server_conf, "child pid %ld exit signal %s (%d)", (long)pid->pid, sigdesc, signum); } } } return 0; } #endif /* AP_MPM_WANT_PROCESS_CHILD_STATUS */ #if defined(TCP_NODELAY) && !defined(MPE) && !defined(TPF) void ap_sock_disable_nagle(apr_socket_t *s) { /* The Nagle algorithm says that we should delay sending partial * packets in hopes of getting more data. We don't want to do * this; we are not telnet. There are bad interactions between * persistent connections and Nagle's algorithm that have very severe * performance penalties. (Failing to disable Nagle is not much of a * problem with simple HTTP.) * * In spite of these problems, failure here is not a shooting offense. */ apr_status_t status = apr_socket_opt_set(s, APR_TCP_NODELAY, 1); if (status != APR_SUCCESS) { ap_log_error(APLOG_MARK, APLOG_WARNING, status, ap_server_conf, "apr_socket_opt_set: (TCP_NODELAY)"); } } #endif #ifdef HAVE_GETPWNAM AP_DECLARE(uid_t) ap_uname2id(const char *name) { struct passwd *ent; if (name[0] == '#') return (atoi(&name[1])); if (!(ent = getpwnam(name))) { ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL, "%s: bad user name %s", ap_server_argv0, name); exit(1); } return (ent->pw_uid); } #endif #ifdef HAVE_GETGRNAM AP_DECLARE(gid_t) ap_gname2id(const char *name) { struct group *ent; if (name[0] == '#') return (atoi(&name[1])); if (!(ent = getgrnam(name))) { ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL, "%s: bad group name %s", ap_server_argv0, name); exit(1); } return (ent->gr_gid); } #endif #ifndef HAVE_INITGROUPS int initgroups(const char *name, gid_t basegid) { #if defined(QNX) || defined(MPE) || defined(BEOS) || defined(_OSD_POSIX) || defined(TPF) || defined(__TANDEM) || defined(OS2) || defined(WIN32) || defined(NETWARE) /* QNX, MPE and BeOS do not appear to support supplementary groups. */ return 0; #else /* ndef QNX */ gid_t groups[NGROUPS_MAX]; struct group *g; int index = 0; setgrent(); groups[index++] = basegid; while (index < NGROUPS_MAX && ((g = getgrent()) != NULL)) { if (g->gr_gid != basegid) { char **names; for (names = g->gr_mem; *names != NULL; ++names) { if (!strcmp(*names, name)) groups[index++] = g->gr_gid; } } } endgrent(); return setgroups(index, groups); #endif /* def QNX */ } #endif /* def NEED_INITGROUPS */ #ifdef AP_MPM_USES_POD AP_DECLARE(apr_status_t) ap_mpm_pod_open(apr_pool_t *p, ap_pod_t **pod) { apr_status_t rv; *pod = apr_palloc(p, sizeof(**pod)); rv = apr_file_pipe_create(&((*pod)->pod_in), &((*pod)->pod_out), p); if (rv != APR_SUCCESS) { return rv; } apr_file_pipe_timeout_set((*pod)->pod_in, 0); (*pod)->p = p; /* close these before exec. */ apr_file_inherit_unset((*pod)->pod_in); apr_file_inherit_unset((*pod)->pod_out); return APR_SUCCESS; } AP_DECLARE(apr_status_t) ap_mpm_pod_check(ap_pod_t *pod) { char c; apr_size_t len = 1; apr_status_t rv; rv = apr_file_read(pod->pod_in, &c, &len); if ((rv == APR_SUCCESS) && (len == 1)) { return APR_SUCCESS; } if (rv != APR_SUCCESS) { return rv; } return AP_NORESTART; } AP_DECLARE(apr_status_t) ap_mpm_pod_close(ap_pod_t *pod) { apr_status_t rv; rv = apr_file_close(pod->pod_out); if (rv != APR_SUCCESS) { return rv; } rv = apr_file_close(pod->pod_in); if (rv != APR_SUCCESS) { return rv; } return APR_SUCCESS; } static apr_status_t pod_signal_internal(ap_pod_t *pod) { apr_status_t rv; char char_of_death = '!'; apr_size_t one = 1; rv = apr_file_write(pod->pod_out, &char_of_death, &one); if (rv != APR_SUCCESS) { ap_log_error(APLOG_MARK, APLOG_WARNING, rv, ap_server_conf, "write pipe_of_death"); } return rv; } /* This function connects to the server, then immediately closes the connection. * This permits the MPM to skip the poll when there is only one listening * socket, because it provides a alternate way to unblock an accept() when * the pod is used. */ static apr_status_t dummy_connection(ap_pod_t *pod) { apr_status_t rv; apr_socket_t *sock; apr_pool_t *p; /* create a temporary pool for the socket. pconf stays around too long */ rv = apr_pool_create(&p, pod->p); if (rv != APR_SUCCESS) { return rv; } rv = apr_socket_create(&sock, ap_listeners->bind_addr->family, SOCK_STREAM, 0, p); if (rv != APR_SUCCESS) { ap_log_error(APLOG_MARK, APLOG_WARNING, rv, ap_server_conf, "get socket to connect to listener"); apr_pool_destroy(p); return rv; } /* on some platforms (e.g., FreeBSD), the kernel won't accept many * queued connections before it starts blocking local connects... * we need to keep from blocking too long and instead return an error, * because the MPM won't want to hold up a graceful restart for a * long time */ rv = apr_socket_timeout_set(sock, apr_time_from_sec(3)); if (rv != APR_SUCCESS) { ap_log_error(APLOG_MARK, APLOG_WARNING, rv, ap_server_conf, "set timeout on socket to connect to listener"); apr_socket_close(sock); apr_pool_destroy(p); return rv; } rv = apr_socket_connect(sock, ap_listeners->bind_addr); if (rv != APR_SUCCESS) { int log_level = APLOG_WARNING; if (APR_STATUS_IS_TIMEUP(rv)) { /* probably some server processes bailed out already and there * is nobody around to call accept and clear out the kernel * connection queue; usually this is not worth logging */ log_level = APLOG_DEBUG; } ap_log_error(APLOG_MARK, log_level, rv, ap_server_conf, "connect to listener on %pI", ap_listeners->bind_addr); } apr_socket_close(sock); apr_pool_destroy(p); return rv; } AP_DECLARE(apr_status_t) ap_mpm_pod_signal(ap_pod_t *pod) { apr_status_t rv; rv = pod_signal_internal(pod); if (rv != APR_SUCCESS) { return rv; } return dummy_connection(pod); } void ap_mpm_pod_killpg(ap_pod_t *pod, int num) { int i; apr_status_t rv = APR_SUCCESS; /* we don't write anything to the pod here... we assume * that the would-be reader of the pod has another way to * see that it is time to die once we wake it up * * writing lots of things to the pod at once is very * problematic... we can fill the kernel pipe buffer and * be blocked until somebody consumes some bytes or * we hit a timeout... if we hit a timeout we can't just * keep trying because maybe we'll never successfully * write again... but then maybe we'll leave would-be * readers stranded (a number of them could be tied up for * a while serving time-consuming requests) */ for (i = 0; i < num && rv == APR_SUCCESS; i++) { rv = dummy_connection(pod); } } #endif /* #ifdef AP_MPM_USES_POD */ /* standard mpm configuration handling */ #ifdef AP_MPM_WANT_SET_PIDFILE const char *ap_pid_fname = NULL; const char *ap_mpm_set_pidfile(cmd_parms *cmd, void *dummy, const char *arg) { const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY); if (err != NULL) { return err; } if (cmd->server->is_virtual) { return "PidFile directive not allowed in "; } ap_pid_fname = arg; return NULL; } #endif #ifdef AP_MPM_WANT_SET_SCOREBOARD const char * ap_mpm_set_scoreboard(cmd_parms *cmd, void *dummy, const char *arg) { const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY); if (err != NULL) { return err; } ap_scoreboard_fname = arg; return NULL; } #endif #ifdef AP_MPM_WANT_SET_LOCKFILE const char *ap_lock_fname = NULL; const char *ap_mpm_set_lockfile(cmd_parms *cmd, void *dummy, const char *arg) { const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY); if (err != NULL) { return err; } ap_lock_fname = arg; return NULL; } #endif #ifdef AP_MPM_WANT_SET_MAX_REQUESTS int ap_max_requests_per_child = 0; const char *ap_mpm_set_max_requests(cmd_parms *cmd, void *dummy, const char *arg) { const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY); if (err != NULL) { return err; } ap_max_requests_per_child = atoi(arg); return NULL; } #endif #ifdef AP_MPM_WANT_SET_COREDUMPDIR char ap_coredump_dir[MAX_STRING_LEN]; int ap_coredumpdir_configured; const char *ap_mpm_set_coredumpdir(cmd_parms *cmd, void *dummy, const char *arg) { apr_status_t rv; apr_finfo_t finfo; const char *fname; const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY); if (err != NULL) { return err; } fname = ap_server_root_relative(cmd->pool, arg); if (!fname) { return apr_pstrcat(cmd->pool, "Invalid CoreDumpDirectory path ", arg, NULL); } if ((rv = apr_stat(&finfo, fname, APR_FINFO_TYPE, cmd->pool)) != APR_SUCCESS) { return apr_pstrcat(cmd->pool, "CoreDumpDirectory ", fname, " does not exist", NULL); } if (finfo.filetype != APR_DIR) { return apr_pstrcat(cmd->pool, "CoreDumpDirectory ", fname, " is not a directory", NULL); } apr_cpystrn(ap_coredump_dir, fname, sizeof(ap_coredump_dir)); ap_coredumpdir_configured = 1; return NULL; } #endif #ifdef AP_MPM_WANT_SET_ACCEPT_LOCK_MECH apr_lockmech_e ap_accept_lock_mech = APR_LOCK_DEFAULT; const char ap_valid_accept_mutex_string[] = "Valid accept mutexes for this platform and MPM are: default" #if APR_HAS_FLOCK_SERIALIZE ", flock" #endif #if APR_HAS_FCNTL_SERIALIZE ", fcntl" #endif #if APR_HAS_SYSVSEM_SERIALIZE && !defined(PERCHILD_MPM) ", sysvsem" #endif #if APR_HAS_POSIXSEM_SERIALIZE ", posixsem" #endif #if APR_HAS_PROC_PTHREAD_SERIALIZE ", pthread" #endif "."; AP_DECLARE(const char *) ap_mpm_set_accept_lock_mech(cmd_parms *cmd, void *dummy, const char *arg) { const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY); if (err != NULL) { return err; } if (!strcasecmp(arg, "default")) { ap_accept_lock_mech = APR_LOCK_DEFAULT; } #if APR_HAS_FLOCK_SERIALIZE else if (!strcasecmp(arg, "flock")) { ap_accept_lock_mech = APR_LOCK_FLOCK; } #endif #if APR_HAS_FCNTL_SERIALIZE else if (!strcasecmp(arg, "fcntl")) { ap_accept_lock_mech = APR_LOCK_FCNTL; } #endif /* perchild can't use SysV sems because the permissions on the accept * mutex can't be set to allow all processes to use the mutex and * at the same time keep all users from being able to dink with the * mutex */ #if APR_HAS_SYSVSEM_SERIALIZE && !defined(PERCHILD_MPM) else if (!strcasecmp(arg, "sysvsem")) { ap_accept_lock_mech = APR_LOCK_SYSVSEM; } #endif #if APR_HAS_POSIXSEM_SERIALIZE else if (!strcasecmp(arg, "posixsem")) { ap_accept_lock_mech = APR_LOCK_POSIXSEM; } #endif #if APR_HAS_PROC_PTHREAD_SERIALIZE else if (!strcasecmp(arg, "pthread")) { ap_accept_lock_mech = APR_LOCK_PROC_PTHREAD; } #endif else { return apr_pstrcat(cmd->pool, arg, " is an invalid mutex mechanism; ", ap_valid_accept_mutex_string, NULL); } return NULL; } #endif #ifdef AP_MPM_WANT_SIGNAL_SERVER static const char *dash_k_arg; static int send_signal(pid_t pid, int sig) { if (kill(pid, sig) < 0) { ap_log_error(APLOG_MARK, APLOG_STARTUP, errno, NULL, "sending signal to server"); return 1; } return 0; } int ap_signal_server(int *exit_status, apr_pool_t *pconf) { apr_status_t rv; pid_t otherpid; int running = 0; int have_pid_file = 0; const char *status; *exit_status = 0; rv = ap_read_pid(pconf, ap_pid_fname, &otherpid); if (rv != APR_SUCCESS) { if (rv != APR_ENOENT) { ap_log_error(APLOG_MARK, APLOG_STARTUP, rv, NULL, "Error retrieving pid file %s", ap_pid_fname); ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL, "Remove it before continuing if it is corrupted."); *exit_status = 1; return 1; } status = "httpd (no pid file) not running"; } else { have_pid_file = 1; if (kill(otherpid, 0) == 0) { running = 1; status = apr_psprintf(pconf, "httpd (pid %" APR_PID_T_FMT ") already " "running", otherpid); } else { status = apr_psprintf(pconf, "httpd (pid %" APR_PID_T_FMT "?) not running", otherpid); } } if (!strcmp(dash_k_arg, "start")) { if (running) { printf("%s\n", status); return 1; } } if (!strcmp(dash_k_arg, "stop")) { if (!running) { printf("%s\n", status); } else { send_signal(otherpid, SIGTERM); } return 1; } if (!strcmp(dash_k_arg, "restart")) { if (!running) { printf("httpd not running, trying to start\n"); } else { *exit_status = send_signal(otherpid, SIGHUP); return 1; } } if (!strcmp(dash_k_arg, "graceful")) { if (!running) { printf("httpd not running, trying to start\n"); } else { *exit_status = send_signal(otherpid, SIGUSR1); return 1; } } return 0; } void ap_mpm_rewrite_args(process_rec *process) { apr_array_header_t *mpm_new_argv; apr_status_t rv; apr_getopt_t *opt; char optbuf[3]; const char *optarg; int fixed_args; mpm_new_argv = apr_array_make(process->pool, process->argc, sizeof(const char **)); *(const char **)apr_array_push(mpm_new_argv) = process->argv[0]; fixed_args = mpm_new_argv->nelts; apr_getopt_init(&opt, process->pool, process->argc, process->argv); opt->errfn = NULL; optbuf[0] = '-'; /* option char returned by apr_getopt() will be stored in optbuf[1] */ optbuf[2] = '\0'; while ((rv = apr_getopt(opt, "k:" AP_SERVER_BASEARGS, optbuf + 1, &optarg)) == APR_SUCCESS) { switch(optbuf[1]) { case 'k': if (!dash_k_arg) { if (!strcmp(optarg, "start") || !strcmp(optarg, "stop") || !strcmp(optarg, "restart") || !strcmp(optarg, "graceful")) { dash_k_arg = optarg; break; } } default: *(const char **)apr_array_push(mpm_new_argv) = apr_pstrdup(process->pool, optbuf); if (optarg) { *(const char **)apr_array_push(mpm_new_argv) = optarg; } } } /* back up to capture the bad argument */ if (rv == APR_BADCH || rv == APR_BADARG) { opt->ind--; } while (opt->ind < opt->argc) { *(const char **)apr_array_push(mpm_new_argv) = apr_pstrdup(process->pool, opt->argv[opt->ind++]); } process->argc = mpm_new_argv->nelts; process->argv = (const char * const *)mpm_new_argv->elts; if (dash_k_arg) { APR_REGISTER_OPTIONAL_FN(ap_signal_server); } } #endif /* AP_MPM_WANT_SIGNAL_SERVER */ #ifdef AP_MPM_WANT_SET_MAX_MEM_FREE apr_uint32_t ap_max_mem_free = APR_ALLOCATOR_MAX_FREE_UNLIMITED; const char *ap_mpm_set_max_mem_free(cmd_parms *cmd, void *dummy, const char *arg) { long value; const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY); if (err != NULL) { return err; } value = strtol(arg, NULL, 0); if (value < 0 || errno == ERANGE) return apr_pstrcat(cmd->pool, "Invalid MaxMemFree value: ", arg, NULL); ap_max_mem_free = (apr_uint32_t)value * 1024; return NULL; } #endif /* AP_MPM_WANT_SET_MAX_MEM_FREE */ #ifdef AP_MPM_WANT_SET_STACKSIZE apr_size_t ap_thread_stacksize = 0; /* use system default */ const char *ap_mpm_set_thread_stacksize(cmd_parms *cmd, void *dummy, const char *arg) { long value; const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY); if (err != NULL) { return err; } value = strtol(arg, NULL, 0); if (value < 0 || errno == ERANGE) return apr_pstrcat(cmd->pool, "Invalid ThreadStackSize value: ", arg, NULL); ap_thread_stacksize = (apr_size_t)value; return NULL; } #endif /* AP_MPM_WANT_SET_STACKSIZE */ #ifdef AP_MPM_WANT_FATAL_SIGNAL_HANDLER static pid_t parent_pid, my_pid; apr_pool_t *pconf; #if AP_ENABLE_EXCEPTION_HOOK static int exception_hook_enabled; const char *ap_mpm_set_exception_hook(cmd_parms *cmd, void *dummy, const char *arg) { const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY); if (err != NULL) { return err; } if (cmd->server->is_virtual) { return "EnableExceptionHook directive not allowed in "; } if (strcasecmp(arg, "on") == 0) { exception_hook_enabled = 1; } else if (strcasecmp(arg, "off") == 0) { exception_hook_enabled = 0; } else { return "parameter must be 'on' or 'off'"; } return NULL; } APR_HOOK_STRUCT( APR_HOOK_LINK(fatal_exception) ) AP_IMPLEMENT_HOOK_RUN_ALL(int, fatal_exception, (ap_exception_info_t *ei), (ei), OK, DECLINED) static void run_fatal_exception_hook(int sig) { ap_exception_info_t ei = {0}; if (exception_hook_enabled && geteuid() != 0 && my_pid != parent_pid) { ei.sig = sig; ei.pid = my_pid; ap_run_fatal_exception(&ei); } } #endif /* AP_ENABLE_EXCEPTION_HOOK */ /* handle all varieties of core dumping signals */ static void sig_coredump(int sig) { apr_filepath_set(ap_coredump_dir, pconf); apr_signal(sig, SIG_DFL); #if AP_ENABLE_EXCEPTION_HOOK run_fatal_exception_hook(sig); #endif /* linuxthreads issue calling getpid() here: * This comparison won't match if the crashing thread is * some module's thread that runs in the parent process. * The fallout, which is limited to linuxthreads: * The special log message won't be written when such a * thread in the parent causes the parent to crash. */ if (getpid() == parent_pid) { ap_log_error(APLOG_MARK, APLOG_NOTICE, 0, ap_server_conf, "seg fault or similar nasty error detected " "in the parent process"); /* XXX we can probably add some rudimentary cleanup code here, * like getting rid of the pid file. If any additional bad stuff * happens, we are protected from recursive errors taking down the * system since this function is no longer the signal handler GLA */ } kill(getpid(), sig); /* At this point we've got sig blocked, because we're still inside * the signal handler. When we leave the signal handler it will * be unblocked, and we'll take the signal... and coredump or whatever * is appropriate for this particular Unix. In addition the parent * will see the real signal we received -- whereas if we called * abort() here, the parent would only see SIGABRT. */ } apr_status_t ap_fatal_signal_child_setup(server_rec *s) { my_pid = getpid(); return APR_SUCCESS; } apr_status_t ap_fatal_signal_setup(server_rec *s, apr_pool_t *in_pconf) { #ifndef NO_USE_SIGACTION struct sigaction sa; sigemptyset(&sa.sa_mask); #if defined(SA_ONESHOT) sa.sa_flags = SA_ONESHOT; #elif defined(SA_RESETHAND) sa.sa_flags = SA_RESETHAND; #else sa.sa_flags = 0; #endif sa.sa_handler = sig_coredump; if (sigaction(SIGSEGV, &sa, NULL) < 0) ap_log_error(APLOG_MARK, APLOG_WARNING, errno, s, "sigaction(SIGSEGV)"); #ifdef SIGBUS if (sigaction(SIGBUS, &sa, NULL) < 0) ap_log_error(APLOG_MARK, APLOG_WARNING, errno, s, "sigaction(SIGBUS)"); #endif #ifdef SIGABORT if (sigaction(SIGABORT, &sa, NULL) < 0) ap_log_error(APLOG_MARK, APLOG_WARNING, errno, s, "sigaction(SIGABORT)"); #endif #ifdef SIGABRT if (sigaction(SIGABRT, &sa, NULL) < 0) ap_log_error(APLOG_MARK, APLOG_WARNING, errno, s, "sigaction(SIGABRT)"); #endif #ifdef SIGILL if (sigaction(SIGILL, &sa, NULL) < 0) ap_log_error(APLOG_MARK, APLOG_WARNING, errno, s, "sigaction(SIGILL)"); #endif #else /* NO_USE_SIGACTION */ apr_signal(SIGSEGV, sig_coredump); #ifdef SIGBUS apr_signal(SIGBUS, sig_coredump); #endif /* SIGBUS */ #ifdef SIGABORT apr_signal(SIGABORT, sig_coredump); #endif /* SIGABORT */ #ifdef SIGABRT apr_signal(SIGABRT, sig_coredump); #endif /* SIGABRT */ #ifdef SIGILL apr_signal(SIGILL, sig_coredump); #endif /* SIGILL */ #endif /* NO_USE_SIGACTION */ pconf = in_pconf; parent_pid = my_pid = getpid(); return APR_SUCCESS; } #endif /* AP_MPM_WANT_FATAL_SIGNAL_HANDLER */