diff options
author | Quentin Young <qlyoung@qlyoung.net> | 2023-09-20 03:36:04 +0200 |
---|---|---|
committer | Quentin Young <qlyoung@qlyoung.net> | 2023-09-20 03:36:04 +0200 |
commit | 19c5667dfcf95ff338319acb2de974fbc76a52b5 (patch) | |
tree | c17b3cb0e91d1507bf89857ad8a47b355c3defbe /doc/developer | |
parent | Merge pull request #14443 from opensourcerouting/coverity-redux-20230919 (diff) | |
download | frr-19c5667dfcf95ff338319acb2de974fbc76a52b5.tar.xz frr-19c5667dfcf95ff338319acb2de974fbc76a52b5.zip |
doc: add northbound api arch docs
Signed-off-by: Quentin Young <qlyoung@qlyoung.net>
Diffstat (limited to 'doc/developer')
-rw-r--r-- | doc/developer/index.rst | 1 | ||||
-rw-r--r-- | doc/developer/northbound/_sidebar.rst | 15 | ||||
-rw-r--r-- | doc/developer/northbound/advanced-topics.rst | 294 | ||||
-rw-r--r-- | doc/developer/northbound/architecture.rst | 283 | ||||
-rw-r--r-- | doc/developer/northbound/demos.rst | 25 | ||||
-rw-r--r-- | doc/developer/northbound/links.rst | 233 | ||||
-rw-r--r-- | doc/developer/northbound/northbound.rst | 21 | ||||
-rw-r--r-- | doc/developer/northbound/operational-data-rpcs-and-notifications.rst | 565 | ||||
-rw-r--r-- | doc/developer/northbound/plugins-sysrepo.rst | 137 | ||||
-rw-r--r-- | doc/developer/northbound/ppr-basic-test-topology.rst | 1632 | ||||
-rw-r--r-- | doc/developer/northbound/ppr-mpls-basic-test-topology.rst | 1991 | ||||
-rw-r--r-- | doc/developer/northbound/retrofitting-configuration-commands.rst | 1916 | ||||
-rw-r--r-- | doc/developer/northbound/transactional-cli.rst | 244 | ||||
-rw-r--r-- | doc/developer/northbound/yang-module-translator.rst | 629 | ||||
-rw-r--r-- | doc/developer/northbound/yang-tools.rst | 106 | ||||
-rw-r--r-- | doc/developer/subdir.am | 13 |
16 files changed, 8105 insertions, 0 deletions
diff --git a/doc/developer/index.rst b/doc/developer/index.rst index 5da7bc416..c2123f1ad 100644 --- a/doc/developer/index.rst +++ b/doc/developer/index.rst @@ -22,3 +22,4 @@ FRRouting Developer's Guide path pceplib link-state + northbound/northbound diff --git a/doc/developer/northbound/_sidebar.rst b/doc/developer/northbound/_sidebar.rst new file mode 100644 index 000000000..f2bca0bc0 --- /dev/null +++ b/doc/developer/northbound/_sidebar.rst @@ -0,0 +1,15 @@ +Northbound: +~~~~~~~~~~~ + +- [[Architecture]] +- [[Transactional CLI]] +- [[Retrofitting Configuration Commands]] +- [[Operational data, RPCs and Notifications]] +- [[Plugins - ConfD]] +- [[Plugins: Sysrepo]] +- [[Plugins - Writing Your Own]] +- [[YANG module translator]] +- [[Advanced topics]] +- [[YANG tools]] +- [[Demos]] +- [[Links]] diff --git a/doc/developer/northbound/advanced-topics.rst b/doc/developer/northbound/advanced-topics.rst new file mode 100644 index 000000000..bee29a95a --- /dev/null +++ b/doc/developer/northbound/advanced-topics.rst @@ -0,0 +1,294 @@ +Auto-generated CLI commands +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +In order to have less code to maintain, it should be possible to write a +tool that auto-generates CLI commands based on the FRR YANG models. As a +matter of fact, there are already a number of NETCONF-based CLIs that do +exactly that (e.g. `Clixon <https://github.com/clicon/clixon>`__, +ConfD’s CLI). + +The problem however is that there isn’t an exact one-to-one mapping +between the existing CLI commands and the corresponding YANG nodes from +the native models. As an example, ripd’s +``timers basic (5-2147483647) (5-2147483647) (5-2147483647)`` command +changes three YANG leaves at the same time. In order to auto-generate +CLI commands and retain their original form, it’s necessary to add +annotations in the YANG modules to specify how the commands should look +like. Without YANG annotations, the CLI auto-generator will generate a +command for each YANG leaf, (leaf-)list and presence-container. The +ripd’s ``timers basic`` command, for instance, would become three +different commands, which would be undesirable. + + This Tail-f’s® + `document <http://info.tail-f.com/hubfs/Whitepapers/Tail-f_ConfD-CLI__Cfg_Mode_App_Note_Rev%20C.pdf>`__ + shows how to customize ConfD auto-generated CLI commands using YANG + annotations. + +The good news is that *libyang* allows users to create plugins to +implement their own YANG extensions, which can be used to implement CLI +annotations. If done properly, a CLI generator can save FRR developers +from writing and maintaining hundreds if not thousands of DEFPYs! + +CLI on a separate program +~~~~~~~~~~~~~~~~~~~~~~~~~ + +The flexible design of the northbound architecture opens the door to +move the CLI to a separate program in the long-term future. Some +advantages of doing so would be: \* Treat the CLI as just another +northbound client, instead of having CLI commands embedded in the +binaries of all FRR daemons. \* Improved robustness: bugs in CLI +commands (e.g. null-pointer dereferences) or in the CLI code itself +wouldn’t affect the FRR daemons. \* Foster innovation by allowing other +CLI programs to be implemented, possibly using higher level programming +languages. + +The problem, however, is that the northbound retrofitting process will +convert only the CLI configuration commands and EXEC commands in a first +moment. Retrofitting the “show” commands is a completely different story +and shouldn’t happen anytime soon. This should hinder progress towards +moving the CLI to a separate program. + +Proposed feature: confirmed commits +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Confirmed commits allow the user to request an automatic rollback to the +previous configuration if the commit operation is not confirmed within a +number of minutes. This is particularly useful when the user is +accessing the CLI through the network (e.g. using SSH) and any +configuration change might cause an unexpected loss of connectivity +between the user and the router (e.g. misconfiguration of a routing +protocol). By using a confirmed commit, the user can rest assured the +connectivity will be restored after the given timeout expires, avoiding +the need to access the router physically to fix the problem. + +Example of how this feature could be provided in the CLI: +``commit confirmed [minutes <1-60>]``. The ability to do confirmed +commits should also be exposed in the northbound API so that the +northbound plugins can also take advantage of it (in the case of the +Sysrepo and ConfD plugins, confirmed commits are implemented externally +in the *netopeer2-server* and *confd* daemons, respectively). + +Proposed feature: enable/disable configuration commands/sections +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Since the ``lyd_node`` data structure from *libyang* can hold private +data, it should be possible to mark configuration commands or sections +as active or inactive. This would allow CLI users to leverage this +feature to disable parts of the running configuration without actually +removing the associated commands, and then re-enable the disabled +configuration commands or sections later when necessary. Example: + +:: + + ripd(config)# show configuration running + Configuration: + [snip] + ! + router rip + default-metric 2 + distance 80 + network eth0 + network eth1 + ! + end + ripd(config)# disable router rip + ripd(config)# commit + % Configuration committed successfully (Transaction ID #7). + + ripd(config)# show configuration running + Configuration: + [snip] + ! + !router rip + !default-metric 2 + !distance 80 + !network eth0 + !network eth1 + ! + end + ripd(config)# enable router rip + ripd(config)# commit + % Configuration committed successfully (Transaction ID #8). + + ripd(config)# show configuration running + [snip] + frr defaults traditional + ! + router rip + default-metric 2 + distance 80 + network eth0 + network eth1 + ! + end + +This capability could be useful in a number of occasions, like disabling +configuration commands that are no longer necessary (e.g. ACLs) but that +might be necessary at a later point in the future. Other example is +allowing users to disable a configuration section for testing purposes, +and then re-enable it easily without needing to copy and paste any +command. + +Configuration reloads +~~~~~~~~~~~~~~~~~~~~~ + +Given the limitations of the previous northbound architecture, the FRR +daemons didn’t have the ability to reload their configuration files by +themselves. The SIGHUP handler of most daemons would only re-read the +configuration file and merge it into the running configuration. In most +cases, however, what is desired is to replace the running configuration +by the updated configuration file. The *frr-reload.py* script was +written to work around this problem and it does it well to a certain +extent. The problem with the *frr-reload.py* script is that it’s full of +special cases here and there, which makes it fragile and unreliable. +Maintaining the script is also an additional burden for FRR developers, +few of whom are familiar with its code or know when it needs to be +updated to account for a new feature. + +In the new northbound architecture, reloading the configuration file can +be easily implemented using a configuration transaction. Once the FRR +northbound retrofitting process is complete, all daemons should have the +ability to reload their configuration files upon receiving the SIGHUP +signal, or when the ``configuration load [...] replace`` command is +used. Once that point is reached, the *frr-reload.py* script will no +longer be necessary and should be removed from the FRR repository. + +Configuration changes coming from the kernel +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +This +`post <http://discuss.tail-f.com/t/who-should-not-set-configuration-once-a-system-is-up-and-running/111>`__ +from the Tail-f’s® forum describes the problem of letting systems +configure themselves behind the users back. Here are some selected +snippets from it: > Traditionally, northbound interface users are the +ones in charge of providing configuration data for systems. > > In some +systems, we see a deviation from this traditional practice; allowing +systems to configure “themselves” behind the scenes (or behind the users +back). > > While there might be a business case for such a practice, +this kind of configuration remains “dangerous” from northbound users +perspective and makes systems hard to predict and even harder to debug. +(…) > > With the advent of transactional Network configuration, this +practice can not work anymore. The fact that systems are given the right +to change configuration is a key here in breaking transactional +configuration in a Network. + +FRR is immune to some of the problems described in the aforementioned +post. Management clients can configure interfaces that don’t yet exist, +and once an interface is deleted from the kernel, its configuration is +retained in FRR. + +There are however some cases where information learned from the kernel +(e.g. using netlink) can affect the running configuration of all FRR +daemons. Examples: interface rename events, VRF rename events, interface +being moved to a different VRF, etc. In these cases, since these events +can’t be ignored, the best we can do is to send YANG notifications to +the management clients to inform about the configuration changes. The +management clients should then be prepared to handle such notifications +and react accordingly. + +Interfaces and VRFs +~~~~~~~~~~~~~~~~~~~ + +As of now zebra doesn’t have the ability to create VRFs or virtual +interfaces in the kernel. The ``vrf`` and ``interface`` commands only +create pre-provisioned VRFs and interfaces that are only activated when +the corresponding information is learned from the kernel. When +configuring FRR using an external management client, like a NETCONF +client, it might be desirable to actually create functional VRFs and +virtual interfaces (e.g. VLAN subinterfaces, bridges, etc) that are +installed in the kernel using OS-specific APIs (e.g. netlink, routing +socket, etc). Work needs to be done in this area to make this possible. + +Shared configuration objects +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +One of the existing problems in FRR is that it’s hard to ensure that all +daemons are in sync with respect to the shared configuration objects +(e.g. interfaces, VRFs, route-maps, ACLs, etc). When a route-map is +configured using *vtysh*, the same command is sent to all relevant +daemons (the daemons that implement route-maps), which ensures +synchronization among them. The problem is when a daemon starts after +the route-maps are created. In this case this daemon wouldn’t be aware +of the previously configured route-maps (unlike the other daemons), +which can lead to a lot of confusion and unexpected problems. + +With the new northbound architecture, configuration objects can be +manipulated using higher level abstractions, which opens more +possibilities to solve this decades-long problem. As an example, one +solution would be to make the FRR daemons fetch the shared configuration +objects from zebra using the ZAPI interface during initialization. The +shared configuration objects could be requested using a list of XPaths +expressions in the ``ZEBRA_HELLO`` message, which zebra would respond by +sending the shared configuration objects encoded in the JSON format. +This solution however doesn’t address the case where zebra starts or +restarts after the other FRR daemons. Other solution would be to store +the shared configuration objects in the northbound SQL database and make +all daemons fetch these objects from there. So far no work has been made +on this area as more investigation needs to be done. + +vtysh support +~~~~~~~~~~~~~ + +As explained in the [[Transactional CLI]] page, all commands introduced +by the transactional CLI are not yet available in *vtysh*. This needs to +be addressed in the short term future. Some challenges for doing that +work include: \* How to display configurations (running, candidates and +rollbacks) in a more clever way? The implementation of the +``show running-config`` command in *vtysh* is not something that should +be followed as an example. A better idea would be to fetch the desired +configuration from all daemons (encoded in JSON for example), merge them +all into a single ``lyd_node`` variable and then display the combined +configurations from this variable (the configuration merges would +transparently take care of combining the shared configuration objects). +In order to be able to manipulate the JSON configurations, *vtysh* will +need to load the YANG modules from all daemons at startup (this might +have a minimal impact on startup time). The only issue with this +approach is that the ``cli_show()`` callbacks from all daemons are +embedded in their binaries and thus not accessible externally. It might +be necessary to compile these callbacks on a separate shared library so +that they are accessible to *vtysh* too. Other than that, displaying the +combined configurations in the JSON/XML formats should be +straightforward. \* With the current design, transaction IDs are +per-daemon and not global across all FRR daemons. This means that the +same transaction ID can represent different transactions on different +daemons. Given this observation, how to implement the +``rollback configuration`` command in *vtysh*? The easy solution would +be to add a ``daemon WORD`` argument to specify the context of the +rollback, but per-daemon rollbacks would certainly be confusing and +convoluted to end users. A better idea would be to attack the root of +the problem: change configuration transactions to be global instead of +being per-daemon. This involves a bigger change in the northbound +architecture, and would have implications on how transactions are stored +in the SQL database (daemon-specific and shared configuration objects +would need to have their own tables or columns). \* Loading +configuration files in the JSON or XML formats will be tricky, as +*vtysh* will need to know which sections of the configuration should be +sent to which daemons. *vtysh* will either need to fetch the YANG +modules implemented by all daemons at runtime or obtain this information +at compile-time somehow. + +Detecting type mismatches at compile-time +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +As described in the [[Retrofitting Configuration Commands]] page, the +northbound configuration callbacks detect type mismatches at runtime +when fetching data from the the ``dnode`` parameter (which represents +the configuration node being created, modified, deleted or moved). When +a type mismatch is detected, the program aborts and displays a backtrace +showing where the problem happened. It would be desirable to detect such +type mismatches at compile-time, the earlier the problems are detected +the sooner they are fixed. + +One possible solution to this problem would be to auto-generate C +structures from the YANG models and provide a function that converts a +libyang’s ``lyd_node`` variable to a C structure containing the same +information. The northbound callbacks could then fetch configuration +data from this C structure, which would naturally lead to type +mismatches being detected at compile time. One of the challenges of +doing this would be the handling of YANG lists and leaf-lists. It would +be necessary to use dynamic data structures like hashes or rb-trees to +hold all elements of the lists and leaf-lists, and the process of +converting a ``lyd_node`` to an auto-generated C-structure could be +expensive. At this point it’s unclear if it’s worth adding more +complexity in the northbound architecture to solve this specific +problem. diff --git a/doc/developer/northbound/architecture.rst b/doc/developer/northbound/architecture.rst new file mode 100644 index 000000000..f551ce9e2 --- /dev/null +++ b/doc/developer/northbound/architecture.rst @@ -0,0 +1,283 @@ +Introduction +------------ + +The goal of the new northbound API is to provide a better interface to +configure and monitor FRR programatically. The current design based on +CLI commands is no longer adequate in a world where computer networks +are becoming increasingly bigger, more diverse and more complex. Network +scripting using *expect* and screen scraping techniques is too primitive +and unreliable to be used in large-scale networks. What is proposed is +to modernize FRR to turn it into an API-first routing stack, and +reposition the CLI on top of this API. The most important change, +however, is not the API that will be provided to external users. In +fact, multiple APIs will be supported and users will have the ability to +write custom management APIs if necessary. The biggest change is the +introduction of a model-driven management architecture based on the +`YANG <https://tools.ietf.org/html/rfc7950>`__ modeling language. +Instead of writing code tied to any particular user interface +(e.g. DEFUNs), YANG allows us to write API-agnostic code (in the form of +callbacks) that can be used by any management interface. As an example, +it shouldn’t matter if a set of configuration changes is coming from a +`NETCONF <https://tools.ietf.org/html/rfc6241>`__ session or from a CLI +terminal, the same callbacks should be called to process the +configuration changes regardless of where they came from. This +model-driven design ensures feature parity across all management +interfaces supported by FRR. + +Quoting RFC 7950: > YANG is a language originally designed to model data +for the NETCONF protocol. A YANG module defines hierarchies of data that +can be used for NETCONF-based operations, including configuration, state +data, RPCs, and notifications. This allows a complete description of all +data sent between a NETCONF client and server. Although out of scope for +this specification, YANG can also be used with protocols other than +NETCONF. + +While the YANG and NETCONF specifications are tightly coupled with one +another, both are independent to a certain extent and are evolving +separately. Examples of other management protocols that use YANG include +`RESTCONF <https://tools.ietf.org/html/rfc8040>`__, +`gNMI <https://github.com/openconfig/reference/tree/master/rpc/gnmi>`__ +and +`CoAP <https://www.ietf.org/archive/id/draft-vanderstok-core-comi-11.txt>`__. + +In addition to being management-protocol independent, some other +advantages of using YANG in FRR are listed below: \* Have a formal +contract between FRR and application developers (management clients). A +management client that has access to the FRR YANG models knows about all +existing configuration options available for use. This information can +be used to auto-generate user-friendly interfaces like Web-UIs, custom +CLIs and even code bindings for several different programming languages. +Using `PyangBind <https://github.com/robshakir/pyangbind>`__, for +example, it’s possible to generate Python class hierarchies from YANG +models and use these classes to instantiate objects that mirror the +structure of the YANG modules and can be serialized/deserialized using +different encoding formats. \* Support different encoding formats for +instance data. Currently only JSON and XML are supported, but +`GPB <https://developers.google.com/protocol-buffers/>`__ and +`CBOR <http://cbor.io/>`__ are other viable options in the long term. +Additional encoding formats can be implemented in the *libyang* library +for optimal performance, or externally by translating data to/from one +of the supported formats (with a performance penalty). \* Have a formal +mechanism to introduce backward-incompatible changes based on `semantic +versioning <http://www.openconfig.net/docs/semver/>`__ (not part of the +YANG standard, which allows backward-compatible module updates only). \* +Provide seamless support to the industry-standard NETCONF/RESTCONF +protocols as alternative management APIs. If FRR configuration/state +data is modeled using YANG, supporting YANG-based protocols like NETCONF +and RESTCONF is much easier. + +As important as shifting to a model-driven management paradigm, the new +northbound architecture also introduces the concept of configuration +transactions. Configuration transactions allow management clients to +commit multiple configuration changes at the same time and rest assured +that either all changes will be applied or none will (all-or-nothing). +Configuration transactions are implemented as pseudo-atomic operations +and facilitate automation by removing the burden of error recovery from +the management side. Another property of configuration transactions is +that the configuration changes are always processed in a pre-defined +order to ensure consistency. Configuration transactions that encompass +multiple network devices are called network-wide transactions and are +also supported by the new northbound architecture. When FRR is built +using the ``--enable-config-rollbacks`` option, all committed +transactions are recorded in the FRR rollback log, which can reside +either in memory (volatile) or on persistent storage. + + Network-wide Transactions is the most important leap in network + management technology since SNMP. The error recovery and sequencing + tasks are removed from the manager side. This is usually more than + half the cost in a mature system; more than the entire cost of the + managed devices. + `[source] <https://www.nanog.org/sites/default/files/tuesday_tutorial_moberg_netconf_35.pdf>`__. + +Figures 1 and 2 below illustrate the old and new northbound architecture +of FRR, respectively. As it can be seen, in the old architecture the CLI +was the only interface used to configure and monitor FRR (the SNMP +plugin was’t taken into account given the small number of implemented +MIBs). This means that the only way to automate FRR was by writing +scripts that send CLI commands and parse the text output (which usually +doesn’t have any structure) using screen scraping and regular +expressions. + ++-----------------------------------------+ +| |space-1.jpg| | ++=========================================+ +| *Figure 1: old northbound architecture* | ++-----------------------------------------+ + +The new northbound architectures, on the other hand, features a +multitude of different management APIs, all of them connected to the +northbound layer of the FRR daemons. By default, only the CLI interface +is compiled built-in in the FRR daemons. The other management interfaces +are provided as optional plugins and need to be loaded during the daemon +initialization (e.g. *zebra -M confd*). This design makes it possible to +integrate FRR with different NETCONF solutions without introducing +vendor lock-in. The [[Plugins - Writing Your Own]] page explains how to +write custom northbound plugins that can be tailored to all needs +(e.g. support custom transport protocols, different data encoding +formats, fine-grained access control, etc). + ++-----------------------------------------+ +| |space-1.jpg| | ++=========================================+ +| *Figure 2: new northbound architecture* | ++-----------------------------------------+ + +Figure 3 shows the internal view of the FRR northbound architecture. In +this image we can see that northbound layer is an abstract entity +positioned between the northbound callbacks and the northbound clients. +The northbound layer is responsible to process the requests coming from +the northbound clients and call the appropriate callbacks to satisfy +these requests. The northbound plugins communicate with the northbound +layer through a public API, which allow users to write third-party +plugins that can be maintained separately. The northbound plugins, in +turn, have their own APIs to communicate with external management +clients. + ++---------------------------------------------------------+ +| |space-1.jpg| | ++=========================================================+ +| *Figure 3: new northbound architecture - internal view* | ++---------------------------------------------------------+ + +Initially the CLI (and all of its commands) will be maintained inside +the FRR daemons. In the long term, however, the goal is to move the CLI +to a separate program just like any other management client. The +[[Advanced Topics]] page describes the motivations and challenges of +doing that. Last but not least, the *libyang* block inside the +northbound layer is the engine that makes everything possible. The +*libyang* library will be described in more detail in the following +sections. + +YANG models +----------- + +The main decision to be made when using YANG is which models to +implement. There’s a general consensus that using standard models is +preferable over using custom (native) models. The reasoning is that +applications based on standard models can be reused for all network +appliances that support those models, whereas the same doesn’t apply for +applications written based on custom models. + +That said, there are multiple standards bodies publishing YANG models +and unfortunately not all of them are converging (or at least not yet). +In the context of FRR, which is a routing stack, the two sets of YANG +models that would make sense to implement are the ones from IETF and +from the OpenConfig working group. The question that arises is: which +one of them should we commit to? Or should we try to support both +somehow, at the cost of extra development efforts? + +Another problem, from an implementation point of view, is that it’s +challenging to adapt the existing code base to match standard models. A +more reasonable solution, at least in a first moment, would be to use +YANG deviations and augmentations to do the opposite: adapt the standard +models to the existing code. In practice however this is not as simple +as it seems. There are cases where the differences are too substantial +to be worked around without restructuring the code by changing its data +structures and their relationships. As an example, the *ietf-rip* model +places per-interface RIP configuration parameters inside the +*control-plane-protocol* list (which is augmented by *ietf-rip*). This +means that it’s impossible to configure RIP interface parameters without +first configuring a RIP routing instance. The *ripd* daemon on the other +hand allows the operator to configure RIP interface parameters even if +``router rip`` is not configured. If we were to implement the *ietf-rip* +module natively, we’d need to change ripd’s CLI commands (and the +associated code) to reflect the new configuration hierarchy. + +Taking into account that FRR has a huge code base and that the +northbound retrofitting process per-se will cause a lot of impact, it +was decided to take a conservative approach and write custom YANG models +for FRR modeled after the existing CLI commands. Having YANG models that +closely mirror the CLI commands will allow the FRR developers to +retrofit the code base much more easily, without introducing +backward-incompatible changes in the CLI and reducing the likelihood of +introducing bugs. The [[Retrofitting Configuration Commands]] page +explains in detail how to convert configuration commands to the new +northbound model. + +Even though having native YANG models is not the ideal solution, it will +be already a big step forward for FRR to migrate to a model-driven +management architecture, with support for configuration transactions and +multiple management interfaces, including NETCONF and RESTCONF (through +the northbound plugins). + +The new northbound also features an experimental YANG module translator +that will allow users to translate to and from standard YANG models by +using translation tables. The [[YANG module translator]] page describes +this mechanism in more detail. At this point it’s unclear what can be +achieved through module translation and if that can be considered as a +definitive solution to support standard models or not. + +Northbound Architecture +----------------------- + ++-----------------------------------------------+ +| |space-1.jpg| | ++===============================================+ +| *Figure 4: libyang’s lys_node data structure* | ++-----------------------------------------------+ + ++-----------------------------------------------+ +| |space-1.jpg| | ++===============================================+ +| *Figure 5: libyang’s lyd_node data structure* | ++-----------------------------------------------+ + ++---------------------------------------------+ +| |space-1.jpg| | ++=============================================+ +| *Figure 6: libyang’s ly_ctx data structure* | ++---------------------------------------------+ + ++----------------------------------------+ +| |space-1.jpg| | ++========================================+ +| *Figure 7: configuration transactions* | ++----------------------------------------+ + +Testing +------- + +The new northbound adds the libyang library as a new mandatory +dependency for FRR. To obtain and install this library, follow the steps +below: + +:: + + $ git clone https://github.com/CESNET/libyang + $ cd libyang + $ git checkout devel + $ mkdir build ; cd build + $ cmake -DENABLE_LYD_PRIV=ON .. + $ make + $ sudo make install + +.. + + NOTE: first make sure to install the libyang + `requirements <https://github.com/CESNET/libyang#build-requirements>`__. + +FRR needs libyang from version 0.16.7 or newer, which is maintained in +the ``devel`` branch. libyang 0.15.x is maintained in the ``master`` +branch and doesn’t contain one small feature used by FRR (the +``LY_CTX_DISABLE_SEARCHDIR_CWD`` flag). FRR also makes use of the +libyang’s ``ENABLE_LYD_PRIV`` feature, which is disabled by default and +needs to be enabled at compile time. + +It’s advisable (but not required) to install sqlite3 and build FRR with +``--enable-config-rollbacks`` in order to have access to the +configuration rollback feature. + +To test the northbound, the suggested method is to use the +[[Transactional CLI]] with the *ripd* daemon and play with the new +commands. The ``debug northbound`` command can be used to see which +northbound callbacks are called in response to the ``commit`` command. +For reference, the [[Demos]] page shows a small demonstration of the +transactional CLI in action and what it’s capable of. + +.. |space-1.jpg| image:: https://s22.postimg.cc/se52j8awh/arch-before.png +.. |space-1.jpg| image:: https://s22.postimg.cc/fziaiwboh/arch-after.png +.. |space-1.jpg| image:: https://s22.postimg.cc/qmc3ocmep/nb-layer.png +.. |space-1.jpg| image:: https://s22.postimg.cc/z4ljsodht/lys_node.png +.. |space-1.jpg| image:: https://s22.postimg.cc/6eynw1h7l/lyd_node.png +.. |space-1.jpg| image:: https://s22.postimg.cc/5cohdhiyp/ly_ctx.png +.. |space-1.jpg| image:: https://s22.postimg.cc/8waf3bgjl/transactions.png diff --git a/doc/developer/northbound/demos.rst b/doc/developer/northbound/demos.rst new file mode 100644 index 000000000..21ab43a49 --- /dev/null +++ b/doc/developer/northbound/demos.rst @@ -0,0 +1,25 @@ +Transactional CLI +----------------- + +This short demo shows some of the capabilities of the new transactional +CLI: |asciicast| + +ConfD + NETCONF + Cisco YDK +--------------------------- + +This is a very simple demo of *ripd* being configured by a python +script. The script uses NETCONF to communicate with *ripd*, which has +the ConfD plugin loaded. The most interesting part, however, is the fact +that the python script is not using handcrafted XML payloads to +configure *ripd*. Instead, the script is using python bindings generated +using Cisco’s YANG Development Kit (YDK). + +- Script used in the demo: + https://gist.github.com/rwestphal/defa9bd1ccf216ab082d4711ae402f95 + +|asciicast| + +.. |asciicast| image:: https://asciinema.org/a/jL0BS5HfP2kS6N1HfgsZvfZk1.png + :target: https://asciinema.org/a/jL0BS5HfP2kS6N1HfgsZvfZk1 +.. |asciicast| image:: https://asciinema.org/a/VfMElNxsjLcdvV7484E6ChxWv.png + :target: https://asciinema.org/a/VfMElNxsjLcdvV7484E6ChxWv diff --git a/doc/developer/northbound/links.rst b/doc/developer/northbound/links.rst new file mode 100644 index 000000000..e80374c57 --- /dev/null +++ b/doc/developer/northbound/links.rst @@ -0,0 +1,233 @@ +RFCs +~~~~ + +- `RFC 7950 - The YANG 1.1 Data Modeling + Language <https://tools.ietf.org/html/rfc7950>`__ +- `RFC 7951 - JSON Encoding of Data Modeled with + YANG <https://tools.ietf.org/html/rfc7951>`__ +- `RFC 8342 - Network Management Datastore Architecture + (NMDA) <https://tools.ietf.org/html/rfc8342>`__ +- `RFC 6087 - Guidelines for Authors and Reviewers of YANG Data Model + Documents <https://tools.ietf.org/html/rfc6087>`__ +- `RFC 8340 - YANG Tree + Diagrams <https://tools.ietf.org/html/rfc8340>`__ +- `RFC 6991 - Common YANG Data + Types <https://tools.ietf.org/html/rfc6991>`__ +- `RFC 6241 - Network Configuration Protocol + (NETCONF) <https://tools.ietf.org/html/rfc6241>`__ +- `RFC 8040 - RESTCONF + Protocol <https://tools.ietf.org/html/rfc8040>`__ + +YANG models +~~~~~~~~~~~ + +- Collection of several YANG models, including models from standards + organizations such as the IETF and vendor specific models: + https://github.com/YangModels/yang +- OpenConfig: https://github.com/openconfig/public + +Presentations +~~~~~~~~~~~~~ + +- FRR Advanced Northbound API (May 2018) + + - Slides: + https://www.dropbox.com/s/zhybthruwocbqaw/netdef-frr-northbound.pdf?dl=1 + +- Ok, We Got Data Models, Now What? + + - Video: https://www.youtube.com/watch?v=2oqkiZ83vAA + - Slides: + https://www.nanog.org/sites/default/files/20161017_Alvarez_Ok_We_Got_v1.pdf + +- Data Model-Driven Management: Latest Industry and Tool Developments + + - Video: https://www.youtube.com/watch?v=n_oKGJ_jgYQ + - Slides: + https://pc.nanog.org/static/published/meetings/NANOG72/1559/20180219_Claise_Data_Modeling-Driven_Management__v1.pdf + +- Network Automation And Programmability: Reality Versus The Vendor + Hype When Considering Legacy And NFV Networks + + - Video: https://www.youtube.com/watch?v=N5wbYncUS9o + - Slides: + https://www.nanog.org/sites/default/files/1_Moore_Network_Automation_And_Programmability.pdf + +- Lightning Talk: The API is the new CLI? + + - Video: https://www.youtube.com/watch?v=ngi0erGNi58 + - Slides: + https://pc.nanog.org/static/published/meetings/NANOG72/1638/20180221_Grundemann_Lightning_Talk_The_v1.pdf + +- Lightning Talk: OpenConfig - progress toward vendor-neutral network + management + + - Video: https://www.youtube.com/watch?v=10rSUbeMmT4 + - Slides: + https://pc.nanog.org/static/published/meetings/NANOG71/1535/20171004_Shaikh_Lightning_Talk_Openconfig_v1.pdf + +- Getting started with OpenConfig + + - Video: https://www.youtube.com/watch?v=L7trUNK8NJI + - Slides: + https://pc.nanog.org/static/published/meetings/NANOG71/1456/20171003_Alvarez_Getting_Started_With_v1.pdf + +- Why NETCONF and YANG + + - Video: https://www.youtube.com/watch?v=mp4h8aSTba8 + +- NETCONF and YANG Concepts + + - Video: https://www.youtube.com/watch?v=UwYYvT7DBvg + +- NETCONF Tutorial + + - Video: https://www.youtube.com/watch?v=N4vov1mI14U + +Whitepapers +~~~~~~~~~~~ + +- Automating Network and Service Configuration Using NETCONF and YANG: + http://www.tail-f.com/wordpress/wp-content/uploads/2013/02/Tail-f-Presentation-Netconf-Yang.pdf +- Creating the Programmable Network: The Business Case for NETCONF/YANG + in Network Devices: + http://www.tail-f.com/wordpress/wp-content/uploads/2013/10/HR-Tail-f-NETCONF-WP-10-08-13.pdf +- NETCONF/YANG: What’s Holding Back Adoption & How to Accelerate It: + https://www.oneaccess-net.com/images/public/wp_heavy_reading.pdf +- Achieving Automation with YANG Modeling Technologies: + https://www.cisco.com/c/dam/en/us/products/collateral/cloud-systems-management/network-services-orchestrator/idc-achieving-automation-wp.pdf + +Blog posts and podcasts +~~~~~~~~~~~~~~~~~~~~~~~ + +- OpenConfig and IETF YANG Models: Can they converge? - + http://rob.sh/post/215/ +- OpenConfig: Standardized Models For Networking - + https://packetpushers.net/openconfig-standardized-models-networking/ +- (Podcast) OpenConfig: From Basics to Implementations - + https://blog.ipspace.net/2017/02/openconfig-from-basics-to.html +- (Podcast) How Did NETCONF Start on Software Gone Wild - + https://blog.ipspace.net/2017/12/how-did-netconf-start-on-software-gone.html +- YANG Data Models in the Industry: Current State of Affairs (March + 2018) - + https://www.claise.be/2018/03/yang-data-models-in-the-industry-current-state-of-affairs-march-2018/ +- Why Data Model-driven Telemetry is the only useful Telemetry? - + https://www.claise.be/2018/02/why-data-model-driven-telemetry-is-the-only-useful-telemetry/ +- NETCONF versus RESTCONF: Capabilitity Comparisons for Data + Model-driven Management - + https://www.claise.be/2017/10/netconf-versus-restconf-capabilitity-comparisons-for-data-model-driven-management-2/ +- An Introduction to NETCONF/YANG - + https://www.fir3net.com/Networking/Protocols/an-introduction-to-netconf-yang.html +- Network Automation and the Rise of NETCONF - + https://medium.com/@k.okasha/network-automation-and-the-rise-of-netconf-e96cc33fe28 +- YANG and the Road to a Model Driven Network - + https://medium.com/@k.okasha/yang-and-road-to-a-model-driven-network-e9e52d47148d + +Software +~~~~~~~~ + +libyang +^^^^^^^ + + libyang is a YANG data modelling language parser and toolkit written + (and providing API) in C. + +- GitHub page: https://github.com/CESNET/libyang +- Documentaion: https://netopeer.liberouter.org/doc/libyang/master/ + +pyang +^^^^^ + + pyang is a YANG validator, transformator and code generator, written + in python. It can be used to validate YANG modules for correctness, + to transform YANG modules into other formats, and to generate code + from the modules. + +- GitHub page: https://github.com/mbj4668/pyang +- Documentaion: https://github.com/mbj4668/pyang/wiki/Documentation + +ncclient +^^^^^^^^ + + ncclient is a Python library that facilitates client-side scripting + and application development around the NETCONF protocol. + +- GitHub page: https://github.com/ncclient/ncclient +- Documentaion: https://ncclient.readthedocs.io/en/latest/ + +YDK +^^^ + + ydk-gen is a developer tool that can generate API’s that are modeled + in YANG. Currently, it generates language binding for Python, Go and + C++ with planned support for other language bindings in the future. + +- GitHub pages: + + - Generator: https://github.com/CiscoDevNet/ydk-gen + - Python: https://github.com/CiscoDevNet/ydk-py + + - Python samples: https://github.com/CiscoDevNet/ydk-py-samples + + - Go: https://github.com/CiscoDevNet/ydk-go + - C++: https://github.com/CiscoDevNet/ydk-cpp + +- Documentation: + + - Python: http://ydk.cisco.com/py/docs/ + - Go: http://ydk.cisco.com/go/docs/ + - C++: http://ydk.cisco.com/cpp/docs/ + +- (Blog post) Simplifying Network Programmability with Model-Driven + APIs: + https://blogs.cisco.com/sp/simplifying-network-programmability-with-model-driven-apis +- (Video introduction) Infrastructure as a Code Using YANG, OpenConfig + and YDK: https://www.youtube.com/watch?v=G1b6vJW1R5w + +pyangbind +^^^^^^^^^ + + A plugin for pyang that creates Python bindings for a YANG model. + +- GitHub page: https://github.com/robshakir/pyangbind +- Documentation: http://pynms.io/pyangbind/ + +ConfD +^^^^^ + +- Official webpage (for ConfD Basic): + http://www.tail-f.com/confd-basic/ +- Training Videos: http://www.tail-f.com/confd-training-videos/ +- Forum: http://discuss.tail-f.com/ + +Sysrepo +^^^^^^^ + + Sysrepo is an YANG-based configuration and operational state data + store for Unix/Linux applications. + +- GitHub page: https://github.com/sysrepo/sysrepo +- Official webpage: http://www.sysrepo.org/ +- Documentation: http://www.sysrepo.org/static/doc/html/ + +Netopeer2 +^^^^^^^^^ + + Netopeer2 is a set of tools implementing network configuration tools + based on the NETCONF Protocol. This is the second generation of the + toolset, originally available as the Netopeer project. Netopeer2 is + based on the new generation of the NETCONF and YANG libraries - + libyang and libnetconf2. The Netopeer server uses sysrepo as a + NETCONF datastore implementation. + +- GitHub page: https://github.com/CESNET/Netopeer2 + +Clixon +^^^^^^ + + Clixon is an automatic configuration manager where you generate + interactive CLI, NETCONF, RESTCONF and embedded databases with + transaction support from a YANG specification. + +- GitHub page: https://github.com/clicon/clixon +- Project page: http://www.clicon.org/ diff --git a/doc/developer/northbound/northbound.rst b/doc/developer/northbound/northbound.rst new file mode 100644 index 000000000..c5e30f16c --- /dev/null +++ b/doc/developer/northbound/northbound.rst @@ -0,0 +1,21 @@ +.. _northbound: + +************** +Northbound API +************** + +.. toctree:: + :maxdepth: 2 + + advanced-topics + architecture + demos + links + operational-data-rpcs-and-notifications + plugins-sysrepo + ppr-basic-test-topology + ppr-mpls-basic-test-topology + retrofitting-configuration-commands + transactional-cli + yang-module-translator + yang-tools diff --git a/doc/developer/northbound/operational-data-rpcs-and-notifications.rst b/doc/developer/northbound/operational-data-rpcs-and-notifications.rst new file mode 100644 index 000000000..554bc17c8 --- /dev/null +++ b/doc/developer/northbound/operational-data-rpcs-and-notifications.rst @@ -0,0 +1,565 @@ +Operational data +~~~~~~~~~~~~~~~~ + +Writing API-agnostic code for YANG-modeled operational data is +challenging. ConfD and Sysrepo, for instance, have completely different +APIs to fetch operational data. So how can we write API-agnostic +callbacks that can be used by both the ConfD and Sysrepo plugins, and +any other northbound client that might be written in the future? + +As an additional requirement, the callbacks must be designed in a way +that makes in-place XPath filtering possible. As an example, a +management client might want to retrieve only a subset of a large YANG +list (e.g. a BGP table), and for optimal performance it should be +possible to filter out the unwanted elements locally in the managed +devices instead of returning all elements and performing the filtering +on the management application. + +To meet all these requirements, the four callbacks below were introduced +in the northbound architecture: + +.. code:: c + + /* + * Operational data callback. + * + * The callback function should return the value of a specific leaf or + * inform if a typeless value (presence containers or leafs of type + * empty) exists or not. + * + * xpath + * YANG data path of the data we want to get + * + * list_entry + * pointer to list entry + * + * Returns: + * pointer to newly created yang_data structure, or NULL to indicate + * the absence of data + */ + struct yang_data *(*get_elem)(const char *xpath, void *list_entry); + + /* + * Operational data callback for YANG lists. + * + * The callback function should return the next entry in the list. The + * 'list_entry' parameter will be NULL on the first invocation. + * + * list_entry + * pointer to a list entry + * + * Returns: + * pointer to the next entry in the list, or NULL to signal that the + * end of the list was reached + */ + void *(*get_next)(void *list_entry); + + /* + * Operational data callback for YANG lists. + * + * The callback function should fill the 'keys' parameter based on the + * given list_entry. + * + * list_entry + * pointer to a list entry + * + * keys + * structure to be filled based on the attributes of the provided + * list entry + * + * Returns: + * NB_OK on success, NB_ERR otherwise + */ + int (*get_keys)(void *list_entry, struct yang_list_keys *keys); + + /* + * Operational data callback for YANG lists. + * + * The callback function should return a list entry based on the list + * keys given as a parameter. + * + * keys + * structure containing the keys of the list entry + * + * Returns: + * a pointer to the list entry if found, or NULL if not found + */ + void *(*lookup_entry)(struct yang_list_keys *keys); + +These callbacks were designed to provide maximum flexibility, and borrow +a lot of ideas from the ConfD API. Each callback does one and only one +task, they are indivisible primitives that can be combined in several +different ways to iterate over operational data. The extra flexibility +certainly has a performance cost, but it’s the price to pay if we want +to expose FRR operational data using several different management +interfaces (e.g. NETCONF via either ConfD or Sysrepo+Netopeer2). In the +future it might be possible to introduce optional callbacks that do +things like returning multiple objects at once. They would provide +enhanced performance when iterating over large lists, but their use +would be limited by the northbound plugins that can be integrated with +them. + + NOTE: using the northbound callbacks as a base, the ConfD plugin can + provide up to 100 objects between each round trip between FRR and the + *confd* daemon. Preliminary tests showed FRR taking ~7 seconds + (asynchronously, without blocking the main pthread) to return a RIP + table containing 100k routes to a NETCONF client connected to *confd* + (JSON was used as the encoding format). Work needs to be done to find + the bottlenecks and optimize this operation. + +The [[Plugins - Writing Your Own]] page explains how the northbound +plugins can fetch operational data using the aforementioned northbound +callbacks, and how in-place XPath filtering can be implemented. + +Example +^^^^^^^ + +Now let’s move to an example to show how these callbacks are implemented +in practice. The following YANG container is part of the *ietf-rip* +module and contains operational data about RIP neighbors: + +.. code:: yang + + container neighbors { + description + "Neighbor information."; + list neighbor { + key "address"; + description + "A RIP neighbor."; + leaf address { + type inet:ipv4-address; + description + "IP address that a RIP neighbor is using as its + source address."; + } + leaf last-update { + type yang:date-and-time; + description + "The time when the most recent RIP update was + received from this neighbor."; + } + leaf bad-packets-rcvd { + type yang:counter32; + description + "The number of RIP invalid packets received from + this neighbor which were subsequently discarded + for any reason (e.g. a version 0 packet, or an + unknown command type)."; + } + leaf bad-routes-rcvd { + type yang:counter32; + description + "The number of routes received from this neighbor, + in valid RIP packets, which were ignored for any + reason (e.g. unknown address family, or invalid + metric)."; + } + } + } + +We know that this is operational data because the ``neighbors`` +container is within the ``state`` container, which has the +``config false;`` property (which is applied recursively). + +As expected, the ``gen_northbound_callbacks`` tool also generates +skeleton callbacks for nodes that represent operational data: + +.. code:: c + + { + .xpath = "/frr-ripd:ripd/state/neighbors/neighbor", + .cbs.get_next = ripd_state_neighbors_neighbor_get_next, + .cbs.get_keys = ripd_state_neighbors_neighbor_get_keys, + .cbs.lookup_entry = ripd_state_neighbors_neighbor_lookup_entry, + }, + { + .xpath = "/frr-ripd:ripd/state/neighbors/neighbor/address", + .cbs.get_elem = ripd_state_neighbors_neighbor_address_get_elem, + }, + { + .xpath = "/frr-ripd:ripd/state/neighbors/neighbor/last-update", + .cbs.get_elem = ripd_state_neighbors_neighbor_last_update_get_elem, + }, + { + .xpath = "/frr-ripd:ripd/state/neighbors/neighbor/bad-packets-rcvd", + .cbs.get_elem = ripd_state_neighbors_neighbor_bad_packets_rcvd_get_elem, + }, + { + .xpath = "/frr-ripd:ripd/state/neighbors/neighbor/bad-routes-rcvd", + .cbs.get_elem = ripd_state_neighbors_neighbor_bad_routes_rcvd_get_elem, + }, + +The ``/frr-ripd:ripd/state/neighbors/neighbor`` list within the +``neighbors`` container has three different callbacks that need to be +implemented. Let’s start with the first one, the ``get_next`` callback: + +.. code:: c + + static void *ripd_state_neighbors_neighbor_get_next(void *list_entry) + { + struct listnode *node; + + if (list_entry == NULL) + node = listhead(peer_list); + else + node = listnextnode((struct listnode *)list_entry); + + return node; + } + +Given a list entry, the job of this callback is to find the next element +from the list. When the ``list_entry`` parameter is NULL, then the first +element of the list should be returned. + +*ripd* uses the ``rip_peer`` structure to represent RIP neighbors, and +the ``peer_list`` global variable (linked list) is used to store all RIP +neighbors. + +In order to be able to iterate over the list of RIP neighbors, the +callback returns a ``listnode`` variable instead of a ``rip_peer`` +variable. The ``listnextnode`` macro can then be used to find the next +element from the linked list. + +Now the second callback, ``get_keys``: + +.. code:: c + + static int ripd_state_neighbors_neighbor_get_keys(void *list_entry, + struct yang_list_keys *keys) + { + struct listnode *node = list_entry; + struct rip_peer *peer = listgetdata(node); + + keys->num = 1; + (void)inet_ntop(AF_INET, &peer->addr, keys->key[0].value, + sizeof(keys->key[0].value)); + + return NB_OK; + } + +This one is easy. First, we obtain the RIP neighbor from the +``listnode`` structure. Then, we fill the ``keys`` parameter according +to the attributes of the RIP neighbor. In this case, the ``neighbor`` +YANG list has only one key: the neighbor IP address. We then use the +``inet_ntop()`` function to transform this binary IP address into a +string (the lingua franca of the FRR northbound). + +The last callback for the ``neighbor`` YANG list is the ``lookup_entry`` +callback: + +.. code:: c + + static void * + ripd_state_neighbors_neighbor_lookup_entry(struct yang_list_keys *keys) + { + struct in_addr address; + + yang_str2ipv4(keys->key[0].value, &address); + + return rip_peer_lookup(&address); + } + +This callback is the counterpart of the ``get_keys`` callback: given an +array of list keys, the associated list entry should be returned. The +``yang_str2ipv4()`` function is used to convert the list key (an IP +address) from a string to an ``in_addr`` structure. Then the +``rip_peer_lookup()`` function is used to find the list entry. + +Finally, each YANG leaf inside the ``neighbor`` list has its associated +``get_elem`` callback: + +.. code:: c + + /* + * XPath: /frr-ripd:ripd/state/neighbors/neighbor/address + */ + static struct yang_data * + ripd_state_neighbors_neighbor_address_get_elem(const char *xpath, + void *list_entry) + { + struct rip_peer *peer = list_entry; + + return yang_data_new_ipv4(xpath, &peer->addr); + } + + /* + * XPath: /frr-ripd:ripd/state/neighbors/neighbor/last-update + */ + static struct yang_data * + ripd_state_neighbors_neighbor_last_update_get_elem(const char *xpath, + void *list_entry) + { + /* TODO: yang:date-and-time is tricky */ + return NULL; + } + + /* + * XPath: /frr-ripd:ripd/state/neighbors/neighbor/bad-packets-rcvd + */ + static struct yang_data * + ripd_state_neighbors_neighbor_bad_packets_rcvd_get_elem(const char *xpath, + void *list_entry) + { + struct rip_peer *peer = list_entry; + + return yang_data_new_uint32(xpath, peer->recv_badpackets); + } + + /* + * XPath: /frr-ripd:ripd/state/neighbors/neighbor/bad-routes-rcvd + */ + static struct yang_data * + ripd_state_neighbors_neighbor_bad_routes_rcvd_get_elem(const char *xpath, + void *list_entry) + { + struct rip_peer *peer = list_entry; + + return yang_data_new_uint32(xpath, peer->recv_badroutes); + } + +These callbacks receive the list entry as parameter and return the +corresponding data using the ``yang_data_new_*()`` wrapper functions. +Not much to explain here. + +Iterating over operational data without blocking the main pthread +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +One of the problems we have in FRR is that some “show” commands in the +CLI can take too long, potentially long enough to the point of +triggering some protocol timeouts and bringing sessions down. + +To avoid this kind of problem, northbound clients are encouraged to do +one of the following: \* Create a separate pthread for handling requests +to fetch operational data. \* Iterate over YANG lists and leaf-lists +asynchronously, returning a maximum number of elements per time instead +of returning all elements in one shot. + +In order to handle both cases correctly, the ``get_next`` callbacks need +to use locks to prevent the YANG lists from being modified while they +are being iterated over. If that is not done, the list entry returned by +this callback can become a dangling pointer when used in another +callback. + +Currently the ConfD and Sysrepo plugins run only in the main pthread. +The plan in the short-term is to introduce a separate pthread only for +handling operational data, and use the main pthread only for handling +configuration changes, RPCs and notifications. + +RPCs and Actions +~~~~~~~~~~~~~~~~ + +The FRR northbound supports YANG RPCs and Actions through the ``rpc()`` +callback, which is documented as follows in the *lib/northbound.h* file: + +.. code:: c + + /* + * RPC and action callback. + * + * Both 'input' and 'output' are lists of 'yang_data' structures. The + * callback should fetch all the input parameters from the 'input' list, + * and add output parameters to the 'output' list if necessary. + * + * xpath + * xpath of the YANG RPC or action + * + * input + * read-only list of input parameters + * + * output + * list of output parameters to be populated by the callback + * + * Returns: + * NB_OK on success, NB_ERR otherwise + */ + int (*rpc)(const char *xpath, const struct list *input, + struct list *output); + +Note that the same callback is used for both RPCs and actions, which are +essentially the same thing. In the case of YANG actions, the ``xpath`` +parameter can be consulted to find the data node associated to the +operation. + +As part of the northbound retrofitting process, it’s suggested to model +some EXEC-level commands using YANG so that their functionality is +exposed to other management interfaces other than the CLI. As an +example, if the ``clear bgp`` command is modeled using a YANG RPC, and a +corresponding ``rpc`` callback is written, then it should be possible to +clear BGP neighbors using NETCONF and RESTCONF with that RPC (the ConfD +and Sysrepo plugins have full support for YANG RPCs and actions). + +Here’s an example of a very simple RPC modeled using YANG: + +.. code:: yang + + rpc clear-rip-route { + description + "Clears RIP routes from the IP routing table and routes + redistributed into the RIP protocol."; + } + +This RPC doesn’t have any input or output parameters. Below we can see +the implementation of the corresponding ``rpc`` callback, whose skeleton +was automatically generated by the ``gen_northbound_callbacks`` tool: + +.. code:: c + + /* + * XPath: /frr-ripd:clear-rip-route + */ + static int clear_rip_route_rpc(const char *xpath, const struct list *input, + struct list *output) + { + struct route_node *rp; + struct rip_info *rinfo; + struct list *list; + struct listnode *listnode; + + /* Clear received RIP routes */ + for (rp = route_top(rip->table); rp; rp = route_next(rp)) { + list = rp->info; + if (list == NULL) + continue; + + for (ALL_LIST_ELEMENTS_RO(list, listnode, rinfo)) { + if (!rip_route_rte(rinfo)) + continue; + + if (CHECK_FLAG(rinfo->flags, RIP_RTF_FIB)) + rip_zebra_ipv4_delete(rp); + break; + } + + if (rinfo) { + RIP_TIMER_OFF(rinfo->t_timeout); + RIP_TIMER_OFF(rinfo->t_garbage_collect); + listnode_delete(list, rinfo); + rip_info_free(rinfo); + } + + if (list_isempty(list)) { + list_delete_and_null(&list); + rp->info = NULL; + route_unlock_node(rp); + } + } + + return NB_OK; + } + +If the ``clear-rip-route`` RPC had any input parameters, they would be +available in the ``input`` list given as a parameter to the callback. +Similarly, the ``output`` list can be used to append output parameters +generated by the RPC, if any are defined in the YANG model. + +The northbound clients (CLI and northbound plugins) have the +responsibility to create and delete the ``input`` and ``output`` lists. +However, in the cases where the RPC or action doesn’t have any input or +output parameters, the northbound client can pass NULL pointers to the +``rpc`` callback to avoid creating linked lists unnecessarily. We can +see this happening in the example below: + +.. code:: c + + /* + * XPath: /frr-ripd:clear-rip-route + */ + DEFPY (clear_ip_rip, + clear_ip_rip_cmd, + "clear ip rip", + CLEAR_STR + IP_STR + "Clear IP RIP database\n") + { + return nb_cli_rpc("/frr-ripd:clear-rip-route", NULL, NULL); + } + +``nb_cli_rpc()`` is a helper function that merely finds the appropriate +``rpc`` callback based on the XPath provided in the first argument, and +map the northbound error code from the ``rpc`` callback to a vty error +code (e.g. ``CMD_SUCCESS``, ``CMD_WARNING``). The second and third +arguments provided to the function refer to the ``input`` and ``output`` +lists. In this case, both arguments are set to NULL since the YANG RPC +in question doesn’t have any input/output parameters. + +Notifications +~~~~~~~~~~~~~ + +YANG notifations are sent using the ``nb_notification_send()`` function, +documented in the *lib/northbound.h* file as follows: + +.. code:: c + + /* + * Send a YANG notification. This is a no-op unless the 'nb_notification_send' + * hook was registered by a northbound plugin. + * + * xpath + * xpath of the YANG notification + * + * arguments + * linked list containing the arguments that should be sent. This list is + * deleted after being used. + * + * Returns: + * NB_OK on success, NB_ERR otherwise + */ + extern int nb_notification_send(const char *xpath, struct list *arguments); + +The northbound doesn’t use callbacks for notifications because +notifications are generated locally and sent to the northbound clients. +This way, whenever a notification needs to be sent, it’s possible to +call the appropriate function directly instead of finding a callback +based on the XPath of the YANG notification. + +As an example, the *ietf-rip* module contains the following +notification: + +.. code:: yang + + notification authentication-failure { + description + "This notification is sent when the system + receives a PDU with the wrong authentication + information."; + leaf interface-name { + type string; + description + "Describes the name of the RIP interface."; + } + } + +The following convenience function was implemented in *ripd* to send +*authentication-failure* YANG notifications: + +.. code:: c + + /* + * XPath: /frr-ripd:authentication-failure + */ + void ripd_notif_send_auth_failure(const char *ifname) + { + const char *xpath = "/frr-ripd:authentication-failure"; + struct list *arguments; + char xpath_arg[XPATH_MAXLEN]; + struct yang_data *data; + + arguments = yang_data_list_new(); + + snprintf(xpath_arg, sizeof(xpath_arg), "%s/interface-name", xpath); + data = yang_data_new_string(xpath_arg, ifname); + listnode_add(arguments, data); + + nb_notification_send(xpath, arguments); + } + +Now sending the *authentication-failure* YANG notification should be as +simple as calling the above function and provide the appropriate +interface name. The notification will be processed by all northbound +plugins that subscribed a callback to the ``nb_notification_send`` hook. +The ConfD and Sysrepo plugins, for instance, use this hook to relay the +notifications to the *confd*/*sysrepod* daemons, which can generate +NETCONF notifications to subscribed clients. When no northbound plugin +is loaded, ``nb_notification_send()`` doesn’t do anything and the +notifications are ignored. diff --git a/doc/developer/northbound/plugins-sysrepo.rst b/doc/developer/northbound/plugins-sysrepo.rst new file mode 100644 index 000000000..186c3a017 --- /dev/null +++ b/doc/developer/northbound/plugins-sysrepo.rst @@ -0,0 +1,137 @@ +Installation +------------ + +Required dependencies +^^^^^^^^^^^^^^^^^^^^^ + +:: + + # apt-get install git cmake build-essential bison flex libpcre3-dev libev-dev \ + libavl-dev libprotobuf-c-dev protobuf-c-compiler libcmocka0 \ + libcmocka-dev doxygen libssl-dev libssl-dev libssh-dev + +libyang +^^^^^^^ + +:: + + # apt-get install libyang0.16 libyang-dev + +Sysrepo +^^^^^^^ + +:: + + $ git clone https://github.com/sysrepo/sysrepo.git + $ cd sysrepo/ + $ mkdir build; cd build + $ cmake -DCMAKE_BUILD_TYPE=Release -DGEN_LANGUAGE_BINDINGS=OFF .. && make + # make install + +libnetconf2 +^^^^^^^^^^^ + +:: + + $ git clone https://github.com/CESNET/libnetconf2.git + $ cd libnetconf2/ + $ mkdir build; cd build + $ cmake .. && make + # make install + +netopeer2 +^^^^^^^^^ + +:: + + $ git clone https://github.com/CESNET/Netopeer2.git + $ cd Netopeer2 + $ cd server + $ mkdir build; cd build + $ cmake .. && make + # make install + +**Note:** If ``make install`` fails as it can’t find +``libsysrepo.so.0.7``, then run ``ldconfig`` and try again as it might +not have updated the lib search path + +FRR +^^^ + +Build and install FRR using the ``--enable-sysrepo`` configure-time +option. + +Initialization +-------------- + +Install the FRR YANG modules in the Sysrepo datastore: + +:: + + # sysrepoctl --install /usr/local/share/yang/ietf-interfaces@2018-01-09.yang + # sysrepoctl --install /usr/local/share/yang/frr-vrf.yang + # sysrepoctl --install /usr/local/share/yang/frr-interface.yang + # sysrepoctl --install /usr/local/share/yang/frr-route-types.yang + # sysrepoctl --install /usr/local/share/yang/frr-filter.yang + # sysrepoctl --install /usr/local/share/yang/frr-route-map.yang + # sysrepoctl --install /usr/local/share/yang/frr-isisd.yang + # sysrepoctl --install /usr/local/share/yang/frr-ripd.yang + # sysrepoctl --install /usr/local/share/yang/frr-ripngd.yang + # sysrepoctl -c frr-vrf --owner frr --group frr + # sysrepoctl -c frr-interface --owner frr --group frr + # sysrepoctl -c frr-route-types --owner frr --group frr + # sysrepoctl -c frr-filter --owner frr --group frr + # sysrepoctl -c frr-route-map --owner frr --group frr + # sysrepoctl -c frr-isisd --owner frr --group frr + # sysrepoctl -c frr-ripd --owner frr --group frr + # sysrepoctl -c frr-ripngd --owner frr --group frr + +Start netopeer2-server: + +:: + + # netopeer2-server -d & + +Start the FRR daemons with the sysrepo module: + +:: + + # isisd -M sysrepo --log=stdout + +Managing the configuration +-------------------------- + +The following NETCONF scripts can be used to show and edit the FRR +configuration: +https://github.com/rzalamena/ietf-hackathon-brazil-201907/tree/master/netconf-scripts + +Example: + +:: + + # ./netconf-edit.py 127.0.0.1 + # ./netconf-get-config.py 127.0.0.1 + <?xml version="1.0" encoding="UTF-8"?><data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"><isis xmlns="http://frrouting.org/yang/isisd"><instance><area-tag>testnet</area-tag><is-type>level-1</is-type></instance></isis></data> + +.. + + NOTE: the ncclient library needs to be installed first: + ``apt install -y python3-ncclient`` + +The *sysrepocfg* tool can also be used to show/edit the FRR +configuration. Example: + +:: + + # sysrepocfg --format=json --import=frr-isisd.json --datastore=running frr-isisd + # sysrepocfg --format=json --export --datastore=running frr-isisd + { + "frr-isisd:isis": { + "instance": [ + { + "area-tag": "testnet", + "is-type": "level-1" + } + ] + } + } diff --git a/doc/developer/northbound/ppr-basic-test-topology.rst b/doc/developer/northbound/ppr-basic-test-topology.rst new file mode 100644 index 000000000..582c76c05 --- /dev/null +++ b/doc/developer/northbound/ppr-basic-test-topology.rst @@ -0,0 +1,1632 @@ +Table of Contents +~~~~~~~~~~~~~~~~~ + +- `Software <#software>`__ +- `Topology <#topology>`__ +- `Configuration <#configuration>`__ + + - `CLI <#configuration-cli>`__ + - `YANG <#configuration-yang>`__ + +- `Verification - Control Plane <#verification-cplane>`__ +- `Verification - Forwarding Plane <#verification-fplane>`__ + +Software +~~~~~~~~ + +The FRR PPR implementation for IS-IS is available here: +https://github.com/opensourcerouting/frr/tree/isisd-ppr + +Topology +~~~~~~~~ + +In this topology we have an IS-IS network consisting of 12 routers. CE1 +and CE2 are the consumer edges, connected to R11 and R14, respectively. +Three hosts are connected to the CEs using only static routes. + +Router R11 advertises 6 PPR TLVs, which corresponds to three +bi-directional GRE tunnels: \* **6000:1::1 <-> 6000:2::1:** {R11 - R21 - +R22 - R23 - R14} (IPv6 Node Addresses only) \* **6000:1::2 <-> +6000:2::2:** {R11 - R21 - R32 - R41 - R33 - R23 - R14} (IPv6 Node and +Interface Addresses) \* **6000:1::3 <-> 6000:2::3:** {R11 - R21 - R99 - +R23 - R14} (misconfigured path) + +PBR rules are configured on R11 and R14 to route the traffic between +Host 1 and Host 3 using the first PPR tunnel. Traffic between Host 2 and +Host 3 uses the regular IS-IS shortest path. + +Additional information: \* Addresses in the 4000::/16 range refer to +interface addresses, where the last hextet corresponds to the node ID. +\* Addresses in the 5000::/16 range refer to loopback addresses, where +the last hextet corresponds to the node ID. \* Addresses in the +6000::/16 range refer to PPR-ID addresses. + +:: + + +-------+ +-------+ +-------+ + | | | | | | + | HOST1 | | HOST2 | | HOST3 | + | | | | | | + +---+---+ +---+---+ +---+---+ + | | | + |fd00:10:1::/64 | | + +-----+ +------+ fd00:20:1::/64| + | |fd00:10:2::/64 | + | | | + +-+--+--+ +---+---+ + | | | | + | CE1 | | CE2 | + | | | | + +---+---+ +---+---+ + | | + | | + |fd00:10:0::/64 fd00:20:0::/64| + | | + | | + +---+---+ +-------+ +-------+ +---+---+ + | |4000:101::/64| |4000:102::/64| |4000:103::/64| | + | R11 +-------------+ R12 +-------------+ R13 +-------------+ R14 | + | | | | | | | | + +---+---+ +--+-+--+ +--+-+--+ +---+---+ + | | | | | | + |4000:104::/64 | |4000:106::/64 | |4000:108::/64 | + +---------+ +--------+ +--------+ +--------+ +--------+ +---------+ + | |4000:105::/64 | |4000:107::/64 | |4000:109::/64 + | | | | | | + +--+-+--+ +--+-+--+ +--+-+--+ + | |4000:110::/64| |4000:111::/64| | + | R21 +-------------+ R22 +-------------+ R23 | + | | | | | | + +--+-+--+ +--+-+--+ +--+-+--+ + | | | | | | + | |4000:113::/64 | |4000:115::/64 | |4000:117::/64 + +---------+ +--------+ +--------+ +--------+ +--------+ +---------+ + |4000:112::/64 | |4000:114::/64 | |4000:116::/64 | + | | | | | | + +---+---+ +--+-+--+ +--+-+--+ +---+---+ + | |4000:118::/64| |4000:119::/64| |4000:120::/64| | + | R31 +-------------+ R32 +-------------+ R33 +-------------+ R34 | + | | | | | | | | + +-------+ +---+---+ +---+---+ +-------+ + | | + |4000:121::/64 | + +----------+----------+ + | + | + +---+---+ + | | + | R41 | + | | + +-------+ + +Configuration +~~~~~~~~~~~~~ + +PPR TLV processing needs to be enabled on all IS-IS routers using the +``ppr on`` command. The advertisements of all PPR TLVs is done by router +R11. + +CLI configuration +^^^^^^^^^^^^^^^^^ + +.. code:: yaml + + --- + + routers: + + host1: + links: + eth-ce1: + peer: [ce1, eth-host1] + frr: + zebra: + staticd: + config: | + interface eth-ce1 + ipv6 address fd00:10:1::1/64 + ! + ipv6 route ::/0 fd00:10:1::100 + + host2: + links: + eth-ce1: + peer: [ce1, eth-host2] + frr: + zebra: + staticd: + config: | + interface eth-ce1 + ipv6 address fd00:10:2::1/64 + ! + ipv6 route ::/0 fd00:10:2::100 + + host3: + links: + eth-ce2: + peer: [ce2, eth-host3] + frr: + zebra: + staticd: + config: | + interface eth-ce2 + ipv6 address fd00:20:1::1/64 + ! + ipv6 route ::/0 fd00:20:1::100 + + ce1: + links: + eth-host1: + peer: [host1, eth-ce1] + eth-host2: + peer: [host2, eth-ce1] + eth-rt11: + peer: [rt11, eth-ce1] + frr: + zebra: + staticd: + config: | + interface eth-host1 + ipv6 address fd00:10:1::100/64 + ! + interface eth-host2 + ipv6 address fd00:10:2::100/64 + ! + interface eth-rt11 + ipv6 address fd00:10:0::100/64 + ! + ipv6 route ::/0 fd00:10:0::11 + + ce2: + links: + eth-host3: + peer: [host3, eth-ce2] + eth-rt14: + peer: [rt14, eth-ce2] + frr: + zebra: + staticd: + config: | + interface eth-host3 + ipv6 address fd00:20:1::100/64 + ! + interface eth-rt14 + ipv6 address fd00:20:0::100/64 + ! + ipv6 route ::/0 fd00:20:0::14 + + rt11: + links: + lo-ppr: + eth-ce1: + peer: [ce1, eth-rt11] + eth-rt12: + peer: [rt12, eth-rt11] + eth-rt21: + peer: [rt21, eth-rt11] + shell: | + # GRE tunnel for preferred packets (PPR) + ip -6 tunnel add tun-ppr mode ip6gre remote 6000:2::1 local 6000:1::1 ttl 64 + ip link set dev tun-ppr up + # PBR rules + ip -6 rule add from fd00:10:1::/64 to fd00:20:1::/64 iif eth-ce1 lookup 10000 + ip -6 route add default dev tun-ppr table 10000 + frr: + zebra: + staticd: + isisd: + config: | + interface lo-ppr + ipv6 address 6000:1::1/128 + ipv6 address 6000:1::2/128 + ipv6 address 6000:1::3/128 + ! + interface lo + ipv6 address 5000::11/128 + ipv6 router isis 1 + ! + interface eth-ce1 + ipv6 address fd00:10:0::11/64 + ! + interface eth-rt12 + ipv6 address 4000:101::11/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt21 + ipv6 address 4000:104::11/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + ipv6 route fd00:10::/32 fd00:10:0::100 + ! + ppr group VOIP + ppr ipv6 6000:1::1/128 prefix 5000::11/128 metric 50 + pde ipv6-node 5000::14/128 + pde ipv6-node 5000::23/128 + pde ipv6-node 5000::22/128 + pde ipv6-node 5000::21/128 + pde ipv6-node 5000::11/128 + ! + ppr ipv6 6000:2::1/128 prefix 5000::14/128 metric 50 + pde ipv6-node 5000::11/128 + pde ipv6-node 5000::21/128 + pde ipv6-node 5000::22/128 + pde ipv6-node 5000::23/128 + pde ipv6-node 5000::14/128 + ! + ! + ppr group INTERFACE_PDES + ppr ipv6 6000:1::2/128 prefix 5000::11/128 + pde ipv6-node 5000::14/128 + pde ipv6-node 5000::23/128 + pde ipv6-node 5000::33/128 + pde ipv6-interface 4000:121::41/64 + pde ipv6-node 5000::32/128 + pde ipv6-interface 4000:113::21/64 + pde ipv6-node 5000::11/128 + ! + ppr ipv6 6000:2::2/128 prefix 5000::14/128 + pde ipv6-node 5000::11/128 + pde ipv6-node 5000::21/128 + pde ipv6-node 5000::32/128 + pde ipv6-interface 4000:121::41/64 + pde ipv6-node 5000::33/128 + pde ipv6-interface 4000:116::23/64 + pde ipv6-node 5000::14/128 + ! + ! + ppr group BROKEN + ppr ipv6 6000:1::3/128 prefix 5000::11/128 metric 1500 + pde ipv6-node 5000::14/128 + pde ipv6-node 5000::23/128 + ! non-existing node!!! + pde ipv6-node 5000::99/128 + pde ipv6-node 5000::21/128 + pde ipv6-node 5000::11/128 + ! + ppr ipv6 6000:2::3/128 prefix 5000::14/128 metric 1500 + pde ipv6-node 5000::11/128 + pde ipv6-node 5000::21/128 + ! non-existing node!!! + pde ipv6-node 5000::99/128 + pde ipv6-node 5000::23/128 + pde ipv6-node 5000::14/128 + ! + ! + router isis 1 + net 49.0000.0000.0000.0011.00 + is-type level-1 + topology ipv6-unicast + ppr on + ppr advertise VOIP + ppr advertise INTERFACE_PDES + ppr advertise BROKEN + ! + + rt12: + links: + eth-rt11: + peer: [rt11, eth-rt12] + eth-rt13: + peer: [rt13, eth-rt12] + eth-rt21: + peer: [rt21, eth-rt12] + eth-rt22: + peer: [rt22, eth-rt12] + frr: + zebra: + isisd: + config: | + interface lo + ipv6 address 5000::12/128 + ipv6 router isis 1 + ! + interface eth-rt11 + ipv6 address 4000:101::12/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt13 + ipv6 address 4000:102::12/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt21 + ipv6 address 4000:105::12/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt22 + ipv6 address 4000:106::12/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0012.00 + is-type level-1 + topology ipv6-unicast + ppr on + ! + + rt13: + links: + eth-rt12: + peer: [rt12, eth-rt13] + eth-rt14: + peer: [rt14, eth-rt13] + eth-rt22: + peer: [rt22, eth-rt13] + eth-rt23: + peer: [rt23, eth-rt13] + frr: + zebra: + isisd: + config: | + interface lo + ipv6 address 5000::13/128 + ipv6 router isis 1 + ! + interface eth-rt12 + ipv6 address 4000:102::13/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt14 + ipv6 address 4000:103::13/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt22 + ipv6 address 4000:107::13/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt23 + ipv6 address 4000:108::13/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0013.00 + is-type level-1 + topology ipv6-unicast + ppr on + ! + + rt14: + links: + lo-ppr: + eth-ce2: + peer: [ce2, eth-rt14] + eth-rt13: + peer: [rt13, eth-rt14] + eth-rt23: + peer: [rt23, eth-rt14] + shell: | + # GRE tunnel for preferred packets (PPR) + ip -6 tunnel add tun-ppr mode ip6gre remote 6000:1::1 local 6000:2::1 ttl 64 + ip link set dev tun-ppr up + # PBR rules + ip -6 rule add from fd00:20:1::/64 to fd00:10:1::/64 iif eth-ce2 lookup 10000 + ip -6 route add default dev tun-ppr table 10000 + frr: + zebra: + staticd: + isisd: + config: | + interface lo-ppr + ipv6 address 6000:2::1/128 + ipv6 address 6000:2::2/128 + ipv6 address 6000:2::3/128 + ! + interface lo + ipv6 address 5000::14/128 + ipv6 router isis 1 + ! + interface eth-ce2 + ipv6 address fd00:20:0::14/64 + ! + interface eth-rt13 + ipv6 address 4000:103::14/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt23 + ipv6 address 4000:109::14/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + ipv6 route fd00:20::/32 fd00:20:0::100 + ! + router isis 1 + net 49.0000.0000.0000.0014.00 + is-type level-1 + topology ipv6-unicast + ppr on + ! + + rt21: + links: + eth-rt11: + peer: [rt11, eth-rt21] + eth-rt12: + peer: [rt12, eth-rt21] + eth-rt22: + peer: [rt22, eth-rt21] + eth-rt31: + peer: [rt31, eth-rt21] + eth-rt32: + peer: [rt32, eth-rt21] + frr: + zebra: + isisd: + config: | + interface lo + ipv6 address 5000::21/128 + ipv6 router isis 1 + ! + interface eth-rt11 + ipv6 address 4000:104::21/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt12 + ipv6 address 4000:105::21/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt22 + ipv6 address 4000:110::21/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt31 + ipv6 address 4000:112::21/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt32 + ipv6 address 4000:113::21/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0021.00 + is-type level-1 + topology ipv6-unicast + ppr on + ! + + rt22: + links: + eth-rt12: + peer: [rt12, eth-rt22] + eth-rt13: + peer: [rt13, eth-rt22] + eth-rt21: + peer: [rt21, eth-rt22] + eth-rt23: + peer: [rt23, eth-rt22] + eth-rt32: + peer: [rt32, eth-rt22] + eth-rt33: + peer: [rt33, eth-rt22] + frr: + zebra: + isisd: + config: | + interface lo + ipv6 address 5000::22/128 + ipv6 router isis 1 + ! + interface eth-rt12 + ipv6 address 4000:106::22/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt13 + ipv6 address 4000:107::22/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt21 + ipv6 address 4000:110::22/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt23 + ipv6 address 4000:111::22/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt32 + ipv6 address 4000:114::22/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt33 + ipv6 address 4000:115::22/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0022.00 + is-type level-1 + topology ipv6-unicast + ppr on + ! + + rt23: + links: + eth-rt13: + peer: [rt13, eth-rt23] + eth-rt14: + peer: [rt14, eth-rt23] + eth-rt22: + peer: [rt22, eth-rt23] + eth-rt33: + peer: [rt33, eth-rt23] + eth-rt34: + peer: [rt34, eth-rt23] + frr: + zebra: + isisd: + config: | + interface lo + ipv6 address 5000::23/128 + ipv6 router isis 1 + ! + interface eth-rt13 + ipv6 address 4000:108::23/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt14 + ipv6 address 4000:109::23/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt22 + ipv6 address 4000:111::23/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt33 + ipv6 address 4000:116::23/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt34 + ipv6 address 4000:117::23/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0023.00 + is-type level-1 + topology ipv6-unicast + ppr on + ! + + rt31: + links: + eth-rt21: + peer: [rt21, eth-rt31] + eth-rt32: + peer: [rt32, eth-rt31] + frr: + zebra: + isisd: + config: | + interface lo + ipv6 address 5000::31/128 + ipv6 router isis 1 + ! + interface eth-rt21 + ipv6 address 4000:112::31/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt32 + ipv6 address 4000:118::31/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0031.00 + is-type level-1 + topology ipv6-unicast + ppr on + ! + + rt32: + links: + eth-rt21: + peer: [rt21, eth-rt32] + eth-rt22: + peer: [rt22, eth-rt32] + eth-rt31: + peer: [rt31, eth-rt32] + eth-rt33: + peer: [rt33, eth-rt32] + eth-sw1: + peer: [sw1, eth-rt32] + frr: + zebra: + isisd: + config: | + interface lo + ipv6 address 5000::32/128 + ipv6 router isis 1 + ! + interface eth-rt21 + ipv6 address 4000:113::32/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt22 + ipv6 address 4000:114::32/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt31 + ipv6 address 4000:118::32/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt33 + ipv6 address 4000:119::32/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-sw1 + ipv6 address 4000:121::32/64 + ipv6 router isis 1 + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0032.00 + is-type level-1 + topology ipv6-unicast + ppr on + ! + + rt33: + links: + eth-rt22: + peer: [rt22, eth-rt33] + eth-rt23: + peer: [rt23, eth-rt33] + eth-rt32: + peer: [rt32, eth-rt33] + eth-rt34: + peer: [rt34, eth-rt33] + eth-sw1: + peer: [sw1, eth-rt33] + frr: + zebra: + isisd: + config: | + interface lo + ipv6 address 5000::33/128 + ipv6 router isis 1 + ! + interface eth-rt22 + ipv6 address 4000:115::33/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt23 + ipv6 address 4000:116::33/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt32 + ipv6 address 4000:119::33/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt34 + ipv6 address 4000:120::33/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-sw1 + ipv6 address 4000:121::33/64 + ipv6 router isis 1 + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0033.00 + is-type level-1 + topology ipv6-unicast + ppr on + ! + + rt34: + links: + eth-rt23: + peer: [rt23, eth-rt34] + eth-rt33: + peer: [rt33, eth-rt34] + frr: + zebra: + isisd: + config: | + interface lo + ipv6 address 5000::34/128 + ipv6 router isis 1 + ! + interface eth-rt23 + ipv6 address 4000:117::34/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt33 + ipv6 address 4000:120::34/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0034.00 + is-type level-1 + topology ipv6-unicast + ppr on + ! + + rt41: + links: + eth-sw1: + peer: [sw1, eth-rt41] + frr: + zebra: + isisd: + config: | + interface lo + ipv6 address 5000::41/128 + ipv6 router isis 1 + ! + interface eth-sw1 + ipv6 address 4000:121::41/64 + ipv6 router isis 1 + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0041.00 + is-type level-1 + topology ipv6-unicast + ppr on + ! + + switches: + sw1: + links: + eth-rt32: + peer: [rt32, eth-sw1] + eth-rt33: + peer: [rt33, eth-sw1] + eth-rt41: + peer: [rt41, eth-sw1] + + frr: + base-config: | + hostname %(node) + password 1 + log file %(logdir)/%(node).log + log commands + ! + debug zebra rib + debug isis ppr + debug isis events + debug isis route-events + debug isis spf-events + debug isis lsp-gen + ! + +YANG +^^^^ + +PPR can also be configured using NETCONF, RESTCONF and gRPC based on the +following YANG models: \* +`frr-ppr.yang <https://github.com/opensourcerouting/frr/blob/isisd-ppr/yang/frr-ppr.yang>`__ +\* +`frr-isisd.yang <https://github.com/opensourcerouting/frr/blob/isisd-ppr/yang/frr-isisd.yang>`__ + +As an example, here’s R11 configuration in the XML format: + +.. code:: xml + + <lib xmlns="http://frrouting.org/yang/interface"> + <interface> + <name>lo-ppr</name> + <vrf>default</vrf> + </interface> + <interface> + <name>lo</name> + <vrf>default</vrf> + <isis xmlns="http://frrouting.org/yang/isisd"> + <area-tag>1</area-tag> + <ipv6-routing>true</ipv6-routing> + </isis> + </interface> + <interface> + <name>eth-ce1</name> + <vrf>default</vrf> + </interface> + <interface> + <name>eth-rt12</name> + <vrf>default</vrf> + <isis xmlns="http://frrouting.org/yang/isisd"> + <area-tag>1</area-tag> + <ipv6-routing>true</ipv6-routing> + <hello> + <multiplier> + <level-1>3</level-1> + <level-2>3</level-2> + </multiplier> + </hello> + <network-type>point-to-point</network-type> + </isis> + </interface> + <interface> + <name>eth-rt21</name> + <vrf>default</vrf> + <isis xmlns="http://frrouting.org/yang/isisd"> + <area-tag>1</area-tag> + <ipv6-routing>true</ipv6-routing> + <hello> + <multiplier> + <level-1>3</level-1> + <level-2>3</level-2> + </multiplier> + </hello> + <network-type>point-to-point</network-type> + </isis> + </interface> + </lib> + <ppr xmlns="http://frrouting.org/yang/ppr"> + <group> + <name>VOIP</name> + <ipv6> + <ppr-id>6000:1::1/128</ppr-id> + <ppr-prefix>5000::11/128</ppr-prefix> + <ppr-pde> + <pde-id>5000::14/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::23/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::22/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::21/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::11/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <attributes> + <ppr-metric>50</ppr-metric> + </attributes> + </ipv6> + <ipv6> + <ppr-id>6000:2::1/128</ppr-id> + <ppr-prefix>5000::14/128</ppr-prefix> + <ppr-pde> + <pde-id>5000::11/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::21/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::22/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::23/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::14/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <attributes> + <ppr-metric>50</ppr-metric> + </attributes> + </ipv6> + </group> + <group> + <name>INTERFACE_PDES</name> + <ipv6> + <ppr-id>6000:1::2/128</ppr-id> + <ppr-prefix>5000::11/128</ppr-prefix> + <ppr-pde> + <pde-id>5000::14/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::23/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::33/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>4000:121::41/64</pde-id> + <pde-id-type>ipv6-interface</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::32/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>4000:113::21/64</pde-id> + <pde-id-type>ipv6-interface</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::11/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + </ipv6> + <ipv6> + <ppr-id>6000:2::2/128</ppr-id> + <ppr-prefix>5000::14/128</ppr-prefix> + <ppr-pde> + <pde-id>5000::11/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::21/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::32/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>4000:121::41/64</pde-id> + <pde-id-type>ipv6-interface</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::33/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>4000:116::23/64</pde-id> + <pde-id-type>ipv6-interface</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::14/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + </ipv6> + </group> + <group> + <name>BROKEN</name> + <ipv6> + <ppr-id>6000:1::3/128</ppr-id> + <ppr-prefix>5000::11/128</ppr-prefix> + <ppr-pde> + <pde-id>5000::14/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::23/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::99/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::21/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::11/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <attributes> + <ppr-metric>1500</ppr-metric> + </attributes> + </ipv6> + <ipv6> + <ppr-id>6000:2::3/128</ppr-id> + <ppr-prefix>5000::14/128</ppr-prefix> + <ppr-pde> + <pde-id>5000::11/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::21/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::99/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::23/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::14/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <attributes> + <ppr-metric>1500</ppr-metric> + </attributes> + </ipv6> + </group> + </ppr> + <isis xmlns="http://frrouting.org/yang/isisd"> + <instance> + <area-tag>1</area-tag> + <area-address>49.0000.0000.0000.0011.00</area-address> + <multi-topology> + <ipv6-unicast> + </ipv6-unicast> + </multi-topology> + <ppr> + <enable>true</enable> + <ppr-advertise> + <name>VOIP</name> + </ppr-advertise> + <ppr-advertise> + <name>INTERFACE_PDES</name> + </ppr-advertise> + <ppr-advertise> + <name>BROKEN</name> + </ppr-advertise> + </ppr> + </instance> + </isis> + +Verification - Control Plane +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Verify that R11 has flooded the PPR TLVs correctly to all IS-IS routers: + +:: + + # show isis database detail 0000.0000.0011 + Area 1: + IS-IS Level-1 link-state database: + LSP ID PduLen SeqNumber Chksum Holdtime ATT/P/OL + debian.00-00 1233 0x00000009 0x7bd4 683 0/0/0 + Protocols Supported: IPv4, IPv6 + Area Address: 49.0000 + MT Router Info: ipv4-unicast + MT Router Info: ipv6-unicast + Hostname: debian + MT Reachability: 0000.0000.0012.00 (Metric: 10) ipv6-unicast + MT Reachability: 0000.0000.0021.00 (Metric: 10) ipv6-unicast + MT IPv6 Reachability: 5000::11/128 (Metric: 10) ipv6-unicast + MT IPv6 Reachability: 4000:101::/64 (Metric: 10) ipv6-unicast + MT IPv6 Reachability: 4000:104::/64 (Metric: 10) ipv6-unicast + PPR: Fragment ID: 0, MT-ID: ipv4-unicast, Algorithm: SPF, F:0 D:0 A:0 U:1 + PPR Prefix: 5000::11/128 + ID: 6000:1::3/128 (Native IPv6) + PDE: 5000::14/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::23/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::99/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::21/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::11/128 (IPv6 Node Address), L:0 N:1 E:0 + Metric: 1500 + PPR: Fragment ID: 0, MT-ID: ipv4-unicast, Algorithm: SPF, F:0 D:0 A:0 U:1 + PPR Prefix: 5000::14/128 + ID: 6000:2::3/128 (Native IPv6) + PDE: 5000::11/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::21/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::99/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::23/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::14/128 (IPv6 Node Address), L:0 N:1 E:0 + Metric: 1500 + PPR: Fragment ID: 0, MT-ID: ipv4-unicast, Algorithm: SPF, F:0 D:0 A:0 U:1 + PPR Prefix: 5000::11/128 + ID: 6000:1::2/128 (Native IPv6) + PDE: 5000::14/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::23/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::33/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 4000:121::41 (IPv6 Interface Address), L:0 N:0 E:0 + PDE: 5000::32/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 4000:113::21 (IPv6 Interface Address), L:0 N:0 E:0 + PDE: 5000::11/128 (IPv6 Node Address), L:0 N:1 E:0 + Metric: 0 + PPR: Fragment ID: 0, MT-ID: ipv4-unicast, Algorithm: SPF, F:0 D:0 A:0 U:1 + PPR Prefix: 5000::14/128 + ID: 6000:2::2/128 (Native IPv6) + PDE: 5000::11/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::21/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::32/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 4000:121::41 (IPv6 Interface Address), L:0 N:0 E:0 + PDE: 5000::33/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 4000:116::23 (IPv6 Interface Address), L:0 N:0 E:0 + PDE: 5000::14/128 (IPv6 Node Address), L:0 N:1 E:0 + Metric: 0 + PPR: Fragment ID: 0, MT-ID: ipv4-unicast, Algorithm: SPF, F:0 D:0 A:0 U:1 + PPR Prefix: 5000::11/128 + ID: 6000:1::1/128 (Native IPv6) + PDE: 5000::14/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::23/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::22/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::21/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::11/128 (IPv6 Node Address), L:0 N:1 E:0 + Metric: 50 + PPR: Fragment ID: 0, MT-ID: ipv4-unicast, Algorithm: SPF, F:0 D:0 A:0 U:1 + PPR Prefix: 5000::14/128 + ID: 6000:2::1/128 (Native IPv6) + PDE: 5000::11/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::21/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::22/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::23/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::14/128 (IPv6 Node Address), L:0 N:1 E:0 + Metric: 50 + +The PPR TLVs can also be seen using a modified version of Wireshark as +seen below: + +.. figure:: https://user-images.githubusercontent.com/931662/61582441-9551e500-ab01-11e9-8f6f-400ee3fba927.png + :alt: s2 + + s2 + +Using the ``show isis ppr`` command, verify that all routers installed +the PPR-IDs for the paths they are part of. Example: + +Router RT11 +''''''''''' + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + -------------------------------------------------------------------------------------------- + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Tail-End - - + 1 L1 6000:1::2/128 (Native IPv6) 5000::11/128 0 Tail-End - - + 1 L1 6000:1::3/128 (Native IPv6) 5000::11/128 1500 Tail-End - - + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Head-End Up 00:45:41 + 1 L1 6000:2::2/128 (Native IPv6) 5000::14/128 0 Head-End Up 00:45:41 + 1 L1 6000:2::3/128 (Native IPv6) 5000::14/128 1500 Head-End Up 00:45:41 + + # show ipv6 route 6000::/16 longer-prefixes isis + Codes: K - kernel route, C - connected, S - static, R - RIPng, + O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, + v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR, + f - OpenFabric, + > - selected route, * - FIB route, q - queued route, r - rejected route + + I>* 6000:2::1/128 [115/50] via fe80::c2a:54ff:fe39:bff7, eth-rt21, 00:01:33 + I>* 6000:2::2/128 [115/0] via fe80::c2a:54ff:fe39:bff7, eth-rt21, 00:01:33 + I>* 6000:2::3/128 [115/1500] via fe80::c2a:54ff:fe39:bff7, eth-rt21, 00:01:33 + +Router RT12 +''''''''''' + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + ------------------------------------------------------------------------------------------ + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Off-Path - - + 1 L1 6000:1::2/128 (Native IPv6) 5000::11/128 0 Off-Path - - + 1 L1 6000:1::3/128 (Native IPv6) 5000::11/128 1500 Off-Path - - + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Off-Path - - + 1 L1 6000:2::2/128 (Native IPv6) 5000::14/128 0 Off-Path - - + 1 L1 6000:2::3/128 (Native IPv6) 5000::14/128 1500 Off-Path - - + + # show ipv6 route 6000::/16 longer-prefixes isis + +Router RT13 +''''''''''' + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + ------------------------------------------------------------------------------------------ + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Off-Path - - + 1 L1 6000:1::2/128 (Native IPv6) 5000::11/128 0 Off-Path - - + 1 L1 6000:1::3/128 (Native IPv6) 5000::11/128 1500 Off-Path - - + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Off-Path - - + 1 L1 6000:2::2/128 (Native IPv6) 5000::14/128 0 Off-Path - - + 1 L1 6000:2::3/128 (Native IPv6) 5000::14/128 1500 Off-Path - - + + # show ipv6 route 6000::/16 longer-prefixes isis + +Router RT14 +''''''''''' + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + -------------------------------------------------------------------------------------------- + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Head-End Up 00:45:45 + 1 L1 6000:1::2/128 (Native IPv6) 5000::11/128 0 Head-End Up 00:45:45 + 1 L1 6000:1::3/128 (Native IPv6) 5000::11/128 1500 Head-End Up 00:45:45 + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Tail-End - - + 1 L1 6000:2::2/128 (Native IPv6) 5000::14/128 0 Tail-End - - + 1 L1 6000:2::3/128 (Native IPv6) 5000::14/128 1500 Tail-End - - + + # show ipv6 route 6000::/16 longer-prefixes isis + Codes: K - kernel route, C - connected, S - static, R - RIPng, + O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, + v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR, + f - OpenFabric, + > - selected route, * - FIB route, q - queued route, r - rejected route + + I>* 6000:1::1/128 [115/50] via fe80::58ea:78ff:fe00:92c1, eth-rt23, 00:01:36 + I>* 6000:1::2/128 [115/0] via fe80::58ea:78ff:fe00:92c1, eth-rt23, 00:01:36 + I>* 6000:1::3/128 [115/1500] via fe80::58ea:78ff:fe00:92c1, eth-rt23, 00:01:36 + +Router RT21 +''''''''''' + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + --------------------------------------------------------------------------------------------- + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Mid-Point Up 00:45:46 + 1 L1 6000:1::2/128 (Native IPv6) 5000::11/128 0 Mid-Point Up 00:45:46 + 1 L1 6000:1::3/128 (Native IPv6) 5000::11/128 1500 Mid-Point Up 00:45:46 + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Mid-Point Up 00:45:46 + 1 L1 6000:2::2/128 (Native IPv6) 5000::14/128 0 Mid-Point Up 00:45:46 + 1 L1 6000:2::3/128 (Native IPv6) 5000::14/128 1500 Mid-Point Down - + + # show isis ppr id ipv6 6000:2::3/128 detail + Area 1: + PPR-ID: 6000:2::3/128 (Native IPv6) + PPR-Prefix: 5000::14/128 + PDEs: + 5000::11/128 (IPv6 Node Address) + 5000::21/128 (IPv6 Node Address) [LOCAL] + 5000::99/128 (IPv6 Node Address) [NEXT] + 5000::23/128 (IPv6 Node Address) + 5000::14/128 (IPv6 Node Address) + Attributes: + Metric: 1500 + Position: Mid-Point + Originator: 0000.0000.0011 + Level: L1 + Algorithm: 1 + MT-ID: ipv4-unicast + Status: Down: PDE is unreachable + Last change: 00:00:37 + + # show ipv6 route 6000::/16 longer-prefixes isis + Codes: K - kernel route, C - connected, S - static, R - RIPng, + O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, + v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR, + f - OpenFabric, + > - selected route, * - FIB route, q - queued route, r - rejected route + + I>* 6000:1::1/128 [115/50] via fe80::142e:79ff:feeb:cffc, eth-rt11, 00:01:38 + I>* 6000:1::2/128 [115/0] via fe80::142e:79ff:feeb:cffc, eth-rt11, 00:01:38 + I>* 6000:1::3/128 [115/1500] via fe80::142e:79ff:feeb:cffc, eth-rt11, 00:01:38 + I>* 6000:2::1/128 [115/50] via fe80::c88e:7fff:fe5f:a08d, eth-rt22, 00:01:38 + I>* 6000:2::2/128 [115/0] via fe80::8b2:9eff:fe98:f66a, eth-rt32, 00:01:38 + +Router RT22 +''''''''''' + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + --------------------------------------------------------------------------------------------- + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Mid-Point Up 00:45:47 + 1 L1 6000:1::2/128 (Native IPv6) 5000::11/128 0 Off-Path - - + 1 L1 6000:1::3/128 (Native IPv6) 5000::11/128 1500 Off-Path - - + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Mid-Point Up 00:45:47 + 1 L1 6000:2::2/128 (Native IPv6) 5000::14/128 0 Off-Path - - + 1 L1 6000:2::3/128 (Native IPv6) 5000::14/128 1500 Off-Path - - + + # show ipv6 route 6000::/16 longer-prefixes isis + Codes: K - kernel route, C - connected, S - static, R - RIPng, + O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, + v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR, + f - OpenFabric, + > - selected route, * - FIB route, q - queued route, r - rejected route + + I>* 6000:1::1/128 [115/50] via fe80::2cb5:edff:fe60:29b1, eth-rt21, 00:01:38 + I>* 6000:2::1/128 [115/50] via fe80::e8d9:63ff:fea3:177b, eth-rt23, 00:01:38 + +Router RT23 +''''''''''' + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + --------------------------------------------------------------------------------------------- + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Mid-Point Up 00:45:49 + 1 L1 6000:1::2/128 (Native IPv6) 5000::11/128 0 Mid-Point Up 00:45:49 + 1 L1 6000:1::3/128 (Native IPv6) 5000::11/128 1500 Mid-Point Down - + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Mid-Point Up 00:45:49 + 1 L1 6000:2::2/128 (Native IPv6) 5000::14/128 0 Mid-Point Up 00:45:49 + 1 L1 6000:2::3/128 (Native IPv6) 5000::14/128 1500 Mid-Point Up 00:45:49 + + # show isis ppr id ipv6 6000:1::3/128 detail + Area 1: + PPR-ID: 6000:1::3/128 (Native IPv6) + PPR-Prefix: 5000::11/128 + PDEs: + 5000::14/128 (IPv6 Node Address) + 5000::23/128 (IPv6 Node Address) [LOCAL] + 5000::99/128 (IPv6 Node Address) [NEXT] + 5000::21/128 (IPv6 Node Address) + 5000::11/128 (IPv6 Node Address) + Attributes: + Metric: 1500 + Position: Mid-Point + Originator: 0000.0000.0011 + Level: L1 + Algorithm: 1 + MT-ID: ipv4-unicast + Status: Down: PDE is unreachable + Last change: 00:02:50 + + # show ipv6 route 6000::/16 longer-prefixes isis + Codes: K - kernel route, C - connected, S - static, R - RIPng, + O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, + v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR, + f - OpenFabric, + > - selected route, * - FIB route, q - queued route, r - rejected route + + I>* 6000:1::1/128 [115/50] via fe80::d09f:1bff:fe31:e9c9, eth-rt22, 00:01:40 + I>* 6000:1::2/128 [115/0] via fe80::c0c3:b3ff:fe9f:b5d3, eth-rt33, 00:01:40 + I>* 6000:2::1/128 [115/50] via fe80::f40a:66ff:fefc:5c32, eth-rt14, 00:01:40 + I>* 6000:2::2/128 [115/0] via fe80::f40a:66ff:fefc:5c32, eth-rt14, 00:01:40 + I>* 6000:2::3/128 [115/1500] via fe80::f40a:66ff:fefc:5c32, eth-rt14, 00:01:40 + +Router RT31 +''''''''''' + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + ------------------------------------------------------------------------------------------ + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Off-Path - - + 1 L1 6000:1::2/128 (Native IPv6) 5000::11/128 0 Off-Path - - + 1 L1 6000:1::3/128 (Native IPv6) 5000::11/128 1500 Off-Path - - + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Off-Path - - + 1 L1 6000:2::2/128 (Native IPv6) 5000::14/128 0 Off-Path - - + 1 L1 6000:2::3/128 (Native IPv6) 5000::14/128 1500 Off-Path - - + + # show ipv6 route 6000::/16 longer-prefixes isis + +Router RT32 +''''''''''' + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + --------------------------------------------------------------------------------------------- + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Off-Path - - + 1 L1 6000:1::2/128 (Native IPv6) 5000::11/128 0 Mid-Point Up 00:45:51 + 1 L1 6000:1::3/128 (Native IPv6) 5000::11/128 1500 Off-Path - - + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Off-Path - - + 1 L1 6000:2::2/128 (Native IPv6) 5000::14/128 0 Mid-Point Up 00:45:51 + 1 L1 6000:2::3/128 (Native IPv6) 5000::14/128 1500 Off-Path - - + + # show ipv6 route 6000::/16 longer-prefixes isis + Codes: K - kernel route, C - connected, S - static, R - RIPng, + O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, + v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR, + f - OpenFabric, + > - selected route, * - FIB route, q - queued route, r - rejected route + + I>* 6000:1::2/128 [115/0] via 4000:113::21, eth-rt21, 00:01:42 + I>* 6000:2::2/128 [115/0] via 4000:121::41, eth-sw1, 00:01:42 + +Router RT33 +''''''''''' + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + --------------------------------------------------------------------------------------------- + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Off-Path - - + 1 L1 6000:1::2/128 (Native IPv6) 5000::11/128 0 Mid-Point Up 00:45:52 + 1 L1 6000:1::3/128 (Native IPv6) 5000::11/128 1500 Off-Path - - + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Off-Path - - + 1 L1 6000:2::2/128 (Native IPv6) 5000::14/128 0 Mid-Point Up 00:45:52 + 1 L1 6000:2::3/128 (Native IPv6) 5000::14/128 1500 Off-Path - - + + # show ipv6 route 6000::/16 longer-prefixes isis + Codes: K - kernel route, C - connected, S - static, R - RIPng, + O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, + v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR, + f - OpenFabric, + > - selected route, * - FIB route, q - queued route, r - rejected route + + I>* 6000:1::2/128 [115/0] via 4000:121::41, eth-sw1, 00:01:43 + I>* 6000:2::2/128 [115/0] via 4000:116::23, eth-rt23, 00:01:43 + +Router RT34 +''''''''''' + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + ------------------------------------------------------------------------------------------ + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Off-Path - - + 1 L1 6000:1::2/128 (Native IPv6) 5000::11/128 0 Off-Path - - + 1 L1 6000:1::3/128 (Native IPv6) 5000::11/128 1500 Off-Path - - + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Off-Path - - + 1 L1 6000:2::2/128 (Native IPv6) 5000::14/128 0 Off-Path - - + 1 L1 6000:2::3/128 (Native IPv6) 5000::14/128 1500 Off-Path - - + + # show ipv6 route 6000::/16 longer-prefixes isis + +Router RT41 +''''''''''' + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + --------------------------------------------------------------------------------------------- + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Off-Path - - + 1 L1 6000:1::2/128 (Native IPv6) 5000::11/128 0 Mid-Point Up 00:45:55 + 1 L1 6000:1::3/128 (Native IPv6) 5000::11/128 1500 Off-Path - - + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Off-Path - - + 1 L1 6000:2::2/128 (Native IPv6) 5000::14/128 0 Mid-Point Up 00:45:55 + 1 L1 6000:2::3/128 (Native IPv6) 5000::14/128 1500 Off-Path - - + + # show ipv6 route 6000::/16 longer-prefixes isis + Codes: K - kernel route, C - connected, S - static, R - RIPng, + O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, + v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR, + f - OpenFabric, + > - selected route, * - FIB route, q - queued route, r - rejected route + + I>* 6000:1::2/128 [115/0] via fe80::b4b9:60ff:feee:3c73, eth-sw1, 00:01:46 + I>* 6000:2::2/128 [115/0] via fe80::bc2a:d9ff:fe65:97f2, eth-sw1, 00:01:46 + +As it can be seen by the output of ``show isis ppr id ipv6 ... detail``, +routers R21 and R23 couldn’t install the third PPR path because of an +unreachable PDE (configuration error). + +Verification - Forwarding Plane +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +On Router R11, use the ``traceroute`` tool to ensure that the PPR paths +were installed correctly in the network: + +:: + + root@rt11:~# traceroute 6000:2::1 + traceroute to 6000:2::1 (6000:2::1), 30 hops max, 80 byte packets + 1 4000:104::21 (4000:104::21) 0.612 ms 0.221 ms 0.241 ms + 2 4000:110::22 (4000:110::22) 0.257 ms 0.113 ms 0.105 ms + 3 4000:111::23 (4000:111::23) 0.257 ms 0.151 ms 0.098 ms + 4 6000:2::1 (6000:2::1) 0.346 ms 0.139 ms 0.100 ms + root@rt11:~# + root@rt11:~# traceroute 6000:2::2 + traceroute to 6000:2::2 (6000:2::2), 30 hops max, 80 byte packets + 1 4000:104::21 (4000:104::21) 4.383 ms 4.148 ms 0.044 ms + 2 4000:113::32 (4000:113::32) 0.272 ms 0.065 ms 0.064 ms + 3 4000:121::41 (4000:121::41) 0.263 ms 0.101 ms 0.086 ms + 4 4000:115::33 (4000:115::33) 0.351 ms 4000:119::33 (4000:119::33) 0.249 ms 4000:115::33 (4000:115::33) 0.153 ms + 5 4000:111::23 (4000:111::23) 0.232 ms 0.293 ms 0.131 ms + 6 6000:2::2 (6000:2::2) 0.184 ms 0.212 ms 0.140 ms + root@rt11:~# + root@rt11:~# traceroute 6000:2::3 + traceroute to 6000:2::3 (6000:2::3), 30 hops max, 80 byte packets + 1 4000:104::21 (4000:104::21) 1.537 ms !N 1.347 ms !N 1.075 ms !N + +The failure on the third traceroute is expected since the 6000:2::3 +PPR-ID is misconfigured. + +Now ping Host 3 from Host 1 and use tcpdump or wireshark to verify that +the ICMP packets are being tunneled using GRE and following the {R11 - +R21 - R22 - R23 - R14} path. Here’s a wireshark capture between R11 and +R21: + +.. figure:: https://user-images.githubusercontent.com/931662/61582398-d4cc0180-ab00-11e9-83a8-d219f98010b9.png + :alt: s1 + + s1 + +Using ``traceroute`` it’s also possible to see that the ICMP packets are +being tunneled through the IS-IS network: + +:: + + root@host1:~# traceroute fd00:20:1::1 -s fd00:10:1::1 + traceroute to fd00:20:1::1 (fd00:20:1::1), 30 hops max, 80 byte packets + 1 fd00:10:1::100 (fd00:10:1::100) 0.354 ms 0.092 ms 0.031 ms + 2 fd00:10::11 (fd00:10::11) 0.125 ms 0.022 ms 0.026 ms + 3 * * * + 4 * * * + 5 fd00:20:1::1 (fd00:20:1::1) 0.235 ms 0.106 ms 0.091 ms diff --git a/doc/developer/northbound/ppr-mpls-basic-test-topology.rst b/doc/developer/northbound/ppr-mpls-basic-test-topology.rst new file mode 100644 index 000000000..cedb795da --- /dev/null +++ b/doc/developer/northbound/ppr-mpls-basic-test-topology.rst @@ -0,0 +1,1991 @@ +Table of Contents +~~~~~~~~~~~~~~~~~ + +- `Software <#software>`__ +- `Topology <#topology>`__ +- `Configuration <#configuration>`__ + + - `CLI <#configuration-cli>`__ + - `YANG <#configuration-yang>`__ + +- `Verification - Control Plane <#verification-cplane>`__ +- `Verification - Forwarding Plane <#verification-fplane>`__ + +Software +~~~~~~~~ + +The FRR PPR implementation for IS-IS is available here: +https://github.com/opensourcerouting/frr/tree/isisd-ppr-sr + +Topology +~~~~~~~~ + +In this topology we have an IS-IS network consisting of 12 routers. CE1 +and CE2 are the consumer edges, connected to R11 and R14, respectively. +Three hosts are connected to the CEs using only static routes. + +Router R11 advertises 6 PPR TLVs: \* **IPv6 prefixes 6000:1::1/128 and +6000:2::1/128:** {R11 - R21 - R22 - R23 - R14} (IPv6 Node Addresses). \* +**MPLS SR Prefix-SIDs 500 and 501:** {R11 - R21 - R22 - R23 - R14} (SR +Prefix-SIDs). \* **MPLS SR Prefix-SIDs 502 and 503:** {R11 - R21 - R31 - +R32 - R41 - R33 - R34 - R23 - R14} (SR Prefix-SIDs) + +PBR rules are configured on R11 and R14 to route the traffic between +Host 1 and Host 3 using the first PPR tunnel, whereas all other traffic +between CE1 and CE2 uses the second PPR tunnel. + +Additional information: \* Addresses in the 4000::/16 range refer to +interface addresses, where the last hextet corresponds to the node ID. +\* Addresses in the 5000::/16 range refer to loopback addresses, where +the last hextet corresponds to the node ID. \* Addresses in the +6000::/16 range refer to PPR-ID addresses. + +:: + + +-------+ +-------+ +-------+ + | | | | | | + | HOST1 | | HOST2 | | HOST3 | + | | | | | | + +---+---+ +---+---+ +---+---+ + | | | + |fd00:10:1::/64 | | + +-----+ +------+ fd00:20:1::/64| + | |fd00:10:2::/64 | + | | | + +-+--+--+ +---+---+ + | | | | + | CE1 | | CE2 | + | | | | + +---+---+ +---+---+ + | | + | | + |fd00:10:0::/64 fd00:20:0::/64| + | | + | | + +---+---+ +-------+ +-------+ +---+---+ + | |4000:101::/64| |4000:102::/64| |4000:103::/64| | + | R11 +-------------+ R12 +-------------+ R13 +-------------+ R14 | + | | | | | | | | + +---+---+ +--+-+--+ +--+-+--+ +---+---+ + | | | | | | + |4000:104::/64 | |4000:106::/64 | |4000:108::/64 | + +---------+ +--------+ +--------+ +--------+ +--------+ +---------+ + | |4000:105::/64 | |4000:107::/64 | |4000:109::/64 + | | | | | | + +--+-+--+ +--+-+--+ +--+-+--+ + | |4000:110::/64| |4000:111::/64| | + | R21 +-------------+ R22 +-------------+ R23 | + | | | | | | + +--+-+--+ +--+-+--+ +--+-+--+ + | | | | | | + | |4000:113::/64 | |4000:115::/64 | |4000:117::/64 + +---------+ +--------+ +--------+ +--------+ +--------+ +---------+ + |4000:112::/64 | |4000:114::/64 | |4000:116::/64 | + | | | | | | + +---+---+ +--+-+--+ +--+-+--+ +---+---+ + | |4000:118::/64| |4000:119::/64| |4000:120::/64| | + | R31 +-------------+ R32 +-------------+ R33 +-------------+ R34 | + | | | | | | | | + +-------+ +---+---+ +---+---+ +-------+ + | | + |4000:121::/64 | + +----------+----------+ + | + | + +---+---+ + | | + | R41 | + | | + +-------+ + +Configuration +~~~~~~~~~~~~~ + +PPR TLV processing needs to be enabled on all IS-IS routers using the +``ppr on`` command. The advertisements of all PPR TLVs is done by router +R11. + +CLI configuration +^^^^^^^^^^^^^^^^^ + +.. code:: yaml + + --- + + routers: + + host1: + links: + eth-ce1: + peer: [ce1, eth-host1] + frr: + zebra: + staticd: + config: | + interface eth-ce1 + ipv6 address fd00:10:1::1/64 + ! + ipv6 route ::/0 fd00:10:1::100 + + host2: + links: + eth-ce1: + peer: [ce1, eth-host2] + frr: + zebra: + staticd: + config: | + interface eth-ce1 + ipv6 address fd00:10:2::1/64 + ! + ipv6 route ::/0 fd00:10:2::100 + + host3: + links: + eth-ce2: + peer: [ce2, eth-host3] + frr: + zebra: + staticd: + config: | + interface eth-ce2 + ipv6 address fd00:20:1::1/64 + ! + ipv6 route ::/0 fd00:20:1::100 + + ce1: + links: + eth-host1: + peer: [host1, eth-ce1] + eth-host2: + peer: [host2, eth-ce1] + eth-rt11: + peer: [rt11, eth-ce1] + frr: + zebra: + staticd: + config: | + interface eth-host1 + ipv6 address fd00:10:1::100/64 + ! + interface eth-host2 + ipv6 address fd00:10:2::100/64 + ! + interface eth-rt11 + ipv6 address fd00:10:0::100/64 + ! + ipv6 route ::/0 fd00:10:0::11 label 16501 + + ce2: + links: + eth-host3: + peer: [host3, eth-ce2] + eth-rt14: + peer: [rt14, eth-ce2] + frr: + zebra: + staticd: + config: | + interface eth-host3 + ipv6 address fd00:20:1::100/64 + ! + interface eth-rt14 + ipv6 address fd00:20:0::100/64 + ! + ipv6 route ::/0 fd00:20:0::14 label 16500 + + rt11: + links: + lo: + mpls: yes + lo-ppr: + eth-ce1: + peer: [ce1, eth-rt11] + mpls: yes + eth-rt12: + peer: [rt12, eth-rt11] + mpls: yes + eth-rt21: + peer: [rt21, eth-rt11] + mpls: yes + shell: | + # GRE tunnel for preferred packets (PPR) + ip -6 tunnel add tun-ppr mode ip6gre remote 6000:2::1 local 6000:1::1 ttl 64 + ip link set dev tun-ppr up + # PBR rules + ip -6 rule add from fd00:10:1::/64 to fd00:20:1::/64 iif eth-ce1 lookup 10000 + ip -6 route add default dev tun-ppr table 10000 + frr: + zebra: + staticd: + isisd: + config: | + interface lo-ppr + ipv6 address 6000:1::1/128 + ! + interface lo + ip address 10.0.0.11/32 + ipv6 address 5000::11/128 + ipv6 router isis 1 + ! + interface eth-ce1 + ipv6 address fd00:10:0::11/64 + ! + interface eth-rt12 + ipv6 address 4000:101::11/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt21 + ipv6 address 4000:104::11/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + ipv6 route fd00:10::/32 fd00:10:0::100 + ! + ppr group PPR_IPV6 + ppr ipv6 6000:1::1/128 prefix 5000::11/128 metric 50 + pde ipv6-node 5000::14/128 + pde ipv6-node 5000::23/128 + pde ipv6-node 5000::22/128 + pde ipv6-node 5000::21/128 + pde ipv6-node 5000::11/128 + ! + ppr ipv6 6000:2::1/128 prefix 5000::14/128 metric 50 + pde ipv6-node 5000::11/128 + pde ipv6-node 5000::21/128 + pde ipv6-node 5000::22/128 + pde ipv6-node 5000::23/128 + pde ipv6-node 5000::14/128 + ! + ! + ppr group PPR_MPLS_1 + ppr mpls 500 prefix 5000::11/128 + pde prefix-sid 14 + pde prefix-sid 23 + pde prefix-sid 22 + pde prefix-sid 21 + pde prefix-sid 11 + ! + ppr mpls 501 prefix 5000::14/128 + pde prefix-sid 11 + pde prefix-sid 21 + pde prefix-sid 22 + pde prefix-sid 23 + pde prefix-sid 14 + ! + ! + ppr group PPR_MPLS_2 + ppr mpls 502 prefix 5000::11/128 + pde prefix-sid 14 + pde prefix-sid 23 + pde prefix-sid 34 + pde prefix-sid 33 + pde prefix-sid 41 + pde prefix-sid 32 + pde prefix-sid 31 + pde prefix-sid 21 + pde prefix-sid 11 + ! + ppr mpls 503 prefix 5000::14/128 + pde prefix-sid 11 + pde prefix-sid 21 + pde prefix-sid 31 + pde prefix-sid 32 + pde prefix-sid 41 + pde prefix-sid 33 + pde prefix-sid 34 + pde prefix-sid 23 + pde prefix-sid 14 + ! + ! + router isis 1 + net 49.0000.0000.0000.0011.00 + is-type level-1 + topology ipv6-unicast + segment-routing on + segment-routing prefix 5000::11/128 index 11 no-php-flag + ppr on + ppr advertise PPR_IPV6 + ppr advertise PPR_MPLS_1 + ppr advertise PPR_MPLS_2 + ! + + rt12: + links: + lo: + mpls: yes + eth-rt11: + peer: [rt11, eth-rt12] + mpls: yes + eth-rt13: + peer: [rt13, eth-rt12] + mpls: yes + eth-rt21: + peer: [rt21, eth-rt12] + mpls: yes + eth-rt22: + peer: [rt22, eth-rt12] + mpls: yes + frr: + zebra: + isisd: + config: | + interface lo + ip address 10.0.0.12/32 + ipv6 address 5000::12/128 + ipv6 router isis 1 + ! + interface eth-rt11 + ipv6 address 4000:101::12/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt13 + ipv6 address 4000:102::12/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt21 + ipv6 address 4000:105::12/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt22 + ipv6 address 4000:106::12/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0012.00 + is-type level-1 + topology ipv6-unicast + segment-routing on + segment-routing prefix 5000::12/128 index 12 no-php-flag + ppr on + ! + + rt13: + links: + lo: + mpls: yes + eth-rt12: + peer: [rt12, eth-rt13] + mpls: yes + eth-rt14: + peer: [rt14, eth-rt13] + mpls: yes + eth-rt22: + peer: [rt22, eth-rt13] + mpls: yes + eth-rt23: + peer: [rt23, eth-rt13] + mpls: yes + frr: + zebra: + isisd: + config: | + interface lo + ip address 10.0.0.13/32 + ipv6 address 5000::13/128 + ipv6 router isis 1 + ! + interface eth-rt12 + ipv6 address 4000:102::13/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt14 + ipv6 address 4000:103::13/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt22 + ipv6 address 4000:107::13/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt23 + ipv6 address 4000:108::13/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0013.00 + is-type level-1 + topology ipv6-unicast + segment-routing on + segment-routing prefix 5000::13/128 index 13 no-php-flag + ppr on + ! + + rt14: + links: + lo: + mpls: yes + lo-ppr: + eth-ce2: + peer: [ce2, eth-rt14] + mpls: yes + eth-rt13: + peer: [rt13, eth-rt14] + mpls: yes + eth-rt23: + peer: [rt23, eth-rt14] + mpls: yes + shell: | + # GRE tunnel for preferred packets (PPR) + ip -6 tunnel add tun-ppr mode ip6gre remote 6000:1::1 local 6000:2::1 ttl 64 + ip link set dev tun-ppr up + # PBR rules + ip -6 rule add from fd00:20:1::/64 to fd00:10:1::/64 iif eth-ce2 lookup 10000 + ip -6 route add default dev tun-ppr table 10000 + frr: + zebra: + staticd: + isisd: + config: | + interface lo-ppr + ipv6 address 6000:2::1/128 + ! + interface lo + ip address 10.0.0.14/32 + ipv6 address 5000::14/128 + ipv6 router isis 1 + ! + interface eth-ce2 + ipv6 address fd00:20:0::14/64 + ! + interface eth-rt13 + ipv6 address 4000:103::14/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt23 + ipv6 address 4000:109::14/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + ipv6 route fd00:20::/32 fd00:20:0::100 + ! + router isis 1 + net 49.0000.0000.0000.0014.00 + is-type level-1 + topology ipv6-unicast + segment-routing on + segment-routing prefix 5000::14/128 index 14 no-php-flag + ppr on + ! + + rt21: + links: + lo: + mpls: yes + eth-rt11: + peer: [rt11, eth-rt21] + mpls: yes + eth-rt12: + peer: [rt12, eth-rt21] + mpls: yes + eth-rt22: + peer: [rt22, eth-rt21] + mpls: yes + eth-rt31: + peer: [rt31, eth-rt21] + mpls: yes + eth-rt32: + peer: [rt32, eth-rt21] + mpls: yes + frr: + zebra: + isisd: + config: | + interface lo + ip address 10.0.0.21/32 + ipv6 address 5000::21/128 + ipv6 router isis 1 + ! + interface eth-rt11 + ipv6 address 4000:104::21/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt12 + ipv6 address 4000:105::21/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt22 + ipv6 address 4000:110::21/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt31 + ipv6 address 4000:112::21/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt32 + ipv6 address 4000:113::21/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0021.00 + is-type level-1 + topology ipv6-unicast + segment-routing on + segment-routing prefix 5000::21/128 index 21 no-php-flag + ppr on + ! + + rt22: + links: + lo: + mpls: yes + eth-rt12: + peer: [rt12, eth-rt22] + mpls: yes + eth-rt13: + peer: [rt13, eth-rt22] + mpls: yes + eth-rt21: + peer: [rt21, eth-rt22] + mpls: yes + eth-rt23: + peer: [rt23, eth-rt22] + mpls: yes + eth-rt32: + peer: [rt32, eth-rt22] + mpls: yes + eth-rt33: + mpls: yes + peer: [rt33, eth-rt22] + frr: + zebra: + isisd: + config: | + interface lo + ip address 10.0.0.22/32 + ipv6 address 5000::22/128 + ipv6 router isis 1 + ! + interface eth-rt12 + ipv6 address 4000:106::22/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt13 + ipv6 address 4000:107::22/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt21 + ipv6 address 4000:110::22/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt23 + ipv6 address 4000:111::22/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt32 + ipv6 address 4000:114::22/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt33 + ipv6 address 4000:115::22/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0022.00 + is-type level-1 + topology ipv6-unicast + segment-routing on + segment-routing prefix 5000::22/128 index 22 no-php-flag + ppr on + ! + + rt23: + links: + lo: + mpls: yes + eth-rt13: + peer: [rt13, eth-rt23] + mpls: yes + eth-rt14: + peer: [rt14, eth-rt23] + mpls: yes + eth-rt22: + peer: [rt22, eth-rt23] + mpls: yes + eth-rt33: + peer: [rt33, eth-rt23] + mpls: yes + eth-rt34: + peer: [rt34, eth-rt23] + mpls: yes + frr: + zebra: + isisd: + config: | + interface lo + ip address 10.0.0.23/32 + ipv6 address 5000::23/128 + ipv6 router isis 1 + ! + interface eth-rt13 + ipv6 address 4000:108::23/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt14 + ipv6 address 4000:109::23/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt22 + ipv6 address 4000:111::23/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt33 + ipv6 address 4000:116::23/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt34 + ipv6 address 4000:117::23/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0023.00 + is-type level-1 + topology ipv6-unicast + segment-routing on + segment-routing global-block 20000 27999 + segment-routing prefix 5000::23/128 index 23 no-php-flag + ppr on + ! + + rt31: + links: + lo: + mpls: yes + eth-rt21: + peer: [rt21, eth-rt31] + mpls: yes + eth-rt32: + peer: [rt32, eth-rt31] + mpls: yes + frr: + zebra: + isisd: + config: | + interface lo + ip address 10.0.0.31/32 + ipv6 address 5000::31/128 + ipv6 router isis 1 + ! + interface eth-rt21 + ipv6 address 4000:112::31/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt32 + ipv6 address 4000:118::31/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0031.00 + is-type level-1 + topology ipv6-unicast + segment-routing on + segment-routing prefix 5000::31/128 index 31 no-php-flag + ppr on + ! + + rt32: + links: + lo: + mpls: yes + eth-rt21: + peer: [rt21, eth-rt32] + mpls: yes + eth-rt22: + peer: [rt22, eth-rt32] + mpls: yes + eth-rt31: + peer: [rt31, eth-rt32] + mpls: yes + eth-rt33: + peer: [rt33, eth-rt32] + mpls: yes + eth-sw1: + peer: [sw1, eth-rt32] + mpls: yes + frr: + zebra: + isisd: + config: | + interface lo + ip address 10.0.0.32/32 + ipv6 address 5000::32/128 + ipv6 router isis 1 + ! + interface eth-rt21 + ipv6 address 4000:113::32/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt22 + ipv6 address 4000:114::32/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt31 + ipv6 address 4000:118::32/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt33 + ipv6 address 4000:119::32/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-sw1 + ipv6 address 4000:121::32/64 + ipv6 router isis 1 + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0032.00 + is-type level-1 + topology ipv6-unicast + segment-routing on + segment-routing prefix 5000::32/128 index 32 no-php-flag + ppr on + ! + + rt33: + links: + lo: + mpls: yes + eth-rt22: + peer: [rt22, eth-rt33] + mpls: yes + eth-rt23: + peer: [rt23, eth-rt33] + mpls: yes + eth-rt32: + peer: [rt32, eth-rt33] + mpls: yes + eth-rt34: + peer: [rt34, eth-rt33] + mpls: yes + eth-sw1: + peer: [sw1, eth-rt33] + mpls: yes + frr: + zebra: + isisd: + config: | + interface lo + ip address 10.0.0.33/32 + ipv6 address 5000::33/128 + ipv6 router isis 1 + ! + interface eth-rt22 + ipv6 address 4000:115::33/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt23 + ipv6 address 4000:116::33/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt32 + ipv6 address 4000:119::33/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt34 + ipv6 address 4000:120::33/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-sw1 + ipv6 address 4000:121::33/64 + ipv6 router isis 1 + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0033.00 + is-type level-1 + topology ipv6-unicast + segment-routing on + segment-routing prefix 5000::33/128 index 33 no-php-flag + ppr on + ! + + rt34: + links: + lo: + mpls: yes + eth-rt23: + peer: [rt23, eth-rt34] + mpls: yes + eth-rt33: + peer: [rt33, eth-rt34] + mpls: yes + frr: + zebra: + isisd: + config: | + interface lo + ip address 10.0.0.34/32 + ipv6 address 5000::34/128 + ipv6 router isis 1 + ! + interface eth-rt23 + ipv6 address 4000:117::34/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + interface eth-rt33 + ipv6 address 4000:120::34/64 + ipv6 router isis 1 + isis network point-to-point + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0034.00 + is-type level-1 + topology ipv6-unicast + segment-routing on + segment-routing prefix 5000::34/128 index 34 no-php-flag + ppr on + ! + + rt41: + links: + lo: + mpls: yes + eth-sw1: + peer: [sw1, eth-rt41] + mpls: yes + frr: + zebra: + isisd: + config: | + interface lo + ip address 10.0.0.41/32 + ipv6 address 5000::41/128 + ipv6 router isis 1 + ! + interface eth-sw1 + ipv6 address 4000:121::41/64 + ipv6 router isis 1 + isis hello-multiplier 3 + ! + router isis 1 + net 49.0000.0000.0000.0041.00 + is-type level-1 + topology ipv6-unicast + segment-routing on + segment-routing prefix 5000::41/128 index 41 no-php-flag + ppr on + ! + + switches: + sw1: + links: + eth-rt32: + peer: [rt32, eth-sw1] + eth-rt33: + peer: [rt33, eth-sw1] + eth-rt41: + peer: [rt41, eth-sw1] + + frr: + #valgrind: yes + base-config: | + hostname %(node) + password 1 + log file %(logdir)/%(node).log + log commands + ! + debug zebra rib + debug isis sr-events + debug isis ppr + debug isis events + debug isis route-events + debug isis spf-events + debug isis lsp-gen + ! + +.. + + NOTE: it’s of fundamental importance to enable MPLS processing on the + loopback interfaces, otherwise the tail-end routers of the PPR-MPLS + tunnels will drop the labeled packets they receive. + +YANG +^^^^ + +PPR can also be configured using NETCONF, RESTCONF and gRPC based on the +following YANG models: \* +`frr-ppr.yang <https://github.com/opensourcerouting/frr/blob/isisd-ppr/yang/frr-ppr.yang>`__ +\* +`frr-isisd.yang <https://github.com/opensourcerouting/frr/blob/isisd-ppr/yang/frr-isisd.yang>`__ + +As an example, here’s R11 configuration in the XML format: + +.. code:: xml + + <lib xmlns="http://frrouting.org/yang/interface"> + <interface> + <name>lo-ppr</name> + <vrf>default</vrf> + </interface> + <interface> + <name>lo</name> + <vrf>default</vrf> + <isis xmlns="http://frrouting.org/yang/isisd"> + <area-tag>1</area-tag> + <ipv6-routing>true</ipv6-routing> + </isis> + </interface> + <interface> + <name>eth-ce1</name> + <vrf>default</vrf> + </interface> + <interface> + <name>eth-rt12</name> + <vrf>default</vrf> + <isis xmlns="http://frrouting.org/yang/isisd"> + <area-tag>1</area-tag> + <ipv6-routing>true</ipv6-routing> + <hello> + <multiplier> + <level-1>3</level-1> + <level-2>3</level-2> + </multiplier> + </hello> + <network-type>point-to-point</network-type> + </isis> + </interface> + <interface> + <name>eth-rt21</name> + <vrf>default</vrf> + <isis xmlns="http://frrouting.org/yang/isisd"> + <area-tag>1</area-tag> + <ipv6-routing>true</ipv6-routing> + <hello> + <multiplier> + <level-1>3</level-1> + <level-2>3</level-2> + </multiplier> + </hello> + <network-type>point-to-point</network-type> + </isis> + </interface> + </lib> + <ppr xmlns="http://frrouting.org/yang/ppr"> + <group> + <name>PPR_IPV6</name> + <ipv6> + <ppr-id>6000:1::1/128</ppr-id> + <ppr-prefix>5000::11/128</ppr-prefix> + <ppr-pde> + <pde-id>5000::14/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::23/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::22/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::21/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::11/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <attributes> + <ppr-metric>50</ppr-metric> + </attributes> + </ipv6> + <ipv6> + <ppr-id>6000:2::1/128</ppr-id> + <ppr-prefix>5000::14/128</ppr-prefix> + <ppr-pde> + <pde-id>5000::11/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::21/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::22/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::23/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>5000::14/128</pde-id> + <pde-id-type>ipv6-node</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <attributes> + <ppr-metric>50</ppr-metric> + </attributes> + </ipv6> + </group> + <group> + <name>PPR_MPLS_1</name> + <mpls> + <ppr-id>500</ppr-id> + <ppr-prefix>5000::11/128</ppr-prefix> + <ppr-pde> + <pde-id>14</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>23</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>22</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>21</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>11</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + </mpls> + <mpls> + <ppr-id>501</ppr-id> + <ppr-prefix>5000::14/128</ppr-prefix> + <ppr-pde> + <pde-id>11</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>21</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>22</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>23</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>14</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + </mpls> + </group> + <group> + <name>PPR_MPLS_2</name> + <mpls> + <ppr-id>502</ppr-id> + <ppr-prefix>5000::11/128</ppr-prefix> + <ppr-pde> + <pde-id>14</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>23</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>34</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>33</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>41</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>32</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>31</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>21</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>11</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + </mpls> + <mpls> + <ppr-id>503</ppr-id> + <ppr-prefix>5000::14/128</ppr-prefix> + <ppr-pde> + <pde-id>11</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>21</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>31</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>32</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>41</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>33</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>34</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>23</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + <ppr-pde> + <pde-id>14</pde-id> + <pde-id-type>prefix-sid</pde-id-type> + <pde-type>topological</pde-type> + </ppr-pde> + </mpls> + </group> + </ppr> + <isis xmlns="http://frrouting.org/yang/isisd"> + <instance> + <area-tag>1</area-tag> + <area-address>49.0000.0000.0000.0011.00</area-address> + <multi-topology> + <ipv6-unicast> + </ipv6-unicast> + </multi-topology> + <segment-routing> + <enabled>true</enabled> + <prefix-sid-map> + <prefix-sid> + <prefix>5000::11/128</prefix> + <sid-value>11</sid-value> + <last-hop-behavior>no-php</last-hop-behavior> + </prefix-sid> + </prefix-sid-map> + </segment-routing> + <ppr> + <enable>true</enable> + <ppr-advertise> + <name>PPR_IPV6</name> + </ppr-advertise> + <ppr-advertise> + <name>PPR_MPLS_1</name> + </ppr-advertise> + <ppr-advertise> + <name>PPR_MPLS_2</name> + </ppr-advertise> + </ppr> + </instance> + </isis> + +Verification - Control Plane +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Verify that R11 has flooded the PPR TLVs correctly to all IS-IS routers: + +:: + + # show isis database detail 0000.0000.0011 + Area 1: + IS-IS Level-1 link-state database: + LSP ID PduLen SeqNumber Chksum Holdtime ATT/P/OL + debian.00-00 * 980 0x00000003 0x3b69 894 0/0/0 + Protocols Supported: IPv4, IPv6 + Area Address: 49.0000 + MT Router Info: ipv4-unicast + MT Router Info: ipv6-unicast + Hostname: debian + TE Router ID: 10.0.0.11 + Router Capability: 10.0.0.11 , D:0, S:0 + Segment Routing: I:1 V:1, SRGB Base: 16000 Range: 8000 + Algorithm: 0: SPF 0: Strict SPF + MT Reachability: 0000.0000.0012.00 (Metric: 10) ipv6-unicast + Adjacency-SID: 16, Weight: 0, Flags: F:1 B:0, V:1, L:1, S:0, P:0 + MT Reachability: 0000.0000.0021.00 (Metric: 10) ipv6-unicast + Adjacency-SID: 17, Weight: 0, Flags: F:1 B:0, V:1, L:1, S:0, P:0 + IPv4 Interface Address: 10.0.0.11 + Extended IP Reachability: 10.0.0.11/32 (Metric: 10) + MT IPv6 Reachability: 5000::11/128 (Metric: 10) ipv6-unicast + Subtlvs: + SR Prefix-SID Index: 11, Algorithm: 0, Flags: NO-PHP + MT IPv6 Reachability: 4000:101::/64 (Metric: 10) ipv6-unicast + MT IPv6 Reachability: 4000:104::/64 (Metric: 10) ipv6-unicast + PPR: Fragment ID: 0, MT-ID: ipv4-unicast, Algorithm: SPF, F:0 D:0 A:0 U:1 + PPR Prefix: 5000::11/128 + ID: 6000:1::1/128 (Native IPv6) + PDE: 5000::14/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::23/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::22/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::21/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::11/128 (IPv6 Node Address), L:0 N:1 E:0 + Metric: 50 + PPR: Fragment ID: 0, MT-ID: ipv4-unicast, Algorithm: SPF, F:0 D:0 A:0 U:1 + PPR Prefix: 5000::14/128 + ID: 6000:2::1/128 (Native IPv6) + PDE: 5000::11/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::21/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::22/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::23/128 (IPv6 Node Address), L:0 N:0 E:0 + PDE: 5000::14/128 (IPv6 Node Address), L:0 N:1 E:0 + Metric: 50 + PPR: Fragment ID: 0, MT-ID: ipv4-unicast, Algorithm: SPF, F:0 D:0 A:0 U:1 + PPR Prefix: 5000::11/128 + ID: 500 (MPLS) + PDE: 14 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 23 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 22 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 21 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 11 (SR-MPLS Prefix SID), L:0 N:1 E:0 + PPR: Fragment ID: 0, MT-ID: ipv4-unicast, Algorithm: SPF, F:0 D:0 A:0 U:1 + PPR Prefix: 5000::14/128 + ID: 501 (MPLS) + PDE: 11 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 21 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 22 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 23 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 14 (SR-MPLS Prefix SID), L:0 N:1 E:0 + PPR: Fragment ID: 0, MT-ID: ipv4-unicast, Algorithm: SPF, F:0 D:0 A:0 U:1 + PPR Prefix: 5000::11/128 + ID: 502 (MPLS) + PDE: 14 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 23 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 34 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 33 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 41 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 32 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 31 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 21 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 11 (SR-MPLS Prefix SID), L:0 N:1 E:0 + PPR: Fragment ID: 0, MT-ID: ipv4-unicast, Algorithm: SPF, F:0 D:0 A:0 U:1 + PPR Prefix: 5000::14/128 + ID: 503 (MPLS) + PDE: 11 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 21 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 31 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 32 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 41 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 33 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 34 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 23 (SR-MPLS Prefix SID), L:0 N:0 E:0 + PDE: 14 (SR-MPLS Prefix SID), L:0 N:1 E:0 + +Using the ``show isis ppr`` command, verify that all routers installed +the PPR-IDs for the paths they are part of. Example: + +Router RT11 +^^^^^^^^^^^ + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + -------------------------------------------------------------------------------------------- + 1 L1 500 (MPLS) 5000::11/128 0 Tail-End Up 00:00:42 + 1 L1 501 (MPLS) 5000::14/128 0 Head-End Up 00:00:41 + 1 L1 502 (MPLS) 5000::11/128 0 Tail-End Up 00:00:42 + 1 L1 503 (MPLS) 5000::14/128 0 Head-End Up 00:00:41 + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Tail-End - - + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Head-End Up 00:00:41 + + # show mpls table + Inbound Label Type Nexthop Outbound Label + ----------------------------------------------------------------------- + 16 SR (IS-IS) fe80::2065:5ff:fe72:d6c5 implicit-null + 17 SR (IS-IS) fe80::345f:dfff:fea4:913d implicit-null + 16011 SR (IS-IS) lo - + 16012 SR (IS-IS) fe80::2065:5ff:fe72:d6c5 16012 + 16013 SR (IS-IS) fe80::2065:5ff:fe72:d6c5 16013 + 16014 SR (IS-IS) fe80::2065:5ff:fe72:d6c5 16014 + 16021 SR (IS-IS) fe80::345f:dfff:fea4:913d 16021 + 16022 SR (IS-IS) fe80::345f:dfff:fea4:913d 16022 + 16022 SR (IS-IS) fe80::2065:5ff:fe72:d6c5 16022 + 16023 SR (IS-IS) fe80::345f:dfff:fea4:913d 16023 + 16023 SR (IS-IS) fe80::2065:5ff:fe72:d6c5 16023 + 16031 SR (IS-IS) fe80::345f:dfff:fea4:913d 16031 + 16032 SR (IS-IS) fe80::345f:dfff:fea4:913d 16032 + 16033 SR (IS-IS) fe80::345f:dfff:fea4:913d 16033 + 16033 SR (IS-IS) fe80::2065:5ff:fe72:d6c5 16033 + 16034 SR (IS-IS) fe80::345f:dfff:fea4:913d 16034 + 16034 SR (IS-IS) fe80::2065:5ff:fe72:d6c5 16034 + 16041 SR (IS-IS) fe80::345f:dfff:fea4:913d 16041 + 16500 PPR (IS-IS) lo - + 16501 PPR (IS-IS) fe80::345f:dfff:fea4:913d 16501 + 16502 PPR (IS-IS) lo - + 16503 PPR (IS-IS) fe80::345f:dfff:fea4:913d 16503 + + # show ipv6 route 6000::/16 longer-prefixes isis + Codes: K - kernel route, C - connected, S - static, R - RIPng, + O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, + v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR, + f - OpenFabric, + > - selected route, * - FIB route, q - queued route, r - rejected route + + I>* 6000:2::1/128 [115/50] via fe80::345f:dfff:fea4:913d, eth-rt21, 00:00:41 + +Router RT12 +^^^^^^^^^^^ + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + ------------------------------------------------------------------------------------------ + 1 L1 500 (MPLS) 5000::11/128 0 Off-Path - - + 1 L1 501 (MPLS) 5000::14/128 0 Off-Path - - + 1 L1 502 (MPLS) 5000::11/128 0 Off-Path - - + 1 L1 503 (MPLS) 5000::14/128 0 Off-Path - - + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Off-Path - - + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Off-Path - - + + # show mpls table + Inbound Label Type Nexthop Outbound Label + ---------------------------------------------------------------------- + 16 SR (IS-IS) fe80::60ad:96ff:fe3f:9989 implicit-null + 17 SR (IS-IS) fe80::9cd2:25ff:febc:84c4 implicit-null + 18 SR (IS-IS) fe80::941c:12ff:fe55:8a12 implicit-null + 19 SR (IS-IS) fe80::78a7:59ff:fedc:48b8 implicit-null + 16011 SR (IS-IS) fe80::60ad:96ff:fe3f:9989 16011 + 16012 SR (IS-IS) lo - + 16013 SR (IS-IS) fe80::9cd2:25ff:febc:84c4 16013 + 16014 SR (IS-IS) fe80::9cd2:25ff:febc:84c4 16014 + 16021 SR (IS-IS) fe80::941c:12ff:fe55:8a12 16021 + 16022 SR (IS-IS) fe80::78a7:59ff:fedc:48b8 16022 + 16023 SR (IS-IS) fe80::78a7:59ff:fedc:48b8 16023 + 16023 SR (IS-IS) fe80::9cd2:25ff:febc:84c4 16023 + 16031 SR (IS-IS) fe80::941c:12ff:fe55:8a12 16031 + 16032 SR (IS-IS) fe80::78a7:59ff:fedc:48b8 16032 + 16032 SR (IS-IS) fe80::941c:12ff:fe55:8a12 16032 + 16033 SR (IS-IS) fe80::78a7:59ff:fedc:48b8 16033 + 16034 SR (IS-IS) fe80::78a7:59ff:fedc:48b8 16034 + 16034 SR (IS-IS) fe80::9cd2:25ff:febc:84c4 16034 + 16041 SR (IS-IS) fe80::78a7:59ff:fedc:48b8 16041 + 16041 SR (IS-IS) fe80::941c:12ff:fe55:8a12 16041 + + # show ipv6 route 6000::/16 longer-prefixes isis + +Router RT13 +^^^^^^^^^^^ + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + ------------------------------------------------------------------------------------------ + 1 L1 500 (MPLS) 5000::11/128 0 Off-Path - - + 1 L1 501 (MPLS) 5000::14/128 0 Off-Path - - + 1 L1 502 (MPLS) 5000::11/128 0 Off-Path - - + 1 L1 503 (MPLS) 5000::14/128 0 Off-Path - - + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Off-Path - - + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Off-Path - - + + # show mpls table + Inbound Label Type Nexthop Outbound Label + ---------------------------------------------------------------------- + 16 SR (IS-IS) fe80::1c70:63ff:fe40:3a35 implicit-null + 17 SR (IS-IS) fe80::20:56ff:feff:b218 implicit-null + 18 SR (IS-IS) fe80::44c5:3fff:fe1e:f34a implicit-null + 19 SR (IS-IS) fe80::387d:34ff:fe02:87c3 implicit-null + 16011 SR (IS-IS) fe80::20:56ff:feff:b218 16011 + 16012 SR (IS-IS) fe80::20:56ff:feff:b218 16012 + 16013 SR (IS-IS) lo - + 16014 SR (IS-IS) fe80::1c70:63ff:fe40:3a35 16014 + 16021 SR (IS-IS) fe80::387d:34ff:fe02:87c3 16021 + 16021 SR (IS-IS) fe80::20:56ff:feff:b218 16021 + 16022 SR (IS-IS) fe80::387d:34ff:fe02:87c3 16022 + 16023 SR (IS-IS) fe80::44c5:3fff:fe1e:f34a 20023 + 16031 SR (IS-IS) fe80::387d:34ff:fe02:87c3 16031 + 16031 SR (IS-IS) fe80::20:56ff:feff:b218 16031 + 16032 SR (IS-IS) fe80::387d:34ff:fe02:87c3 16032 + 16033 SR (IS-IS) fe80::44c5:3fff:fe1e:f34a 20033 + 16033 SR (IS-IS) fe80::387d:34ff:fe02:87c3 16033 + 16034 SR (IS-IS) fe80::44c5:3fff:fe1e:f34a 20034 + 16041 SR (IS-IS) fe80::44c5:3fff:fe1e:f34a 20041 + 16041 SR (IS-IS) fe80::387d:34ff:fe02:87c3 16041 + + # show ipv6 route 6000::/16 longer-prefixes isis + +Router RT14 +^^^^^^^^^^^ + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + -------------------------------------------------------------------------------------------- + 1 L1 500 (MPLS) 5000::11/128 0 Head-End Up 00:00:46 + 1 L1 501 (MPLS) 5000::14/128 0 Tail-End Up 00:00:47 + 1 L1 502 (MPLS) 5000::11/128 0 Head-End Up 00:00:46 + 1 L1 503 (MPLS) 5000::14/128 0 Tail-End Up 00:00:47 + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Head-End Up 00:00:46 + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Tail-End - - + + # show mpls table + Inbound Label Type Nexthop Outbound Label + ----------------------------------------------------------------------- + 16 SR (IS-IS) fe80::bcb5:99ff:fed7:22ad implicit-null + 17 SR (IS-IS) fe80::4c7b:a1ff:fe66:6ca7 implicit-null + 16011 SR (IS-IS) fe80::bcb5:99ff:fed7:22ad 16011 + 16012 SR (IS-IS) fe80::bcb5:99ff:fed7:22ad 16012 + 16013 SR (IS-IS) fe80::bcb5:99ff:fed7:22ad 16013 + 16014 SR (IS-IS) lo - + 16021 SR (IS-IS) fe80::4c7b:a1ff:fe66:6ca7 20021 + 16021 SR (IS-IS) fe80::bcb5:99ff:fed7:22ad 16021 + 16022 SR (IS-IS) fe80::4c7b:a1ff:fe66:6ca7 20022 + 16022 SR (IS-IS) fe80::bcb5:99ff:fed7:22ad 16022 + 16023 SR (IS-IS) fe80::4c7b:a1ff:fe66:6ca7 20023 + 16031 SR (IS-IS) fe80::4c7b:a1ff:fe66:6ca7 20031 + 16031 SR (IS-IS) fe80::bcb5:99ff:fed7:22ad 16031 + 16032 SR (IS-IS) fe80::4c7b:a1ff:fe66:6ca7 20032 + 16032 SR (IS-IS) fe80::bcb5:99ff:fed7:22ad 16032 + 16033 SR (IS-IS) fe80::4c7b:a1ff:fe66:6ca7 20033 + 16034 SR (IS-IS) fe80::4c7b:a1ff:fe66:6ca7 20034 + 16041 SR (IS-IS) fe80::4c7b:a1ff:fe66:6ca7 20041 + 16500 PPR (IS-IS) fe80::4c7b:a1ff:fe66:6ca7 20500 + 16501 PPR (IS-IS) lo - + 16502 PPR (IS-IS) fe80::4c7b:a1ff:fe66:6ca7 20502 + 16503 PPR (IS-IS) lo - + + # show ipv6 route 6000::/16 longer-prefixes isis + Codes: K - kernel route, C - connected, S - static, R - RIPng, + O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, + v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR, + f - OpenFabric, + > - selected route, * - FIB route, q - queued route, r - rejected route + + I>* 6000:1::1/128 [115/50] via fe80::4c7b:a1ff:fe66:6ca7, eth-rt23, 00:00:02 + +Router RT21 +^^^^^^^^^^^ + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + --------------------------------------------------------------------------------------------- + 1 L1 500 (MPLS) 5000::11/128 0 Mid-Point Up 00:00:49 + 1 L1 501 (MPLS) 5000::14/128 0 Mid-Point Up 00:00:48 + 1 L1 502 (MPLS) 5000::11/128 0 Mid-Point Up 00:00:49 + 1 L1 503 (MPLS) 5000::14/128 0 Mid-Point Up 00:00:48 + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Mid-Point Up 00:00:49 + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Mid-Point Up 00:00:48 + + # show mpls table + Inbound Label Type Nexthop Outbound Label + ----------------------------------------------------------------------- + 16 SR (IS-IS) fe80::b886:2cff:fe84:a76f implicit-null + 17 SR (IS-IS) fe80::bc7e:bbff:fe7f:ecb0 implicit-null + 18 SR (IS-IS) fe80::e877:a2ff:feb7:4438 implicit-null + 19 SR (IS-IS) fe80::a0c2:82ff:fe39:204c implicit-null + 20 SR (IS-IS) fe80::ac6a:8aff:fe14:4f36 implicit-null + 16011 SR (IS-IS) fe80::e877:a2ff:feb7:4438 16011 + 16012 SR (IS-IS) fe80::a0c2:82ff:fe39:204c 16012 + 16013 SR (IS-IS) fe80::ac6a:8aff:fe14:4f36 16013 + 16013 SR (IS-IS) fe80::a0c2:82ff:fe39:204c 16013 + 16014 SR (IS-IS) fe80::ac6a:8aff:fe14:4f36 16014 + 16014 SR (IS-IS) fe80::a0c2:82ff:fe39:204c 16014 + 16021 SR (IS-IS) lo - + 16022 SR (IS-IS) fe80::ac6a:8aff:fe14:4f36 16022 + 16023 SR (IS-IS) fe80::ac6a:8aff:fe14:4f36 16023 + 16031 SR (IS-IS) fe80::bc7e:bbff:fe7f:ecb0 16031 + 16032 SR (IS-IS) fe80::b886:2cff:fe84:a76f 16032 + 16033 SR (IS-IS) fe80::b886:2cff:fe84:a76f 16033 + 16033 SR (IS-IS) fe80::ac6a:8aff:fe14:4f36 16033 + 16034 SR (IS-IS) fe80::b886:2cff:fe84:a76f 16034 + 16034 SR (IS-IS) fe80::ac6a:8aff:fe14:4f36 16034 + 16041 SR (IS-IS) fe80::b886:2cff:fe84:a76f 16041 + 16500 PPR (IS-IS) fe80::e877:a2ff:feb7:4438 16500 + 16501 PPR (IS-IS) fe80::ac6a:8aff:fe14:4f36 16501 + 16502 PPR (IS-IS) fe80::e877:a2ff:feb7:4438 16502 + 16503 PPR (IS-IS) fe80::bc7e:bbff:fe7f:ecb0 16503 + + # show ipv6 route 6000::/16 longer-prefixes isis + Codes: K - kernel route, C - connected, S - static, R - RIPng, + O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, + v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR, + f - OpenFabric, + > - selected route, * - FIB route, q - queued route, r - rejected route + + I>* 6000:1::1/128 [115/50] via fe80::e877:a2ff:feb7:4438, eth-rt11, 00:00:04 + I>* 6000:2::1/128 [115/50] via fe80::ac6a:8aff:fe14:4f36, eth-rt22, 00:00:04 + +Router RT22 +^^^^^^^^^^^ + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + --------------------------------------------------------------------------------------------- + 1 L1 500 (MPLS) 5000::11/128 0 Mid-Point Up 00:00:50 + 1 L1 501 (MPLS) 5000::14/128 0 Mid-Point Up 00:00:50 + 1 L1 502 (MPLS) 5000::11/128 0 Off-Path - - + 1 L1 503 (MPLS) 5000::14/128 0 Off-Path - - + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Mid-Point Up 00:00:50 + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Mid-Point Up 00:00:50 + + # show mpls table + Inbound Label Type Nexthop Outbound Label + ----------------------------------------------------------------------- + 16 SR (IS-IS) fe80::3432:84ff:fe9d:2e41 implicit-null + 17 SR (IS-IS) fe80::c436:63ff:feb3:4f5d implicit-null + 18 SR (IS-IS) fe80::56:41ff:fe53:a6b2 implicit-null + 19 SR (IS-IS) fe80::b423:eaff:fea1:8247 implicit-null + 20 SR (IS-IS) fe80::9c2f:11ff:fe0a:ab34 implicit-null + 21 SR (IS-IS) fe80::7402:b8ff:fee9:682e implicit-null + 16011 SR (IS-IS) fe80::b423:eaff:fea1:8247 16011 + 16011 SR (IS-IS) fe80::3432:84ff:fe9d:2e41 16011 + 16012 SR (IS-IS) fe80::3432:84ff:fe9d:2e41 16012 + 16013 SR (IS-IS) fe80::c436:63ff:feb3:4f5d 16013 + 16014 SR (IS-IS) fe80::56:41ff:fe53:a6b2 20014 + 16014 SR (IS-IS) fe80::c436:63ff:feb3:4f5d 16014 + 16021 SR (IS-IS) fe80::b423:eaff:fea1:8247 16021 + 16022 SR (IS-IS) lo - + 16023 SR (IS-IS) fe80::56:41ff:fe53:a6b2 20023 + 16031 SR (IS-IS) fe80::9c2f:11ff:fe0a:ab34 16031 + 16031 SR (IS-IS) fe80::b423:eaff:fea1:8247 16031 + 16032 SR (IS-IS) fe80::9c2f:11ff:fe0a:ab34 16032 + 16033 SR (IS-IS) fe80::7402:b8ff:fee9:682e 16033 + 16034 SR (IS-IS) fe80::7402:b8ff:fee9:682e 16034 + 16034 SR (IS-IS) fe80::56:41ff:fe53:a6b2 20034 + 16041 SR (IS-IS) fe80::7402:b8ff:fee9:682e 16041 + 16041 SR (IS-IS) fe80::9c2f:11ff:fe0a:ab34 16041 + 16500 PPR (IS-IS) fe80::b423:eaff:fea1:8247 16500 + 16501 PPR (IS-IS) fe80::56:41ff:fe53:a6b2 20501 + + # show ipv6 route 6000::/16 longer-prefixes isis + Codes: K - kernel route, C - connected, S - static, R - RIPng, + O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, + v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR, + f - OpenFabric, + > - selected route, * - FIB route, q - queued route, r - rejected route + + I>* 6000:1::1/128 [115/50] via fe80::b423:eaff:fea1:8247, eth-rt21, 00:00:06 + I>* 6000:2::1/128 [115/50] via fe80::56:41ff:fe53:a6b2, eth-rt23, 00:00:06 + +Router RT23 +^^^^^^^^^^^ + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + --------------------------------------------------------------------------------------------- + 1 L1 500 (MPLS) 5000::11/128 0 Mid-Point Up 00:00:52 + 1 L1 501 (MPLS) 5000::14/128 0 Mid-Point Up 00:00:52 + 1 L1 502 (MPLS) 5000::11/128 0 Mid-Point Up 00:00:52 + 1 L1 503 (MPLS) 5000::14/128 0 Mid-Point Up 00:00:52 + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Mid-Point Up 00:00:52 + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Mid-Point Up 00:00:52 + + # show mpls table + Inbound Label Type Nexthop Outbound Label + ----------------------------------------------------------------------- + 16 SR (IS-IS) fe80::c4ca:41ff:fe2d:de8c implicit-null + 17 SR (IS-IS) fe80::a02b:1eff:fed6:97e4 implicit-null + 18 SR (IS-IS) fe80::5c15:8aff:feea:1d07 implicit-null + 19 SR (IS-IS) fe80::a42f:50ff:fe9c:af9f implicit-null + 20 SR (IS-IS) fe80::d0dc:6eff:fe71:9f19 implicit-null + 20011 SR (IS-IS) fe80::5c15:8aff:feea:1d07 16011 + 20011 SR (IS-IS) fe80::a02b:1eff:fed6:97e4 16011 + 20012 SR (IS-IS) fe80::5c15:8aff:feea:1d07 16012 + 20012 SR (IS-IS) fe80::a02b:1eff:fed6:97e4 16012 + 20013 SR (IS-IS) fe80::a02b:1eff:fed6:97e4 16013 + 20014 SR (IS-IS) fe80::c4ca:41ff:fe2d:de8c 16014 + 20021 SR (IS-IS) fe80::5c15:8aff:feea:1d07 16021 + 20022 SR (IS-IS) fe80::5c15:8aff:feea:1d07 16022 + 20023 SR (IS-IS) lo - + 20031 SR (IS-IS) fe80::a42f:50ff:fe9c:af9f 16031 + 20031 SR (IS-IS) fe80::5c15:8aff:feea:1d07 16031 + 20032 SR (IS-IS) fe80::a42f:50ff:fe9c:af9f 16032 + 20032 SR (IS-IS) fe80::5c15:8aff:feea:1d07 16032 + 20033 SR (IS-IS) fe80::a42f:50ff:fe9c:af9f 16033 + 20034 SR (IS-IS) fe80::d0dc:6eff:fe71:9f19 16034 + 20041 SR (IS-IS) fe80::a42f:50ff:fe9c:af9f 16041 + 20500 PPR (IS-IS) fe80::5c15:8aff:feea:1d07 16500 + 20501 PPR (IS-IS) fe80::c4ca:41ff:fe2d:de8c 16501 + 20502 PPR (IS-IS) fe80::d0dc:6eff:fe71:9f19 16502 + 20503 PPR (IS-IS) fe80::c4ca:41ff:fe2d:de8c 16503 + + # show ipv6 route 6000::/16 longer-prefixes isis + Codes: K - kernel route, C - connected, S - static, R - RIPng, + O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, + v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR, + f - OpenFabric, + > - selected route, * - FIB route, q - queued route, r - rejected route + + I>* 6000:1::1/128 [115/50] via fe80::5c15:8aff:feea:1d07, eth-rt22, 00:00:07 + I>* 6000:2::1/128 [115/50] via fe80::c4ca:41ff:fe2d:de8c, eth-rt14, 00:00:07 + +Router RT31 +^^^^^^^^^^^ + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + --------------------------------------------------------------------------------------------- + 1 L1 500 (MPLS) 5000::11/128 0 Off-Path - - + 1 L1 501 (MPLS) 5000::14/128 0 Off-Path - - + 1 L1 502 (MPLS) 5000::11/128 0 Mid-Point Up 00:00:54 + 1 L1 503 (MPLS) 5000::14/128 0 Mid-Point Up 00:00:54 + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Off-Path - - + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Off-Path - - + + # show mpls table + Inbound Label Type Nexthop Outbound Label + ----------------------------------------------------------------------- + 16 SR (IS-IS) fe80::a067:c6ff:fe2c:3385 implicit-null + 17 SR (IS-IS) fe80::f46d:c8ff:fe8a:a341 implicit-null + 16011 SR (IS-IS) fe80::a067:c6ff:fe2c:3385 16011 + 16012 SR (IS-IS) fe80::a067:c6ff:fe2c:3385 16012 + 16013 SR (IS-IS) fe80::f46d:c8ff:fe8a:a341 16013 + 16013 SR (IS-IS) fe80::a067:c6ff:fe2c:3385 16013 + 16014 SR (IS-IS) fe80::f46d:c8ff:fe8a:a341 16014 + 16014 SR (IS-IS) fe80::a067:c6ff:fe2c:3385 16014 + 16021 SR (IS-IS) fe80::a067:c6ff:fe2c:3385 16021 + 16022 SR (IS-IS) fe80::f46d:c8ff:fe8a:a341 16022 + 16022 SR (IS-IS) fe80::a067:c6ff:fe2c:3385 16022 + 16023 SR (IS-IS) fe80::f46d:c8ff:fe8a:a341 16023 + 16023 SR (IS-IS) fe80::a067:c6ff:fe2c:3385 16023 + 16031 SR (IS-IS) lo - + 16032 SR (IS-IS) fe80::f46d:c8ff:fe8a:a341 16032 + 16033 SR (IS-IS) fe80::f46d:c8ff:fe8a:a341 16033 + 16034 SR (IS-IS) fe80::f46d:c8ff:fe8a:a341 16034 + 16041 SR (IS-IS) fe80::f46d:c8ff:fe8a:a341 16041 + 16502 PPR (IS-IS) fe80::a067:c6ff:fe2c:3385 16502 + 16503 PPR (IS-IS) fe80::f46d:c8ff:fe8a:a341 16503 + + # show ipv6 route 6000::/16 longer-prefixes isis + +Router RT32 +^^^^^^^^^^^ + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + --------------------------------------------------------------------------------------------- + 1 L1 500 (MPLS) 5000::11/128 0 Off-Path - - + 1 L1 501 (MPLS) 5000::14/128 0 Off-Path - - + 1 L1 502 (MPLS) 5000::11/128 0 Mid-Point Up 00:00:55 + 1 L1 503 (MPLS) 5000::14/128 0 Mid-Point Up 00:00:55 + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Off-Path - - + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Off-Path - - + + # show mpls table + Inbound Label Type Nexthop Outbound Label + ----------------------------------------------------------------------- + 16 SR (IS-IS) fe80::881f:d3ff:febd:9e8c implicit-null + 17 SR (IS-IS) fe80::1c7e:c3ff:fe5e:7a54 implicit-null + 18 SR (IS-IS) fe80::9863:abff:fed0:d7e implicit-null + 19 SR (IS-IS) fe80::ec65:d1ff:fe32:b508 implicit-null + 20 SR (IS-IS) fe80::a4e9:77ff:feaa:f690 implicit-null + 21 SR (IS-IS) fe80::40c4:e6ff:fe26:767f implicit-null + 16011 SR (IS-IS) fe80::881f:d3ff:febd:9e8c 16011 + 16012 SR (IS-IS) fe80::40c4:e6ff:fe26:767f 16012 + 16012 SR (IS-IS) fe80::881f:d3ff:febd:9e8c 16012 + 16013 SR (IS-IS) fe80::40c4:e6ff:fe26:767f 16013 + 16014 SR (IS-IS) fe80::1c7e:c3ff:fe5e:7a54 16014 + 16014 SR (IS-IS) fe80::ec65:d1ff:fe32:b508 16014 + 16014 SR (IS-IS) fe80::40c4:e6ff:fe26:767f 16014 + 16021 SR (IS-IS) fe80::881f:d3ff:febd:9e8c 16021 + 16022 SR (IS-IS) fe80::40c4:e6ff:fe26:767f 16022 + 16023 SR (IS-IS) fe80::1c7e:c3ff:fe5e:7a54 16023 + 16023 SR (IS-IS) fe80::ec65:d1ff:fe32:b508 16023 + 16023 SR (IS-IS) fe80::40c4:e6ff:fe26:767f 16023 + 16031 SR (IS-IS) fe80::9863:abff:fed0:d7e 16031 + 16032 SR (IS-IS) lo - + 16033 SR (IS-IS) fe80::1c7e:c3ff:fe5e:7a54 16033 + 16033 SR (IS-IS) fe80::ec65:d1ff:fe32:b508 16033 + 16034 SR (IS-IS) fe80::1c7e:c3ff:fe5e:7a54 16034 + 16034 SR (IS-IS) fe80::ec65:d1ff:fe32:b508 16034 + 16041 SR (IS-IS) fe80::a4e9:77ff:feaa:f690 16041 + 16502 PPR (IS-IS) fe80::9863:abff:fed0:d7e 16502 + 16503 PPR (IS-IS) fe80::a4e9:77ff:feaa:f690 16503 + + # show ipv6 route 6000::/16 longer-prefixes isis + +Router RT33 +^^^^^^^^^^^ + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + --------------------------------------------------------------------------------------------- + 1 L1 500 (MPLS) 5000::11/128 0 Off-Path - - + 1 L1 501 (MPLS) 5000::14/128 0 Off-Path - - + 1 L1 502 (MPLS) 5000::11/128 0 Mid-Point Up 00:00:57 + 1 L1 503 (MPLS) 5000::14/128 0 Mid-Point Up 00:00:57 + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Off-Path - - + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Off-Path - - + + # show mpls table + Inbound Label Type Nexthop Outbound Label + ----------------------------------------------------------------------- + 16 SR (IS-IS) fe80::2832:a9ff:fec3:7078 implicit-null + 17 SR (IS-IS) fe80::7806:e1ff:fe72:9b1f implicit-null + 18 SR (IS-IS) fe80::5476:31ff:fe94:c39 implicit-null + 19 SR (IS-IS) fe80::a4e9:77ff:feaa:f690 implicit-null + 20 SR (IS-IS) fe80::68c9:2ff:fe04:5eba implicit-null + 21 SR (IS-IS) fe80::d053:97ff:fee2:1711 implicit-null + 16011 SR (IS-IS) fe80::2832:a9ff:fec3:7078 16011 + 16011 SR (IS-IS) fe80::5476:31ff:fe94:c39 16011 + 16011 SR (IS-IS) fe80::d053:97ff:fee2:1711 16011 + 16012 SR (IS-IS) fe80::d053:97ff:fee2:1711 16012 + 16013 SR (IS-IS) fe80::68c9:2ff:fe04:5eba 20013 + 16013 SR (IS-IS) fe80::d053:97ff:fee2:1711 16013 + 16014 SR (IS-IS) fe80::68c9:2ff:fe04:5eba 20014 + 16021 SR (IS-IS) fe80::2832:a9ff:fec3:7078 16021 + 16021 SR (IS-IS) fe80::5476:31ff:fe94:c39 16021 + 16021 SR (IS-IS) fe80::d053:97ff:fee2:1711 16021 + 16022 SR (IS-IS) fe80::d053:97ff:fee2:1711 16022 + 16023 SR (IS-IS) fe80::68c9:2ff:fe04:5eba 20023 + 16031 SR (IS-IS) fe80::2832:a9ff:fec3:7078 16031 + 16031 SR (IS-IS) fe80::5476:31ff:fe94:c39 16031 + 16032 SR (IS-IS) fe80::2832:a9ff:fec3:7078 16032 + 16032 SR (IS-IS) fe80::5476:31ff:fe94:c39 16032 + 16033 SR (IS-IS) lo - + 16034 SR (IS-IS) fe80::7806:e1ff:fe72:9b1f 16034 + 16041 SR (IS-IS) fe80::a4e9:77ff:feaa:f690 16041 + 16502 PPR (IS-IS) fe80::a4e9:77ff:feaa:f690 16502 + 16503 PPR (IS-IS) fe80::7806:e1ff:fe72:9b1f 16503 + + # show ipv6 route 6000::/16 longer-prefixes isis + +Router RT34 +^^^^^^^^^^^ + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + --------------------------------------------------------------------------------------------- + 1 L1 500 (MPLS) 5000::11/128 0 Off-Path - - + 1 L1 501 (MPLS) 5000::14/128 0 Off-Path - - + 1 L1 502 (MPLS) 5000::11/128 0 Mid-Point Up 00:00:59 + 1 L1 503 (MPLS) 5000::14/128 0 Mid-Point Up 00:00:59 + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Off-Path - - + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Off-Path - - + + # show mpls table + Inbound Label Type Nexthop Outbound Label + ----------------------------------------------------------------------- + 16 SR (IS-IS) fe80::ac33:5dff:fe99:81ec implicit-null + 17 SR (IS-IS) fe80::f009:b9ff:fe05:e540 implicit-null + 16011 SR (IS-IS) fe80::ac33:5dff:fe99:81ec 16011 + 16011 SR (IS-IS) fe80::f009:b9ff:fe05:e540 20011 + 16012 SR (IS-IS) fe80::ac33:5dff:fe99:81ec 16012 + 16012 SR (IS-IS) fe80::f009:b9ff:fe05:e540 20012 + 16013 SR (IS-IS) fe80::f009:b9ff:fe05:e540 20013 + 16014 SR (IS-IS) fe80::f009:b9ff:fe05:e540 20014 + 16021 SR (IS-IS) fe80::ac33:5dff:fe99:81ec 16021 + 16021 SR (IS-IS) fe80::f009:b9ff:fe05:e540 20021 + 16022 SR (IS-IS) fe80::ac33:5dff:fe99:81ec 16022 + 16022 SR (IS-IS) fe80::f009:b9ff:fe05:e540 20022 + 16023 SR (IS-IS) fe80::f009:b9ff:fe05:e540 20023 + 16031 SR (IS-IS) fe80::ac33:5dff:fe99:81ec 16031 + 16032 SR (IS-IS) fe80::ac33:5dff:fe99:81ec 16032 + 16033 SR (IS-IS) fe80::ac33:5dff:fe99:81ec 16033 + 16034 SR (IS-IS) lo - + 16041 SR (IS-IS) fe80::ac33:5dff:fe99:81ec 16041 + 16502 PPR (IS-IS) fe80::ac33:5dff:fe99:81ec 16502 + 16503 PPR (IS-IS) fe80::f009:b9ff:fe05:e540 20503 + + # show ipv6 route 6000::/16 longer-prefixes isis + +Router RT41 +^^^^^^^^^^^ + +:: + + # show isis ppr + Area Level ID Prefix Metric Position Status Uptime + --------------------------------------------------------------------------------------------- + 1 L1 500 (MPLS) 5000::11/128 0 Off-Path - - + 1 L1 501 (MPLS) 5000::14/128 0 Off-Path - - + 1 L1 502 (MPLS) 5000::11/128 0 Mid-Point Up 00:01:01 + 1 L1 503 (MPLS) 5000::14/128 0 Mid-Point Up 00:01:01 + 1 L1 6000:1::1/128 (Native IPv6) 5000::11/128 50 Off-Path - - + 1 L1 6000:2::1/128 (Native IPv6) 5000::14/128 50 Off-Path - - + + # show mpls table + Inbound Label Type Nexthop Outbound Label + ----------------------------------------------------------------------- + 16 SR (IS-IS) fe80::1c7e:c3ff:fe5e:7a54 implicit-null + 17 SR (IS-IS) fe80::2832:a9ff:fec3:7078 implicit-null + 16011 SR (IS-IS) fe80::2832:a9ff:fec3:7078 16011 + 16012 SR (IS-IS) fe80::2832:a9ff:fec3:7078 16012 + 16012 SR (IS-IS) fe80::1c7e:c3ff:fe5e:7a54 16012 + 16013 SR (IS-IS) fe80::2832:a9ff:fec3:7078 16013 + 16013 SR (IS-IS) fe80::1c7e:c3ff:fe5e:7a54 16013 + 16014 SR (IS-IS) fe80::1c7e:c3ff:fe5e:7a54 16014 + 16021 SR (IS-IS) fe80::2832:a9ff:fec3:7078 16021 + 16022 SR (IS-IS) fe80::2832:a9ff:fec3:7078 16022 + 16022 SR (IS-IS) fe80::1c7e:c3ff:fe5e:7a54 16022 + 16023 SR (IS-IS) fe80::1c7e:c3ff:fe5e:7a54 16023 + 16031 SR (IS-IS) fe80::2832:a9ff:fec3:7078 16031 + 16032 SR (IS-IS) fe80::2832:a9ff:fec3:7078 16032 + 16033 SR (IS-IS) fe80::1c7e:c3ff:fe5e:7a54 16033 + 16034 SR (IS-IS) fe80::1c7e:c3ff:fe5e:7a54 16034 + 16041 SR (IS-IS) lo - + 16502 PPR (IS-IS) fe80::2832:a9ff:fec3:7078 16502 + 16503 PPR (IS-IS) fe80::1c7e:c3ff:fe5e:7a54 16503 + + # show ipv6 route 6000::/16 longer-prefixes isis + +Notice how R23 uses a different SRGB compared to the other routers in +the network. As such, this router install different labels for PPR-IDs +500 and 501 (e.g. 20500 instead of 16500 using the default SRGB). + +Verification - Forwarding Plane +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Ping Host 3 from Host2 and use tcpdump or wireshark to verify that the +ICMP packets are being tunneled using MPLS LSPs and following the {R11 - +R21 - R22 - R23 - R14} path. Here’s a wireshark capture between R11 and +R21: + +.. figure:: https://user-images.githubusercontent.com/931662/64057179-2e980080-cb70-11e9-89c3-ff43e6d66cae.png + :alt: wireshark + + wireshark + +Using ``traceroute`` it’s also possible to see that the ICMP packets are +being tunneled through the IS-IS network: + +:: + + root@host2:~# traceroute -n fd00:20:1::1 -s fd00:10:2::1 + traceroute to fd00:20:1::1 (fd00:20:1::1), 30 hops max, 80 byte packets + 1 fd00:10:2::100 1.996 ms 1.832 ms 1.725 ms + 2 * * * + 3 * * * + 4 * * * + 5 * * * + 6 * * * + 7 * * * + 8 fd00:20::100 0.154 ms 0.191 ms 0.116 ms + 9 fd00:20:1::1 0.125 ms 0.105 ms 0.104 ms diff --git a/doc/developer/northbound/retrofitting-configuration-commands.rst b/doc/developer/northbound/retrofitting-configuration-commands.rst new file mode 100644 index 000000000..c13332bf1 --- /dev/null +++ b/doc/developer/northbound/retrofitting-configuration-commands.rst @@ -0,0 +1,1916 @@ +Table of Contents +----------------- + +- `Introduction <#introduction>`__ +- `Retrofitting process <#retrofitting-process>`__ + + - `Step 1: writing a YANG module <#step1>`__ + - `Step 2: generate skeleton northbound callbacks <#step2>`__ + - `Step 3: update the frr_yang_module_info array of all relevant + daemons <#step3>`__ + - `Step 4: implement the northbound configuration + callbacks <#step4>`__ + - `Step 5: rewrite the CLI commands as dumb wrappers around the + northbound callbacks <#step5>`__ + - `Step 6: implement the ``cli_show`` callbacks <#step6>`__ + - `Step 7: consolidation <#step7>`__ + +- `Final Considerations <#final-considerations>`__ + +Introduction +------------ + +This page explains how to convert existing CLI configuration commands to +the new northbound model. This documentation is meant to be the primary +reference for developers working on the northbound retrofitting process. +We’ll show several examples taken from the ripd northbound conversion to +illustrate some concepts described herein. + +Retrofitting process +-------------------- + +Step 1: writing a YANG module +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The first step is to write a YANG module that models faithfully the +commands that are going to be converted. As explained in the +[[Architecture]] page, the goal is to introduce the new YANG-based +Northbound API without introducing backward incompatible changes in the +CLI. The northbound retrofitting process should be completely +transparent to FRR users. + +The developer is free to choose whether to write a full YANG module or a +partial YANG module and increment it gradually. For developers who lack +experience with YANG it’s probably a better idea to model one command at +time. + +It’s recommended to reuse definitions from standard YANG models whenever +possible to facilitate the process of writing module translators using +the [[YANG module translator]]. As an example, the frr-ripd YANG module +incorporated several parts of the IETF RIP YANG module. The repositories +below contain big collections of YANG models that might be used as a +reference: \* https://github.com/YangModels/yang \* +https://github.com/openconfig/public + +When writing a YANG module, it’s highly recommended to follow the +guidelines from `RFC 6087 <https://tools.ietf.org/html/rfc6087>`__. In +general, most commands should be modeled fairly easy. Here are a few +guidelines specific to authors of FRR YANG models: \* Use +presence-containers or lists to model commands that change the CLI node +(e.g. ``router rip``, ``interface eth0``). This way, if the +presence-container or list entry is removed, all configuration options +below them are removed automatically (exactly like the CLI behaves when +a configuration object is removed using a *no* command). This +recommendation is orthogonal to the `YANG authoring guidelines for +OpenConfig +models <https://github.com/openconfig/public/blob/master/doc/openconfig_style_guide.md>`__ +where the use of presence containers is discouraged. OpenConfig YANG +models however were not designed to replicate the behavior of legacy CLI +commands. \* When using YANG lists, be careful to identify what should +be the key leaves. In the ``offset-list WORD <in|out> (0-16) IFNAME`` +command, for example, both the direction (``<in|out>``) and the +interface name should be the keys of the list. This can be only known by +analyzing the data structures used to store the commands. \* For +clarity, use non-presence containers to group leaves that are associated +to the same configuration command (as we’ll see later, this also +facilitate the process of writing ``cli_show`` callbacks). \* YANG +leaves of type *enumeration* should define explicitly the value of each +*enum* option based on the value used in the FRR source code. \* Default +values should be taken from the source code whenever they exist. + +Some commands are more difficult to model and demand the use of more +advanced YANG constructs like *choice*, *when* and *must* statements. +**One key requirement is that it should be impossible to load an invalid +JSON/XML configuration to FRR**. The YANG modules should model exactly +what the CLI accepts in the form of commands, and all restrictions +imposed by the CLI should be defined in the YANG models whenever +possible. As we’ll see later, not all constraints can be expressed using +the YANG language and sometimes we’ll need to resort to code-level +validation in the northbound callbacks. + + Tip: the [[YANG tools]] page details several tools and commands that + might be useful when writing a YANG module, like validating YANG + files, indenting YANG files, validating instance data, etc. + +In the example YANG snippet below, we can see the use of the *must* +statement that prevents ripd from redistributing RIP routes into itself. +Although ripd CLI doesn’t allow the operator to enter *redistribute rip* +under *router rip*, we don’t have the same protection when configuring +ripd using other northbound interfaces (e.g. NETCONF). So without this +constraint it would be possible to feed an invalid configuration to ripd +(i.e. a bug). + +.. code:: yang + + list redistribute { + key "protocol"; + description + "Redistributes routes learned from other routing protocols."; + leaf protocol { + type frr-route-types:frr-route-types-v4; + description + "Routing protocol."; + must '. != "rip"'; + } + [snip] + } + +In the example below, we use the YANG *choice* statement to ensure that +either the ``password`` leaf or the ``key-chain`` leaf is configured, +but not both. This is in accordance to the sanity checks performed by +the *ip rip authentication* commands. + +.. code:: yang + + choice authentication-data { + description + "Choose whether to use a simple password or a key-chain."; + leaf authentication-password { + type string { + length "1..16"; + } + description + "Authentication string."; + } + leaf authentication-key-chain { + type string; + description + "Key-chain name."; + } + } + +Once finished, the new YANG model should be put into the FRR *yang/* top +level directory. This will ensure it will be installed automatically by +``make install``. It’s also encouraged (but not required) to put sample +configurations under *yang/examples/* using either JSON or XML files. + +Step 2: generate skeleton northbound callbacks +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Use the *gen_northbound_callbacks* tool to generate skeleton callbacks +for the YANG module. Example: + +.. code:: sh + + $ tools/gen_northbound_callbacks frr-ripd > ripd/rip_northbound.c + +The tool will look for the given module in the ``YANG_MODELS_PATH`` +directory defined during the installation. For each schema node of the +YANG module, the tool will generate skeleton callbacks based on the +properties of the node. Example: + +.. code:: c + + /* + * XPath: /frr-ripd:ripd/instance + */ + static int ripd_instance_create(enum nb_event event, + const struct lyd_node *dnode, + union nb_resource *resource) + { + /* TODO: implement me. */ + return NB_OK; + } + + static int ripd_instance_delete(enum nb_event event, + const struct lyd_node *dnode) + { + /* TODO: implement me. */ + return NB_OK; + } + + /* + * XPath: /frr-ripd:ripd/instance/allow-ecmp + */ + static int ripd_instance_allow_ecmp_modify(enum nb_event event, + const struct lyd_node *dnode, + union nb_resource *resource) + { + /* TODO: implement me. */ + return NB_OK; + } + + [snip] + + const struct frr_yang_module_info frr_ripd_info = { + .name = "frr-ripd", + .nodes = { + { + .xpath = "/frr-ripd:ripd/instance", + .cbs.create = ripd_instance_create, + .cbs.delete = ripd_instance_delete, + }, + { + .xpath = "/frr-ripd:ripd/instance/allow-ecmp", + .cbs.modify = ripd_instance_allow_ecmp_modify, + }, + [snip] + { + .xpath = "/frr-ripd:ripd/state/routes/route", + .cbs.get_next = ripd_state_routes_route_get_next, + .cbs.get_keys = ripd_state_routes_route_get_keys, + .cbs.lookup_entry = ripd_state_routes_route_lookup_entry, + }, + { + .xpath = "/frr-ripd:ripd/state/routes/route/prefix", + .cbs.get_elem = ripd_state_routes_route_prefix_get_elem, + }, + { + .xpath = "/frr-ripd:ripd/state/routes/route/next-hop", + .cbs.get_elem = ripd_state_routes_route_next_hop_get_elem, + }, + { + .xpath = "/frr-ripd:ripd/state/routes/route/interface", + .cbs.get_elem = ripd_state_routes_route_interface_get_elem, + }, + { + .xpath = "/frr-ripd:ripd/state/routes/route/metric", + .cbs.get_elem = ripd_state_routes_route_metric_get_elem, + }, + { + .xpath = "/frr-ripd:clear-rip-route", + .cbs.rpc = clear_rip_route_rpc, + }, + [snip] + +After the C source file is generated, it’s necessary to add a copyright +header on it and indent the code using ``clang-format``. + +Step 3: update the *frr_yang_module_info* array of all relevant daemons +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +We must inform the northbound about which daemons will implement the new +YANG module. This is done by updating the ``frr_daemon_info`` structure +of these daemons, with help of the ``FRR_DAEMON_INFO`` macro. + +When a YANG module is specific to a single daemon, like the frr-ripd +module, then only the corresponding daemon should be updated. When the +YANG module is related to a subset of libfrr (e.g. route-maps), then all +FRR daemons that make use of that subset must be updated. + +Example: + +.. code:: c + + static const struct frr_yang_module_info *ripd_yang_modules[] = { + &frr_interface_info, + &frr_ripd_info, + }; + + FRR_DAEMON_INFO(ripd, RIP, .vty_port = RIP_VTY_PORT, + [snip] + .yang_modules = ripd_yang_modules, + .n_yang_modules = array_size(ripd_yang_modules), ) + +Step 4: implement the northbound configuration callbacks +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Implementing the northbound configuration callbacks consists mostly of +copying code from the corresponding CLI commands and make the required +adaptations. + +It’s recommended to convert one command or a small group of related +commands per commit. Small commits are preferred to facilitate the +review process. Both “old” and “new” command can coexist without +problems, so the retrofitting process can happen gradually over time. + +The configuration callbacks +^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +These are the four main northbound configuration callbacks, as defined +in the ``lib/northbound.h`` file: + +.. code:: c + + /* + * Configuration callback. + * + * A presence container, list entry, leaf-list entry or leaf of type + * empty has been created. + * + * For presence-containers and list entries, the callback is supposed to + * initialize the default values of its children (if any) from the YANG + * models. + * + * event + * The transaction phase. Refer to the documentation comments of + * nb_event for more details. + * + * dnode + * libyang data node that is being created. + * + * resource + * Pointer to store resource(s) allocated during the NB_EV_PREPARE + * phase. The same pointer can be used during the NB_EV_ABORT and + * NB_EV_APPLY phases to either release or make use of the allocated + * resource(s). It's set to NULL when the event is NB_EV_VALIDATE. + * + * Returns: + * - NB_OK on success. + * - NB_ERR_VALIDATION when a validation error occurred. + * - NB_ERR_RESOURCE when the callback failed to allocate a resource. + * - NB_ERR_INCONSISTENCY when an inconsistency was detected. + * - NB_ERR for other errors. + */ + int (*create)(enum nb_event event, const struct lyd_node *dnode, + union nb_resource *resource); + + /* + * Configuration callback. + * + * The value of a leaf has been modified. + * + * List keys don't need to implement this callback. When a list key is + * modified, the northbound treats this as if the list was deleted and a + * new one created with the updated key value. + * + * event + * The transaction phase. Refer to the documentation comments of + * nb_event for more details. + * + * dnode + * libyang data node that is being modified + * + * resource + * Pointer to store resource(s) allocated during the NB_EV_PREPARE + * phase. The same pointer can be used during the NB_EV_ABORT and + * NB_EV_APPLY phases to either release or make use of the allocated + * resource(s). It's set to NULL when the event is NB_EV_VALIDATE. + * + * Returns: + * - NB_OK on success. + * - NB_ERR_VALIDATION when a validation error occurred. + * - NB_ERR_RESOURCE when the callback failed to allocate a resource. + * - NB_ERR_INCONSISTENCY when an inconsistency was detected. + * - NB_ERR for other errors. + */ + int (*modify)(enum nb_event event, const struct lyd_node *dnode, + union nb_resource *resource); + + /* + * Configuration callback. + * + * A presence container, list entry, leaf-list entry or optional leaf + * has been deleted. + * + * The callback is supposed to delete the entire configuration object, + * including its children when they exist. + * + * event + * The transaction phase. Refer to the documentation comments of + * nb_event for more details. + * + * dnode + * libyang data node that is being deleted. + * + * Returns: + * - NB_OK on success. + * - NB_ERR_VALIDATION when a validation error occurred. + * - NB_ERR_INCONSISTENCY when an inconsistency was detected. + * - NB_ERR for other errors. + */ + int (*delete)(enum nb_event event, const struct lyd_node *dnode); + + /* + * Configuration callback. + * + * A list entry or leaf-list entry has been moved. Only applicable when + * the "ordered-by user" statement is present. + * + * event + * The transaction phase. Refer to the documentation comments of + * nb_event for more details. + * + * dnode + * libyang data node that is being moved. + * + * Returns: + * - NB_OK on success. + * - NB_ERR_VALIDATION when a validation error occurred. + * - NB_ERR_INCONSISTENCY when an inconsistency was detected. + * - NB_ERR for other errors. + */ + int (*move)(enum nb_event event, const struct lyd_node *dnode); + +Since skeleton northbound callbacks are generated automatically by the +*gen_northbound_callbacks* tool, the developer doesn’t need to worry +about which callbacks need to be implemented. + + NOTE: once a daemon starts, it reads its YANG modules and validates + that all required northbound callbacks were implemented. If any + northbound callback is missing, an error is logged and the program + exists. + +Transaction phases +^^^^^^^^^^^^^^^^^^ + +Configuration transactions and their phases were described in detail in +the [[Architecture]] page. Here’s the definition of the ``nb_event`` +enumeration as defined in the *lib/northbound.h* file: + +.. code:: c + + /* Northbound events. */ + enum nb_event { + /* + * The configuration callback is supposed to verify that the changes are + * valid and can be applied. + */ + NB_EV_VALIDATE, + + /* + * The configuration callback is supposed to prepare all resources + * required to apply the changes. + */ + NB_EV_PREPARE, + + /* + * Transaction has failed, the configuration callback needs to release + * all resources previously allocated. + */ + NB_EV_ABORT, + + /* + * The configuration changes need to be applied. The changes can't be + * rejected at this point (errors are logged and ignored). + */ + NB_EV_APPLY, + }; + +When converting a CLI command, we must identify all error-prone +operations and perform them in the ``NB_EV_PREPARE`` phase of the +northbound callbacks. When the operation in question involves the +allocation of a specific resource (e.g. file descriptors), we can store +the allocated resource in the ``resource`` variable given to the +callback. This way the allocated resource can be obtained in the other +phases of the transaction using the same parameter. + +Here’s the ``create`` northbound callback associated to the +``router rip`` command: + +.. code:: c + + /* + * XPath: /frr-ripd:ripd/instance + */ + static int ripd_instance_create(enum nb_event event, + const struct lyd_node *dnode, + union nb_resource *resource) + { + int socket; + + switch (event) { + case NB_EV_VALIDATE: + break; + case NB_EV_PREPARE: + socket = rip_create_socket(); + if (socket < 0) + return NB_ERR_RESOURCE; + resource->fd = socket; + break; + case NB_EV_ABORT: + socket = resource->fd; + close(socket); + break; + case NB_EV_APPLY: + socket = resource->fd; + rip_create(socket); + break; + } + + return NB_OK; + } + +Note that the socket creation is an error-prone operation since it +depends on the underlying operating system, so the socket must be +created during the ``NB_EV_PREPARE`` phase and stored in +``resource->fd``. This socket is then either closed or used depending on +the outcome of the preparation phase of the whole transaction. + +During the ``NB_EV_VALIDATE`` phase, the northbound callbacks must +validate if the intended changes are valid. As an example, FRR doesn’t +allow the operator to deconfigure active interfaces: + +.. code:: c + + static int lib_interface_delete(enum nb_event event, + const struct lyd_node *dnode) + { + struct interface *ifp; + + ifp = yang_dnode_get_entry(dnode); + + switch (event) { + case NB_EV_VALIDATE: + if (CHECK_FLAG(ifp->status, ZEBRA_INTERFACE_ACTIVE)) { + zlog_warn("%s: only inactive interfaces can be deleted", + __func__); + return NB_ERR_VALIDATION; + } + break; + case NB_EV_PREPARE: + case NB_EV_ABORT: + break; + case NB_EV_APPLY: + if_delete(ifp); + break; + } + + return NB_OK; + } + +Note however that it’s preferred to use YANG to model the validation +constraints whenever possible. Code-level validations should be used +only to validate constraints that can’t be modeled using the YANG +language. + +Most callbacks don’t need to perform any validations nor perform any +error-prone operations, so in these cases we can use the following +pattern to return early if ``event`` is different than ``NB_EV_APPLY``: + +.. code:: c + + /* + * XPath: /frr-ripd:ripd/instance/distance/default + */ + static int ripd_instance_distance_default_modify(enum nb_event event, + const struct lyd_node *dnode, + union nb_resource *resource) + { + if (event != NB_EV_APPLY) + return NB_OK; + + rip->distance = yang_dnode_get_uint8(dnode, NULL); + + return NB_OK; + } + +During development it’s recommend to use the *debug northbound* command +to debug configuration transactions and see what callbacks are being +called. Example: + +:: + + ripd# conf t + ripd(config)# debug northbound + ripd(config)# router rip + ripd(config-router)# allow-ecmp + ripd(config-router)# network eth0 + ripd(config-router)# redistribute ospf metric 2 + ripd(config-router)# commit + % Configuration committed successfully. + + ripd(config-router)# + +Now the ripd log: + +:: + + 2018/09/23 12:43:59 RIP: northbound callback: event [validate] op [create] xpath [/frr-ripd:ripd/instance] value [(none)] + 2018/09/23 12:43:59 RIP: northbound callback: event [validate] op [modify] xpath [/frr-ripd:ripd/instance/allow-ecmp] value [true] + 2018/09/23 12:43:59 RIP: northbound callback: event [validate] op [create] xpath [/frr-ripd:ripd/instance/interface[.='eth0']] value [eth0] + 2018/09/23 12:43:59 RIP: northbound callback: event [validate] op [create] xpath [/frr-ripd:ripd/instance/redistribute[protocol='ospf']] value [(none)] + 2018/09/23 12:43:59 RIP: northbound callback: event [validate] op [modify] xpath [/frr-ripd:ripd/instance/redistribute[protocol='ospf']/metric] value [2] + 2018/09/23 12:43:59 RIP: northbound callback: event [prepare] op [create] xpath [/frr-ripd:ripd/instance] value [(none)] + 2018/09/23 12:43:59 RIP: northbound callback: event [prepare] op [modify] xpath [/frr-ripd:ripd/instance/allow-ecmp] value [true] + 2018/09/23 12:43:59 RIP: northbound callback: event [prepare] op [create] xpath [/frr-ripd:ripd/instance/interface[.='eth0']] value [eth0] + 2018/09/23 12:43:59 RIP: northbound callback: event [prepare] op [create] xpath [/frr-ripd:ripd/instance/redistribute[protocol='ospf']] value [(none)] + 2018/09/23 12:43:59 RIP: northbound callback: event [prepare] op [modify] xpath [/frr-ripd:ripd/instance/redistribute[protocol='ospf']/metric] value [2] + 2018/09/23 12:43:59 RIP: northbound callback: event [apply] op [create] xpath [/frr-ripd:ripd/instance] value [(none)] + 2018/09/23 12:43:59 RIP: northbound callback: event [apply] op [modify] xpath [/frr-ripd:ripd/instance/allow-ecmp] value [true] + 2018/09/23 12:43:59 RIP: northbound callback: event [apply] op [create] xpath [/frr-ripd:ripd/instance/interface[.='eth0']] value [eth0] + 2018/09/23 12:43:59 RIP: northbound callback: event [apply] op [create] xpath [/frr-ripd:ripd/instance/redistribute[protocol='ospf']] value [(none)] + 2018/09/23 12:43:59 RIP: northbound callback: event [apply] op [modify] xpath [/frr-ripd:ripd/instance/redistribute[protocol='ospf']/metric] value [2] + 2018/09/23 12:43:59 RIP: northbound callback: event [apply] op [apply_finish] xpath [/frr-ripd:ripd/instance/redistribute[protocol='ospf']] value [(null)] + +Getting the data +^^^^^^^^^^^^^^^^ + +One parameter that is common to all northbound configuration callbacks +is the ``dnode`` parameter. This is a libyang data node structure that +contains information relative to the configuration change that is being +performed. For ``create`` callbacks, it contains the configuration node +that is being added. For ``delete`` callbacks, it contains the +configuration node that is being deleted. For ``modify`` callbacks, it +contains the configuration node that is being modified. + +In order to get the actual data value out of the ``dnode`` variable, we +need to use the ``yang_dnode_get_*()`` wrappers documented in +*lib/yang_wrappers.h*. + +The advantage of passing a ``dnode`` structure to the northbound +callbacks is that the whole candidate being committed is made available, +so the callbacks can obtain values from other portions of the +configuration if necessary. This can be done by providing an xpath +expression to the second parameter of the ``yang_dnode_get_*()`` +wrappers to specify the element we want to get. The example below shows +a callback that gets the values of two leaves that are part of the same +list entry: + +.. code:: c + + static int + ripd_instance_redistribute_metric_modify(enum nb_event event, + const struct lyd_node *dnode, + union nb_resource *resource) + { + int type; + uint8_t metric; + + if (event != NB_EV_APPLY) + return NB_OK; + + type = yang_dnode_get_enum(dnode, "../protocol"); + metric = yang_dnode_get_uint8(dnode, NULL); + + rip->route_map[type].metric_config = true; + rip->route_map[type].metric = metric; + rip_redistribute_conf_update(type); + + return NB_OK; + } + +.. + + NOTE: if the wrong ``yang_dnode_get_*()`` wrapper is used, the code + will log an error and abort. An example would be using + ``yang_dnode_get_enum()`` to get the value of a boolean data node. + +No need to check if the configuration value has changed +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +A common pattern in CLI commands is this: + +.. code:: c + + DEFUN (...) + { + [snip] + if (new_value == old_value) + return CMD_SUCCESS; + [snip] + } + +Several commands need to check if the new value entered by the user is +the same as the one currently configured. Then, if yes, ignore the +command since nothing was changed. + +The northbound callbacks on the other hand don’t need to perform this +check since they act on effective configuration changes. Using the CLI +as an example, if the operator enters the same command multiple times, +the northbound layer will detect that nothing has changed in the +configuration and will avoid calling the northbound callbacks +unnecessarily. + +In some cases, however, it might be desirable to check for +inconsistencies and notify the northbound when that happens: + +.. code:: c + + /* + * XPath: /frr-ripd:ripd/instance/interface + */ + static int ripd_instance_interface_create(enum nb_event event, + const struct lyd_node *dnode, + union nb_resource *resource) + { + const char *ifname; + + if (event != NB_EV_APPLY) + return NB_OK; + + ifname = yang_dnode_get_string(dnode, NULL); + + return rip_enable_if_add(ifname); + } + +.. code:: c + + /* Add interface to rip_enable_if. */ + int rip_enable_if_add(const char *ifname) + { + int ret; + + ret = rip_enable_if_lookup(ifname); + if (ret >= 0) + return NB_ERR_INCONSISTENCY; + + vector_set(rip_enable_interface, + XSTRDUP(MTYPE_RIP_INTERFACE_STRING, ifname)); + + rip_enable_apply_all(); /* TODOVJ */ + + return NB_OK; + } + +In the example above, the ``rip_enable_if_add()`` function should never +return ``NB_ERR_INCONSISTENCY`` in normal conditions. This is because +the northbound layer guarantees that the same interface will never be +added more than once (except when it’s removed and re-added again). But +to be on the safe side it’s probably wise to check for internal +inconsistencies to ensure everything is working as expected. + +Default values +^^^^^^^^^^^^^^ + +Whenever creating a new presence-container or list entry, it’s usually +necessary to initialize certain variables to their default values. FRR +most of the time uses special constants for that purpose +(e.g. ``RIP_DEFAULT_METRIC_DEFAULT``, ``DFLT_BGP_HOLDTIME``, etc). Now +that we have YANG models, we want to fetch the default values from these +models instead. This will allow us to changes default values smoothly +without needing to touch the code. Better yet, it will allow users to +create YANG deviations to define custom default values easily. + +To fetch default values from the loaded YANG models, use the +``yang_get_default_*()`` wrapper functions +(e.g. ``yang_get_default_bool()``) documented in *lib/yang_wrappers.h*. + +Example: + +.. code:: c + + int rip_create(int socket) + { + rip = XCALLOC(MTYPE_RIP, sizeof(struct rip)); + + /* Set initial values. */ + rip->ecmp = yang_get_default_bool("%s/allow-ecmp", RIP_INSTANCE); + rip->default_metric = + yang_get_default_uint8("%s/default-metric", RIP_INSTANCE); + [snip] + } + +Configuration options are edited individually +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Several CLI commands edit multiple configuration options at the same +time. Some examples taken from ripd: \* +``timers basic (5-2147483647) (5-2147483647) (5-2147483647)`` - +*/frr-ripd:ripd/instance/timers/flush-interval* - +*/frr-ripd:ripd/instance/timers/holddown-interval* - +*/frr-ripd:ripd/instance/timers/update-interval* \* +``distance (1-255) A.B.C.D/M [WORD]`` - +*/frr-ripd:ripd/instance/distance/source/prefix* - +*/frr-ripd:ripd/instance/distance/source/distance* - +*/frr-ripd:ripd/instance/distance/source/access-list* + +In the new northbound model, there’s one or more separate callbacks for +each configuration option. This usually has implications when converting +code from CLI commands to the northbound commands. An example of this is +the following commit from ripd: +`7cf2f2eaf <https://github.com/opensourcerouting/frr/commit/7cf2f2eaf43ef5df294625d1ab4c708db8293510>`__. +The ``rip_distance_set()`` and ``rip_distance_unset()`` functions were +torn apart and their code split into a few different callbacks. + +For lists and presence-containers, it’s possible to use the +``yang_dnode_set_entry()`` function to attach user data to a libyang +data node, and then retrieve this value in the other callbacks (for the +same node or any of its children) using the ``yang_dnode_get_entry()`` +function. Example: + +.. code:: c + + static int ripd_instance_distance_source_create(enum nb_event event, + const struct lyd_node *dnode, + union nb_resource *resource) + { + struct prefix_ipv4 prefix; + struct route_node *rn; + + if (event != NB_EV_APPLY) + return NB_OK; + + yang_dnode_get_ipv4p(&prefix, dnode, "./prefix"); + + /* Get RIP distance node. */ + rn = route_node_get(rip_distance_table, (struct prefix *)&prefix); + rn->info = rip_distance_new(); + yang_dnode_set_entry(dnode, rn); + + return NB_OK; + } + +.. code:: c + + static int + ripd_instance_distance_source_distance_modify(enum nb_event event, + const struct lyd_node *dnode, + union nb_resource *resource) + { + struct route_node *rn; + uint8_t distance; + struct rip_distance *rdistance; + + if (event != NB_EV_APPLY) + return NB_OK; + + /* Set distance value. */ + rn = yang_dnode_get_entry(dnode); + distance = yang_dnode_get_uint8(dnode, NULL); + rdistance = rn->info; + rdistance->distance = distance; + + return NB_OK; + } + +Commands that edit multiple configuration options at the same time can +also use the ``apply_finish`` optional callback, documented as follows +in the *lib/northbound.h* file: + +.. code:: c + + /* + * Optional configuration callback for YANG lists and containers. + * + * The 'apply_finish' callbacks are called after all other callbacks + * during the apply phase (NB_EV_APPLY). These callbacks are called only + * under one of the following two cases: + * * The container or a list entry has been created; + * * Any change is made within the descendants of the list entry or + * container (e.g. a child leaf was modified, created or deleted). + * + * This callback is useful in the cases where a single event should be + * triggered regardless if the container or list entry was changed once + * or multiple times. + * + * dnode + * libyang data node from the YANG list or container. + */ + void (*apply_finish)(const struct lyd_node *dnode); + +Here’s an example of how this callback can be used: + +.. code:: c + + /* + * XPath: /frr-ripd:ripd/instance/timers/ + */ + static void ripd_instance_timers_apply_finish(const struct lyd_node *dnode) + { + /* Reset update timer thread. */ + rip_event(RIP_UPDATE_EVENT, 0); + } + +.. code:: c + + { + .xpath = "/frr-ripd:ripd/instance/timers", + .cbs.apply_finish = ripd_instance_timers_apply_finish, + .cbs.cli_show = cli_show_rip_timers, + }, + { + .xpath = "/frr-ripd:ripd/instance/timers/flush-interval", + .cbs.modify = ripd_instance_timers_flush_interval_modify, + }, + { + .xpath = "/frr-ripd:ripd/instance/timers/holddown-interval", + .cbs.modify = ripd_instance_timers_holddown_interval_modify, + }, + { + .xpath = "/frr-ripd:ripd/instance/timers/update-interval", + .cbs.modify = ripd_instance_timers_update_interval_modify, + }, + +In this example, we want to call the ``rip_event()`` function only once +regardless if all RIP timers were modified or only one of them. Without +the ``apply_finish`` callback we’d need to call ``rip_event()`` in the +``modify`` callback of each timer (a YANG leaf), resulting in redundant +call to the ``rip_event()`` function if multiple timers are changed at +once. + +Bonus: libyang user types +^^^^^^^^^^^^^^^^^^^^^^^^^ + +When writing YANG modules, it’s advisable to create derived types for +data types that are used on multiple places (e.g. MAC addresses, IS-IS +networks, etc). Here’s how `RFC +7950 <https://tools.ietf.org/html/rfc7950#page-25>`__ defines derived +types: > YANG can define derived types from base types using the +“typedef” > statement. A base type can be either a built-in type or a +derived > type, allowing a hierarchy of derived types. > > A derived +type can be used as the argument for the “type” statement. > > YANG +Example: > > typedef percent { > type uint8 { > range “0 .. 100”; > } > +} > > leaf completed { > type percent; > } + +Derived types are essentially built-in types with imposed restrictions. +As an example, the ``ipv4-address`` derived type from IETF is defined +using the ``string`` built-in type with a ``pattern`` constraint (a +regular expression): + +:: + + typedef ipv4-address { + type string { + pattern + '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}' + + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])' + + '(%[\p{N}\p{L}]+)?'; + } + description + "The ipv4-address type represents an IPv4 address in + dotted-quad notation. The IPv4 address may include a zone + index, separated by a % sign. + + The zone index is used to disambiguate identical address + values. For link-local addresses, the zone index will + typically be the interface index number or the name of an + interface. If the zone index is not present, the default + zone of the device will be used. + + The canonical format for the zone index is the numerical + format"; + } + +Sometimes, however, it’s desirable to have a binary representation of +the derived type that is different from the associated built-in type. +Taking the ``ipv4-address`` example above, it would be more convenient +to manipulate this YANG type using ``in_addr`` structures instead of +strings. libyang allow us to do that using the user types plugin: +https://netopeer.liberouter.org/doc/libyang/master/howtoschemaplugins.html#usertypes + +Here’s how the the ``ipv4-address`` derived type is implemented in FRR +(*yang/libyang_plugins/frr_user_types.c*): + +.. code:: c + + static int ipv4_address_store_clb(const char *type_name, const char *value_str, + lyd_val *value, char **err_msg) + { + value->ptr = malloc(sizeof(struct in_addr)); + if (!value->ptr) + return 1; + + if (inet_pton(AF_INET, value_str, value->ptr) != 1) { + free(value->ptr); + return 1; + } + + return 0; + } + +.. code:: c + + struct lytype_plugin_list frr_user_types[] = { + {"ietf-inet-types", "2013-07-15", "ipv4-address", + ipv4_address_store_clb, free}, + {"ietf-inet-types", "2013-07-15", "ipv4-address-no-zone", + ipv4_address_store_clb, free}, + [snip] + {NULL, NULL, NULL, NULL, NULL} /* terminating item */ + }; + +Now, in addition to the string representation of the data value, libyang +will also store the data in the binary format we specified (an +``in_addr`` structure). + +Whenever a new derived type is implemented in FRR, it’s also recommended +to write new wrappers in the *lib/yang_wrappers.c* file +(e.g. ``yang_dnode_get_ipv4()``, ``yang_get_default_ipv4()``, etc). + +Step 5: rewrite the CLI commands as dumb wrappers around the northbound callbacks +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Once the northbound callbacks are implemented, we need to rewrite the +associated CLI commands on top of the northbound layer. This is the +easiest part of the retrofitting process. + +For protocol daemons, it’s recommended to put all CLI commands on a +separate C file (e.g. *ripd/rip_cli.c*). This helps to keep the code +more clean by separating the main protocol code from the user interface. +It should also help when moving the CLI to a separate program in the +future. + +For libfrr commands, it’s not possible to centralize all commands in a +single file because the *extract.pl* script from *vtysh* treats commands +differently depending on the file in which they are defined (e.g. DEFUNs +from *lib/routemap.c* are installed using the ``VTYSH_RMAP`` constant, +which identifies the daemons that support route-maps). In this case, the +CLI commands should be rewritten but maintained in the same file. + +Since all CLI configuration commands from FRR will need to be rewritten, +this is an excellent opportunity to rework this part of the code to make +the commands easier to maintain and extend. These are the three main +recommendations: 1. Always use DEFPY instead of DEFUN to improve code +readability. 2. Always try to join multiple DEFUNs into a single DEFPY +whenever possible. As an example, there’s no need to have both +``distance (1-255) A.B.C.D/M`` and ``distance (1-255) A.B.C.D/M WORD`` +when a single ``distance (1-255) A.B.C.D/M [WORD]`` would suffice. 3. +When necessary, create a separate DEFPY for ``no`` commands so that part +of the configuration command can be made optional for convenience. +Example: +``no timers basic [(5-2147483647) (5-2147483647) (5-2147483647)]``. In +this example, everything after ``no timers basic`` is ignored by FRR, so +it makes sense to accept ``no timers basic`` as a valid command. But it +also makes sense to accept all parameters +(``no timers basic (5-2147483647) (5-2147483647) (5-2147483647)``) to +make it easier to remove the command just by prefixing a “no” to it. + +To rewrite a CLI command as a dumb wrapper around the northbound +callbacks, use the ``nb_cli_cfg_change()`` function. This function +accepts as a parameter an array of ``cli_config_change`` structures that +specify the changes that need to performed on the candidate +configuration. Here’s the declaration of this structure (taken from the +*lib/northbound_cli.h* file): + +.. code:: c + + struct cli_config_change { + /* + * XPath (absolute or relative) of the configuration option being + * edited. + */ + char xpath[XPATH_MAXLEN]; + + /* + * Operation to apply (either NB_OP_CREATE, NB_OP_MODIFY or + * NB_OP_DELETE). + */ + enum nb_operation operation; + + /* + * New value of the configuration option. Should be NULL for typeless + * YANG data (e.g. presence-containers). For convenience, NULL can also + * be used to restore a leaf to its default value. + */ + const char *value; + }; + +The ``nb_cli_cfg_change()`` function positions the CLI command on top on +top of the northbound layer. Instead of changing the running +configuration directly, this function changes the candidate +configuration instead, as described in the [[Transactional CLI]] page. +When the transactional CLI is not in use (i.e. the default mode), then +``nb_cli_cfg_change()`` performs an implicit ``commit`` operation after +changing the candidate configuration. + + NOTE: the ``nb_cli_cfg_change()`` function clones the candidate + configuration before actually editing it. This way, if any error + happens during the editing, the original candidate is restored to + avoid inconsistencies. Either all changes from the configuration + command are performed successfully or none are. It’s like a + mini-transaction but happening on the candidate configuration (thus + the northbound callbacks are not involved). + +Other important details to keep in mind while rewriting the CLI +commands: \* ``nb_cli_cfg_change()`` returns CLI errors codes +(e.g. ``CMD_SUCCESS``, ``CMD_WARNING``), so the return value of this +function can be used as the return value of CLI commands. \* Calls to +``VTY_PUSH_CONTEXT`` and ``VTY_PUSH_CONTEXT_SUB`` should be converted to +calls to ``VTY_PUSH_XPATH``. Similarly, the following macros aren’t +necessary anymore and can be removed: ``VTY_DECLVAR_CONTEXT``, +``VTY_DECLVAR_CONTEXT_SUB``, ``VTY_GET_CONTEXT`` and +``VTY_CHECK_CONTEXT``. The ``nb_cli_cfg_change()`` functions uses the +``VTY_CHECK_XPATH`` macro to check if the data node being edited still +exists before doing anything else. + +The examples below provide additional details about how the conversion +should be done. + +Example 1 +^^^^^^^^^ + +In this first example, the *router rip* command becomes a dumb wrapper +around the ``ripd_instance_create()`` callback. Note that we don’t need +to check if the ``/frr-ripd:ripd/instance`` data path already exists +before trying to create it. The northbound will detect when this +presence-container already exists and do nothing. The +``VTY_PUSH_XPATH()`` macro is used to change the vty node and set the +context for other commands under *router rip*. + +.. code:: c + + DEFPY_NOSH (router_rip, + router_rip_cmd, + "router rip", + "Enable a routing process\n" + "Routing Information Protocol (RIP)\n") + { + int ret; + + struct cli_config_change changes[] = { + { + .xpath = "/frr-ripd:ripd/instance", + .operation = NB_OP_CREATE, + .value = NULL, + }, + }; + + ret = nb_cli_cfg_change(vty, NULL, changes, array_size(changes)); + if (ret == CMD_SUCCESS) + VTY_PUSH_XPATH(RIP_NODE, changes[0].xpath); + + return ret; + } + +Example 2 +^^^^^^^^^ + +Here we can see the use of relative xpaths (starting with ``./``), which +are more convenient that absolute xpaths (which would be +``/frr-ripd:ripd/instance/default-metric`` in this example). This is +possible because the use of ``VTY_PUSH_XPATH()`` in the *router rip* +command set the vty base xpath to ``/frr-ripd:ripd/instance``. + +.. code:: c + + DEFPY (rip_default_metric, + rip_default_metric_cmd, + "default-metric (1-16)", + "Set a metric of redistribute routes\n" + "Default metric\n") + { + struct cli_config_change changes[] = { + { + .xpath = "./default-metric", + .operation = NB_OP_MODIFY, + .value = default_metric_str, + }, + }; + + return nb_cli_cfg_change(vty, NULL, changes, array_size(changes)); + } + +In the command below we the ``value`` to NULL to indicate that we want +to set this leaf to its default value. This is better than hardcoding +the default value because the default might change in the future. Also, +users might define custom defaults by using YANG deviations, so it’s +better to write code that works correctly regardless of the default +values defined in the YANG models. + +.. code:: c + + DEFPY (no_rip_default_metric, + no_rip_default_metric_cmd, + "no default-metric [(1-16)]", + NO_STR + "Set a metric of redistribute routes\n" + "Default metric\n") + { + struct cli_config_change changes[] = { + { + .xpath = "./default-metric", + .operation = NB_OP_MODIFY, + .value = NULL, + }, + }; + + return nb_cli_cfg_change(vty, NULL, changes, array_size(changes)); + } + +Example 3 +^^^^^^^^^ + +This example shows how one command can change multiple leaves at the +same time. + +.. code:: c + + DEFPY (rip_timers, + rip_timers_cmd, + "timers basic (5-2147483647)$update (5-2147483647)$timeout (5-2147483647)$garbage", + "Adjust routing timers\n" + "Basic routing protocol update timers\n" + "Routing table update timer value in second. Default is 30.\n" + "Routing information timeout timer. Default is 180.\n" + "Garbage collection timer. Default is 120.\n") + { + struct cli_config_change changes[] = { + { + .xpath = "./timers/update-interval", + .operation = NB_OP_MODIFY, + .value = update_str, + }, + { + .xpath = "./timers/holddown-interval", + .operation = NB_OP_MODIFY, + .value = timeout_str, + }, + { + .xpath = "./timers/flush-interval", + .operation = NB_OP_MODIFY, + .value = garbage_str, + }, + }; + + return nb_cli_cfg_change(vty, NULL, changes, array_size(changes)); + } + +Example 4 +^^^^^^^^^ + +This example shows how to create a list entry: + +.. code:: c + + DEFPY (rip_distance_source, + rip_distance_source_cmd, + "distance (1-255) A.B.C.D/M$prefix [WORD$acl]", + "Administrative distance\n" + "Distance value\n" + "IP source prefix\n" + "Access list name\n") + { + char xpath_list[XPATH_MAXLEN]; + struct cli_config_change changes[] = { + { + .xpath = ".", + .operation = NB_OP_CREATE, + }, + { + .xpath = "./distance", + .operation = NB_OP_MODIFY, + .value = distance_str, + }, + { + .xpath = "./access-list", + .operation = acl ? NB_OP_MODIFY : NB_OP_DELETE, + .value = acl, + }, + }; + + snprintf(xpath_list, sizeof(xpath_list), "./distance/source[prefix='%s']", + prefix_str); + + return nb_cli_cfg_change(vty, xpath_list, changes, array_size(changes)); + } + +The ``xpath_list`` variable is used to hold the xpath that identifies +the list entry. The keys of the list entry should be embedded in this +xpath and don’t need to be part of the array of configuration changes. +All entries from the ``changes`` array use relative xpaths which are +based on the xpath of the list entry. + +The ``access-list`` optional leaf can be either modified or deleted +depending whether the optional *WORD* parameter is present or not. + +When deleting a list entry, all non-key leaves can be ignored: + +.. code:: c + + DEFPY (no_rip_distance_source, + no_rip_distance_source_cmd, + "no distance (1-255) A.B.C.D/M$prefix [WORD$acl]", + NO_STR + "Administrative distance\n" + "Distance value\n" + "IP source prefix\n" + "Access list name\n") + { + char xpath_list[XPATH_MAXLEN]; + struct cli_config_change changes[] = { + { + .xpath = ".", + .operation = NB_OP_DELETE, + }, + }; + + snprintf(xpath_list, sizeof(xpath_list), "./distance/source[prefix='%s']", + prefix_str); + + return nb_cli_cfg_change(vty, xpath_list, changes, 1); + } + +Example 5 +^^^^^^^^^ + +This example shows a DEFPY statement that performs two validations +before calling ``nb_cli_cfg_change()``: + +.. code:: c + + DEFPY (ip_rip_authentication_string, + ip_rip_authentication_string_cmd, + "ip rip authentication string LINE$password", + IP_STR + "Routing Information Protocol\n" + "Authentication control\n" + "Authentication string\n" + "Authentication string\n") + { + struct cli_config_change changes[] = { + { + .xpath = "./frr-ripd:rip/authentication/password", + .operation = NB_OP_MODIFY, + .value = password, + }, + }; + + if (strlen(password) > 16) { + vty_out(vty, + "%% RIPv2 authentication string must be shorter than 16\n"); + return CMD_WARNING_CONFIG_FAILED; + } + + if (yang_dnode_exists(vty->candidate_config->dnode, "%s%s", + VTY_GET_XPATH, + "/frr-ripd:rip/authentication/key-chain")) { + vty_out(vty, "%% key-chain configuration exists\n"); + return CMD_WARNING_CONFIG_FAILED; + } + + return nb_cli_cfg_change(vty, NULL, changes, array_size(changes)); + } + +These two validations are not strictly necessary since the configuration +change is validated using libyang afterwards. The issue with the libyang +validation is that the error messages from libyang are too verbose: + +:: + + ripd# conf t + ripd(config)# interface eth0 + ripd(config-if)# ip rip authentication string XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + % Failed to edit candidate configuration. + + Value "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" does not satisfy the constraint "1..16" (range, length, or pattern). + Failed to create node "authentication-password" as a child of "rip". + YANG path: /frr-interface:lib/interface[name='eth0'][vrf='Default-IP-Routing-Table']/frr-ripd:rip/authentication-password + +On the other hand, the original error message from ripd is much cleaner: + +:: + + ripd# conf t + ripd(config)# interface eth0 + ripd(config-if)# ip rip authentication string XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX + % RIPv2 authentication string must be shorter than 16 + +The second validation is a bit more complex. If we try to create the +``authentication/password`` leaf when the ``authentication/key-chain`` +leaf already exists (both are under a YANG *choice* statement), libyang +will automatically delete the ``authentication/key-chain`` and create +``authentication/password`` on its place. This is different from the +original ripd behavior where the *ip rip authentication key-chain* +command must be removed before configuring the *ip rip authentication +string* command. + +In the spirit of not introducing any backward-incompatible changes in +the CLI, converted commands should retain some of their validation +checks to preserve their original behavior. + +Step 6: implement the ``cli_show`` callbacks +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The traditional method used by FRR to display the running configuration +consists of looping through all CLI nodes all call their ``func`` +callbacks one by one, which in turn read the configuration from internal +variables and dump them to the terminal in the form of CLI commands. + +The problem with this approach is twofold. First, since the callbacks +read the configuration from internal variables, they can’t display +anything other than the running configuration. Second, they don’t have +the ability to display default values when requested by the user +(e.g. *show configuration candidate with-defaults*). + +The new northbound architecture solves these problems by introducing a +new callback: ``cli_show``. Here’s the signature of this function (taken +from the *lib/northbound.h* file): + +.. code:: c + + /* + * Optional callback to show the CLI command associated to the given + * YANG data node. + * + * vty + * the vty terminal to dump the configuration to + * + * dnode + * libyang data node that should be shown in the form of a CLI + * command + * + * show_defaults + * specify whether to display default configuration values or not. + * This parameter can be ignored most of the time since the + * northbound doesn't call this callback for default leaves or + * non-presence containers that contain only default child nodes. + * The exception are commands associated to multiple configuration + * options, in which case it might be desirable to hide one or more + * parts of the command when this parameter is set to false. + */ + void (*cli_show)(struct vty *vty, struct lyd_node *dnode, + bool show_defaults); + +One of the main differences to the old CLI ``func`` callbacks is that +the ``cli_show`` callbacks are associated to YANG data paths and not to +CLI nodes. This means we can define one separate callback for each CLI +command, making the code more modular and easier to maintain (among +other advantages that will be more clear later). For enhanced code +readability, it’s recommended to position the ``cli_show`` callbacks +immediately after their associated command definitions (DEFPYs). + +The ``cli_show`` callbacks are used by the ``nb_cli_show_config_cmds()`` +function to display configurations stored inside ``nb_config`` +structures. The configuration being displayed can be anything from the +running configuration (*show configuration running*), a candidate +configuration (*show configuration candidate*) or a rollback +configuration (*show configuration transaction (1-4294967296)*). The +``nb_cli_show_config_cmds()`` function works by iterating over all data +nodes from the given configuration and calling the ``cli_show`` callback +for the nodes where it’s defined. If a list has dozens of entries, the +``cli_show`` callback associated to this list will be called multiple +times with the ``dnode`` parameter pointing to different list entries on +each iteration. + +For backward compatibility with the *show running-config* command, we +can’t get rid of the CLI ``func`` callbacks at this point in time. +However, we can make the CLI ``func`` callbacks call the corresponding +``cli_show`` callbacks to avoid code duplication. The +``nb_cli_show_dnode_cmds()`` function can be used for that purpose. Once +the CLI retrofitting process finishes for all FRR daemons, we can remove +the legacy CLI ``func`` callbacks and turn *show running-config* into a +shorthand for *show configuration running*. + +Regarding displaying configuration with default values, this is +something that is taken care of by the ``nb_cli_show_config_cmds()`` +function itself. When the *show configuration* command is used without +the *with-defaults* option, ``nb_cli_show_config_cmds()`` will skip +calling ``cli_show`` callbacks for data nodes that contain only default +values (e.g. default leaves or non-presence containers that contain only +default child nodes). There are however some exceptional cases where the +implementer of the ``cli_show`` callback should take into consideration +if default values should be displayed or not. This and other concepts +will be explained in more detail in the examples below. + +.. _example-1-1: + +Example 1 +^^^^^^^^^ + +Command: ``default-metric (1-16)`` + +YANG representation: + +.. code:: yang + + leaf default-metric { + type uint8 { + range "1..16"; + } + default "1"; + description + "Default metric of redistributed routes."; + } + +Placement of the ``cli_show`` callback: + +.. code:: diff + + { + .xpath = "/frr-ripd:ripd/instance/default-metric", + .cbs.modify = ripd_instance_default_metric_modify, + + .cbs.cli_show = cli_show_rip_default_metric, + }, + +Implementation of the ``cli_show`` callback: + +.. code:: c + + void cli_show_rip_default_metric(struct vty *vty, struct lyd_node *dnode, + bool show_defaults) + { + vty_out(vty, " default-metric %s\n", + yang_dnode_get_string(dnode, NULL)); + } + +In this first example, the *default-metric* command was modeled using a +YANG leaf, and we added a new ``cli_show`` callback attached to the YANG +path of this leaf. + +The callback makes use of the ``yang_dnode_get_string()`` function to +obtain the string value of the configuration option. The following would +also be possible: + +.. code:: c + + vty_out(vty, " default-metric %u\n", + yang_dnode_get_uint8(dnode, NULL)); + +Both options are possible because libyang stores both a binary +representation and a textual representation of all values stored in a +data node (``lyd_node``). For simplicity, it’s recommended to always use +``yang_dnode_get_string()`` in the ``cli_show`` callbacks. + +.. _example-2-1: + +Example 2 +^^^^^^^^^ + +Command: ``router rip`` + +YANG representation: + +.. code:: yang + + container instance { + presence "Present if the RIP protocol is enabled."; + description + "RIP routing instance."; + [snip] + } + +Placement of the ``cli_show`` callback: + +.. code:: diff + + { + .xpath = "/frr-ripd:ripd/instance", + .cbs.create = ripd_instance_create, + .cbs.delete = ripd_instance_delete, + + .cbs.cli_show = cli_show_router_rip, + }, + +Implementation of the ``cli_show`` callback: + +.. code:: c + + void cli_show_router_rip(struct vty *vty, struct lyd_node *dnode, + bool show_defaults) + { + vty_out(vty, "!\n"); + vty_out(vty, "router rip\n"); + } + +In this example, the ``cli_show`` callback doesn’t need to obtain any +value from the ``dnode`` parameter since presence-containers don’t hold +any data (apart from their child nodes, but they have their own +``cli_show`` callbacks). + +.. _example-3-1: + +Example 3 +^^^^^^^^^ + +Command: ``timers basic (5-2147483647) (5-2147483647) (5-2147483647)`` + +YANG representation: + +.. code:: yang + + container timers { + description + "Settings of basic timers"; + leaf flush-interval { + type uint32 { + range "5..2147483647"; + } + units "seconds"; + default "120"; + description + "Interval before a route is flushed from the routing + table."; + } + leaf holddown-interval { + type uint32 { + range "5..2147483647"; + } + units "seconds"; + default "180"; + description + "Interval before better routes are released."; + } + leaf update-interval { + type uint32 { + range "5..2147483647"; + } + units "seconds"; + default "30"; + description + "Interval at which RIP updates are sent."; + } + } + +Placement of the ``cli_show`` callback: + +.. code:: diff + + { + + .xpath = "/frr-ripd:ripd/instance/timers", + + .cbs.cli_show = cli_show_rip_timers, + + }, + + { + .xpath = "/frr-ripd:ripd/instance/timers/flush-interval", + .cbs.modify = ripd_instance_timers_flush_interval_modify, + }, + { + .xpath = "/frr-ripd:ripd/instance/timers/holddown-interval", + .cbs.modify = ripd_instance_timers_holddown_interval_modify, + }, + { + .xpath = "/frr-ripd:ripd/instance/timers/update-interval", + .cbs.modify = ripd_instance_timers_update_interval_modify, + }, + +Implementation of the ``cli_show`` callback: + +.. code:: c + + void cli_show_rip_timers(struct vty *vty, struct lyd_node *dnode, + bool show_defaults) + { + vty_out(vty, " timers basic %s %s %s\n", + yang_dnode_get_string(dnode, "./update-interval"), + yang_dnode_get_string(dnode, "./holddown-interval"), + yang_dnode_get_string(dnode, "./flush-interval")); + } + +This command is a bit different since it changes three leaves at the +same time. This means we need to have a single ``cli_show`` callback in +order to display the three leaves together in the same line. + +The new ``cli_show_rip_timers()`` callback was added attached to the +*timers* non-presence container that groups the three leaves. Without +the *timers* non-presence container we’d need to display the *timers +basic* command inside the ``cli_show_router_rip()`` callback, which +would break our requirement of having a separate ``cli_show`` callback +for each configuration command. + +.. _example-4-1: + +Example 4 +^^^^^^^^^ + +Command: +``redistribute <kernel|connected|static|ospf|isis|bgp|eigrp|nhrp|table|vnc|babel|sharp> [{metric (0-16)|route-map WORD}]`` + +YANG representation: + +.. code:: yang + + list redistribute { + key "protocol"; + description + "Redistributes routes learned from other routing protocols."; + leaf protocol { + type frr-route-types:frr-route-types-v4; + description + "Routing protocol."; + must '. != "rip"'; + } + leaf route-map { + type string { + length "1..max"; + } + description + "Applies the conditions of the specified route-map to + routes that are redistributed into the RIP routing + instance."; + } + leaf metric { + type uint8 { + range "0..16"; + } + description + "Metric used for the redistributed route. If a metric is + not specified, the metric configured with the + default-metric attribute in RIP router configuration is + used. If the default-metric attribute has not been + configured, the default metric for redistributed routes + is 0."; + } + } + +Placement of the ``cli_show`` callback: + +.. code:: diff + + { + .xpath = "/frr-ripd:ripd/instance/redistribute", + .cbs.create = ripd_instance_redistribute_create, + .cbs.delete = ripd_instance_redistribute_delete, + + .cbs.cli_show = cli_show_rip_redistribute, + }, + { + .xpath = "/frr-ripd:ripd/instance/redistribute/route-map", + .cbs.modify = ripd_instance_redistribute_route_map_modify, + .cbs.delete = ripd_instance_redistribute_route_map_delete, + }, + { + .xpath = "/frr-ripd:ripd/instance/redistribute/metric", + .cbs.modify = ripd_instance_redistribute_metric_modify, + .cbs.delete = ripd_instance_redistribute_metric_delete, + }, + +Implementation of the ``cli_show`` callback: + +.. code:: c + + void cli_show_rip_redistribute(struct vty *vty, struct lyd_node *dnode, + bool show_defaults) + { + vty_out(vty, " redistribute %s", + yang_dnode_get_string(dnode, "./protocol")); + if (yang_dnode_exists(dnode, "./metric")) + vty_out(vty, " metric %s", + yang_dnode_get_string(dnode, "./metric")); + if (yang_dnode_exists(dnode, "./route-map")) + vty_out(vty, " route-map %s", + yang_dnode_get_string(dnode, "./route-map")); + vty_out(vty, "\n"); + } + +Similar to the previous example, the *redistribute* command changes +several leaves at the same time, and we need a single callback to +display all leaves in a single line in accordance to the CLI command. In +this case, the leaves are already grouped by a YANG list so there’s no +need to add a non-presence container. The new ``cli_show`` callback was +attached to the YANG path of the list. + +It’s also worth noting the use of the ``yang_dnode_exists()`` function +to check if optional leaves exist in the configuration before displaying +them. + +.. _example-5-1: + +Example 5 +^^^^^^^^^ + +Command: +``ip rip authentication mode <md5 [auth-length <rfc|old-ripd>]|text>`` + +YANG representation: + +.. code:: yang + + container authentication-scheme { + description + "Specify the authentication scheme for the RIP interface"; + leaf mode { + type enumeration { + [snip] + } + default "none"; + description + "Specify the authentication mode."; + } + leaf md5-auth-length { + when "../mode = 'md5'"; + type enumeration { + [snip] + } + default "20"; + description + "MD5 authentication data length."; + } + } + +Placement of the ``cli_show`` callback: + +.. code:: diff + + + { + + .xpath = "/frr-interface:lib/interface/frr-ripd:rip/authentication-scheme", + + .cbs.cli_show = cli_show_ip_rip_authentication_scheme, + }, + { + .xpath = "/frr-interface:lib/interface/frr-ripd:rip/authentication-scheme/mode", + .cbs.modify = lib_interface_rip_authentication_scheme_mode_modify, + }, + { + .xpath = "/frr-interface:lib/interface/frr-ripd:rip/authentication-scheme/md5-auth-length", + .cbs.modify = lib_interface_rip_authentication_scheme_md5_auth_length_modify, + .cbs.delete = lib_interface_rip_authentication_scheme_md5_auth_length_delete, + }, + +Implementation of the ``cli_show`` callback: + +.. code:: c + + void cli_show_ip_rip_authentication_scheme(struct vty *vty, + struct lyd_node *dnode, + bool show_defaults) + { + switch (yang_dnode_get_enum(dnode, "./mode")) { + case RIP_NO_AUTH: + vty_out(vty, " no ip rip authentication mode\n"); + break; + case RIP_AUTH_SIMPLE_PASSWORD: + vty_out(vty, " ip rip authentication mode text\n"); + break; + case RIP_AUTH_MD5: + vty_out(vty, " ip rip authentication mode md5"); + if (show_defaults + || !yang_dnode_is_default(dnode, "./md5-auth-length")) { + if (yang_dnode_get_enum(dnode, "./md5-auth-length") + == RIP_AUTH_MD5_SIZE) + vty_out(vty, " auth-length rfc"); + else + vty_out(vty, " auth-length old-ripd"); + } + vty_out(vty, "\n"); + break; + } + } + +This is the most complex ``cli_show`` callback we have in ripd. Its +complexity comes from the following: \* The +``ip rip authentication mode ...`` command changes two YANG leaves at +the same time. \* Part of the command should be hidden when the +``show_defaults`` parameter is set to false. + +This is the behavior we want to implement: + +:: + + ripd(config)# interface eth0 + ripd(config-if)# ip rip authentication mode md5 + ripd(config-if)# + ripd(config-if)# show configuration candidate + Configuration: + ! + [snip] + ! + interface eth0 + ip rip authentication mode md5 + ! + end + ripd(config-if)# + ripd(config-if)# show configuration candidate with-defaults + Configuration: + ! + [snip] + ! + interface eth0 + [snip] + ip rip authentication mode md5 auth-length old-ripd + ! + end + +Note that ``auth-length old-ripd`` should be hidden unless the +configuration is shown using the *with-defaults* option. This is why the +``cli_show_ip_rip_authentication_scheme()`` callback needs to consult +the value of the *show_defaults* parameter. It’s expected that only a +very small minority of all ``cli_show`` callbacks will need to consult +the *show_defaults* parameter (there’s a chance this might be the only +case!) + +In the case of the *timers basic* command seen before, we need to +display the value of all leaves even if only one of them has a value +different from the default. Hence the ``cli_show_rip_timers()`` callback +was able to completely ignore the *show_defaults* parameter. + +Step 7: consolidation +~~~~~~~~~~~~~~~~~~~~~ + +As mentioned in the fourth step, the northbound retrofitting process can +happen gradually over time, since both “old” and “new” commands can +coexist without problems. Once all commands from a given daemon were +converted, we can proceed to the consolidation step, which consists of +the following: \* Remove the vty configuration lock, which is enabled by +default in all daemons. Now multiple users should be able to edit the +configuration concurrently, using either shared or private candidate +configurations. \* Reference commit: +`57dccdb1 <https://github.com/opensourcerouting/frr/commit/57dccdb18b799556214dcfb8943e248c0bf1f6a6>`__. +\* Stop using the qobj infrastructure to keep track of configuration +objects. This is not necessary anymore, the northbound uses a similar +mechanism to keep track of YANG data nodes in the candidate +configuration. \* Reference commit: +`4e6d63ce <https://github.com/opensourcerouting/frr/commit/4e6d63cebd988af650c1c29d0f2e5a251c8d2e7a>`__. +\* Make the daemon SIGHUP handler re-read the configuration file (and +ensure it’s not doing anything other than that). \* Reference commit: +`5e57edb4 <https://github.com/opensourcerouting/frr/commit/5e57edb4b71ff03f9a22d9ec1412c3c5167f90cf>`__. + +Final Considerations +-------------------- + +Testing +^^^^^^^ + +Converting CLI commands to the new northbound model can be a complicated +task for beginners, but the more commands one converts, the easier it +gets. It’s highly recommended to perform as much testing as possible on +the converted commands to reduce the likelihood of introducing +regressions. Tools like topotests, ANVL and the `CLI +fuzzer <https://github.com/rwestphal/frr-cli-fuzzer>`__ can be used to +catch hidden bugs that might be present. As usual, it’s also recommended +to use valgrind and static code analyzers to catch other types of +problems like memory leaks. + +Amount of work +^^^^^^^^^^^^^^ + +The output below gives a rough estimate of the total number of +configuration commands that need to be converted per daemon: + +.. code:: sh + + $ for dir in lib zebra bgpd ospfd ospf6d isisd ripd ripngd eigrpd pimd pbrd ldpd nhrpd babeld ; do echo -n "$dir: " && cd $dir && grep -ERn "DEFUN|DEFPY" * | grep -Ev "clippy|show|clear" | wc -l && cd ..; done + lib: 302 + zebra: 181 + bgpd: 569 + ospfd: 198 + ospf6d: 99 + isisd: 126 + ripd: 64 + ripngd: 44 + eigrpd: 58 + pimd: 113 + pbrd: 9 + ldpd: 46 + nhrpd: 24 + babeld: 28 + +As it can be seen, the northbound retrofitting process will demand a lot +of work from FRR developers and should take months to complete. Everyone +is welcome to collaborate! diff --git a/doc/developer/northbound/transactional-cli.rst b/doc/developer/northbound/transactional-cli.rst new file mode 100644 index 000000000..439bb6afc --- /dev/null +++ b/doc/developer/northbound/transactional-cli.rst @@ -0,0 +1,244 @@ +Table of Contents +----------------- + +- `Introduction <#introduction>`__ +- `Configuration modes <#config-modes>`__ +- `New commands <#retrofitting-process>`__ + + - `commit check <#cmd1>`__ + - `commit <#cmd2>`__ + - `discard <#cmd3>`__ + - `configuration database max-transactions <#cmd4>`__ + - `configuration load <#cmd5>`__ + - `rollback configuration <#cmd6>`__ + - `show configuration candidate <#cmd7>`__ + - `show configuration compare <#cmd8>`__ + - `show configuration running <#cmd9>`__ + - `show configuration transaction <#cmd10>`__ + - `show yang module <#cmd11>`__ + - `show yang module-translator <#cmd12>`__ + - `update <#cmd13>`__ + - `yang module-translator load <#cmd14>`__ + - `yang module-translator unload <#cmd15>`__ + +Introduction +~~~~~~~~~~~~ + +All FRR daemons have built-in support for the CLI, which can be accessed +either through local telnet or via the vty socket (e.g. by using +*vtysh*). This will not change with the introduction of the Northbound +API. However, a new command-line option will be available for all FRR +daemons: ``--tcli``. When given, this option makes the daemon start with +a transactional CLI and configuration commands behave a bit different. +Instead of editing the running configuration, they will edit the +candidate configuration. In other words, the configuration commands +won’t be applied immediately, that has to be done on a separate step +using the new ``commit`` command. + +The transactional CLI simply leverages the new capabilities provided by +the Northbound API and exposes the concept of candidate configurations +to CLI users too. When the transactional mode is not used, the +configuration commands also edit the candidate configuration, but +there’s an implicit ``commit`` after each command. + +In order for the transactional CLI to work, all configuration commands +need to be converted to the new northbound model. Commands not converted +to the new northbound model will change the running configuration +directly since they bypass the FRR northbound layer. For this reason, +starting a daemon with the transactional CLI is not advisable unless all +of its commands have already been converted. When that’s not the case, +we can run into a situation like this: + +:: + + ospfd(config)# router ospf + ospfd(config-router)# ospf router-id 1.1.1.1 + [segfault in ospfd] + +The segfault above can happen if ``router ospf`` edits the candidate +configuration but ``ospf router-id 1.1.1.1`` edits the running +configuration. The second command tries to set +``ospf->router_id_static`` but, since the previous ``router ospf`` +command hasn’t been commited yet, the ``ospf`` global variable is set to +NULL, which leads to the crash. Besides this problem, having a set of +commands that edit the candidate configuration and others that edit the +running configuration is confusing at best. The ``--tcli`` option should +be used only by developers until the northbound retrofitting process is +complete. + +Configuration modes +~~~~~~~~~~~~~~~~~~~ + +When using the transactional CLI (``--tcli``), FRR supports three +different forms of the ``configure`` command: \* ``configure terminal``: +in this mode, a single candidate configuration is shared by all users. +This means that one user might delete a configuration object that’s +being edited by another user, in which case the CLI will detect and +report the problem. If one user issues the ``commit`` command, all +changes done by all users are committed. \* ``configure private``: users +have a private candidate configuration that is edited separately from +the other users. The ``commit`` command commits only the changes done by +the user. \* ``configure exclusive``: similar to ``configure private``, +but also locks the running configuration to prevent other users from +changing it. The configuration lock is released when the user exits the +configuration mode. + +When using ``configure terminal`` or ``configure private``, the +candidate configuration being edited might become outdated if another +user commits a different candidate configuration on another session. +TODO: show image to illustrate the problem. + +New commands +~~~~~~~~~~~~ + +The list below contains the new CLI commands introduced by Northbound +API. The commands are available when a daemon is started using the +transactional CLI (``--tcli``). Currently ``vtysh`` doesn’t support any +of these new commands. + +Please refer to the [[Demos]] page to see a demo of the transactional +CLI in action. + +-------------- + +``commit check`` +'''''''''''''''' + +Check if the candidate configuration is valid or not. + +``commit [force] [comment LINE...]`` +'''''''''''''''''''''''''''''''''''' + +Commit the changes done in the candidate configuration into the running +configuration. + +Options: \* ``force``: commit even if the candidate configuration is +outdated. It’s usually a better option to use the ``update`` command +instead. \* ``comment LINE...``: assign a comment to the configuration +transaction. This comment is displayed when viewing the recorded +transactions in the output of the ``show configuration transaction`` +command. + +``discard`` +''''''''''' + +Discard the changes done in the candidate configuration. + +``configuration database max-transactions (1-100)`` +''''''''''''''''''''''''''''''''''''''''''''''''''' + +Set the maximum number of transactions to store in the rollback log. + +``configuration load <file [<json|xml> [translate WORD]] FILENAME|transaction (1-4294967296)> [replace]`` +''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' + +Load a new configuration into the candidate configuration. When loading +the configuration from a file, it’s assumed that the configuration will +be in the form of CLI commands by default. The ``json`` and ``xml`` +options can be used to load configurations in the JSON and XML formats, +respectively. It’s also possible to load a configuration from a previous +transaction by specifying the desired transaction ID +(``(1-4294967296)``). + +Options: \* ``translate WORD``: translate the JSON/XML configuration +file using the YANG module translator. \* ``replace``: replace the +candidate by the loaded configuration. The default is to merge the +loaded configuration into the candidate configuration. + +``rollback configuration (1-4294967296)`` +''''''''''''''''''''''''''''''''''''''''' + +Roll back the running configuration to a previous configuration +identified by its transaction ID (``(1-4294967296)``). + +``show configuration candidate [<json|xml> [translate WORD]] [<with-defaults|changes>]`` +'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' + +Show the candidate configuration. + +Options: \* ``json``: show the configuration in the JSON format. \* +``xml``: show the configuration in the XML format. \* +``translate WORD``: translate the JSON/XML output using the YANG module +translator. \* ``with-defaults``: show default values that are hidden by +default. \* ``changes``: show only the changes done in the candidate +configuration. + +``show configuration compare <candidate|running|transaction (1-4294967296)> <candidate|running|transaction (1-4294967296)> [<json|xml> [translate WORD]]`` +'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' + +Show the difference between two different configurations. + +Options: \* ``json``: show the configuration differences in the JSON +format. \* ``xml``: show the configuration differences in the XML +format. \* ``translate WORD``: translate the JSON/XML output using the +YANG module translator. + +``show configuration running [<json|xml> [translate WORD]] [with-defaults]`` +'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' + +Show the running configuration. + +Options: \* ``json``: show the configuration in the JSON format. \* +``xml``: show the configuration in the XML format. \* +``translate WORD``: translate the JSON/XML output using the YANG module +translator. \* ``with-defaults``: show default values that are hidden by +default. + + NOTE: ``show configuration running`` shows only the running + configuration as known by the northbound layer. Configuration + commands not converted to the new northbound model will not be + displayed. To show the full running configuration, the legacy + ``show running-config`` command must be used. + +``show configuration transaction [(1-4294967296) [<json|xml> [translate WORD]] [changes]]`` +''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' + +When a transaction ID (``(1-4294967296)``) is given, show the +configuration associated to the previously committed transaction. + +When a transaction ID is not given, show all recorded transactions in +the rollback log. + +Options: \* ``json``: show the configuration in the JSON format. \* +``xml``: show the configuration in the XML format. \* +``translate WORD``: translate the JSON/XML output using the YANG module +translator. \* ``with-defaults``: show default values that are hidden by +default. \* ``changes``: show changes compared to the previous +transaction. + +``show yang module [module-translator WORD] [WORD <summary|tree|yang|yin>]`` +'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' + +When a YANG module is not given, show all loaded YANG modules. +Otherwise, show detailed information about the given module. + +Options: \* ``module-translator WORD``: change the context to modules +loaded by the specified YANG module translator. \* ``summary``: display +summary information about the module. \* ``tree``: display module in the +tree (RFC 8340) format. \* ``yang``: display module in the YANG format. +\* ``yin``: display module in the YIN format. + +``show yang module-translator`` +''''''''''''''''''''''''''''''' + +Show all loaded YANG module translators. + +``update`` +'''''''''' + +Rebase the candidate configuration on top of the latest running +configuration. Conflicts are resolved automatically by giving preference +to the changes done in the candidate configuration. + +The candidate configuration might be outdated if the running +configuration was updated after the candidate was created. + +``yang module-translator load FILENAME`` +'''''''''''''''''''''''''''''''''''''''' + +Load a YANG module translator from the filesystem. + +``yang module-translator unload WORD`` +'''''''''''''''''''''''''''''''''''''' + +Unload a YANG module translator identified by its name. diff --git a/doc/developer/northbound/yang-module-translator.rst b/doc/developer/northbound/yang-module-translator.rst new file mode 100644 index 000000000..aa527ce6b --- /dev/null +++ b/doc/developer/northbound/yang-module-translator.rst @@ -0,0 +1,629 @@ +Table of Contents +----------------- + +- `Introduction <#introduction>`__ +- `Deviation Modules <#deviation-modules>`__ +- `Translation Tables <#translation-tables>`__ +- `CLI Demonstration <#cli-demonstration>`__ +- `Implementation Details <#implementation-details>`__ + +Introduction +------------ + +One key requirement for the FRR northbound architecture is that it +should be possible to configure/monitor FRR using different sets of YANG +models. This is especially important considering that the industry +hasn’t reached a consensus to provide a single source of standard models +for network management. At this moment both the IETF and OpenConfig +models are widely implemented and are unlikely to converge, at least not +in the short term. In the ideal scenario, management applications should +be able to use either IETF or OpenConfig models to configure and monitor +FRR programatically (or even both at the same time!). + +But how can FRR support multiple sets of YANG models at the same time? +There must be only a single source of truth that models the existing +implementation accurately (the native models). Writing different code +paths or callbacks for different models would be inviable, it would lead +to a lot of duplicated code and extra maintenance overhead. + +In order to support different sets of YANG modules without introducing +the overhead of writing additional code, the solution is to create a +mechanism that dynamically translates YANG instance data between +non-native models to native models and vice-versa. Based on this idea, +an experimental YANG module translator was implemented within the FRR +northbound layer. The translator works by translating XPaths at runtime +using translation tables provided by the user. The translator itself is +modeled using YANG and users can create translators using simple JSON +files. + +A YANG module translator consists of two components: deviation modules +and translation tables. + +Deviation Modules +----------------- + +The first step when writing a YANG module translator is to create a +`deviations <https://tools.ietf.org/html/rfc7950#page-131>`__ module for +each module that is going be translated. This is necessary because in +most cases it won’t be possible to create a perfect translator that +covers the non-native models on their entirety. Some non-native modules +might contain nodes that can’t be mapped to a corresponding node in the +FRR native models. This is either because the corresponding +functionality is not implemented in FRR or because it’s modeled in a +different way that is incompatible. + +An an example, *ripd* doesn’t have BFD support yet, so we need to create +a YANG deviation to modify the *ietf-rip* module and remove the ``bfd`` +container from it: + +.. code:: yang + + deviation "/ietf-routing:routing/ietf-routing:control-plane-protocols/ietf-routing:control-plane-protocol/ietf-rip:rip/ietf-rip:interfaces/ietf-rip:interface/ietf-rip:bfd" { + deviate not-supported; + } + +In the example below, while both the *frr-ripd* and *ietf-rip* modules +support RIP authentication, they model the authentication data in +different ways, making translation not possible given the constraints of +the current module translator. A new deviation is necessary to remove +the ``authentication`` container from the *ietf-rip* module: + +.. code:: yang + + deviation "/ietf-routing:routing/ietf-routing:control-plane-protocols/ietf-routing:control-plane-protocol/ietf-rip:rip/ietf-rip:interfaces/ietf-rip:interface/ietf-rip:authentication" { + deviate not-supported; + } + +.. + + NOTE: it should be possible to translate the + ``ietf-rip:authentication`` container if the *frr-ripd* module is + modified to model the corresponding data in a compatible way. Another + option is to improve the module translator to make more complex + translations possible, instead of requiring one-to-one XPath + mappings. + +Sometimes creating a mapping between nodes from the native and +non-native models is possible, but the nodes have different properties +that need to be normalized to allow the translation. In the example +below, a YANG deviation is used to change the type and the default value +from a node from the ``ietf-rip`` module. + +.. code:: yang + + deviation "/ietf-routing:routing/ietf-routing:control-plane-protocols/ietf-routing:control-plane-protocol/ietf-rip:rip/ietf-rip:timers/ietf-rip:flush-interval" { + deviate replace { + default "120"; + } + deviate replace { + type uint32; + } + } + +The deviation modules allow the management applications to know which +parts of the custom modules (e.g. IETF/OC) can be used to configure and +monitor FRR. + +In order to facilitate the process of creating YANG deviation modules, +the *gen_yang_deviations* tool was created to automate part of the +process. This tool creates a “not-supported” deviation for all nodes +from the given non-native module. Example: + +:: + + $ tools/gen_yang_deviations ietf-rip > yang/ietf/frr-deviations-ietf-rip.yang + $ head -n 40 yang/ietf/frr-deviations-ietf-rip.yang + deviation "/ietf-rip:clear-rip-route" { + deviate not-supported; + } + + deviation "/ietf-rip:clear-rip-route/ietf-rip:input" { + deviate not-supported; + } + + deviation "/ietf-rip:clear-rip-route/ietf-rip:input/ietf-rip:rip-instance" { + deviate not-supported; + } + + deviation "/ietf-routing:routing/ietf-routing:control-plane-protocols/ietf-routing:control-plane-protocol/ietf-rip:rip" { + deviate not-supported; + } + + deviation "/ietf-routing:routing/ietf-routing:control-plane-protocols/ietf-routing:control-plane-protocol/ietf-rip:rip/ietf-rip:originate-default-route" { + deviate not-supported; + } + + deviation "/ietf-routing:routing/ietf-routing:control-plane-protocols/ietf-routing:control-plane-protocol/ietf-rip:rip/ietf-rip:originate-default-route/ietf-rip:enabled" { + deviate not-supported; + } + + deviation "/ietf-routing:routing/ietf-routing:control-plane-protocols/ietf-routing:control-plane-protocol/ietf-rip:rip/ietf-rip:originate-default-route/ietf-rip:route-policy" { + deviate not-supported; + } + + deviation "/ietf-routing:routing/ietf-routing:control-plane-protocols/ietf-routing:control-plane-protocol/ietf-rip:rip/ietf-rip:default-metric" { + deviate not-supported; + } + + deviation "/ietf-routing:routing/ietf-routing:control-plane-protocols/ietf-routing:control-plane-protocol/ietf-rip:rip/ietf-rip:distance" { + deviate not-supported; + } + + deviation "/ietf-routing:routing/ietf-routing:control-plane-protocols/ietf-routing:control-plane-protocol/ietf-rip:rip/ietf-rip:triggered-update-threshold" { + deviate not-supported; + } + +Once all existing nodes are listed in the deviation module, it’s easy to +check the deviations that need to be removed or modified. This is more +convenient than starting with a blank deviations module and listing +manually all nodes that need to be deviated. + +After removing and/or modifying the auto-generated deviations, the next +step is to write the module XPath translation table as we’ll see in the +next section. Before that, it’s possible to use the *yanglint* tool to +check how the non-native module looks like after applying the +deviations. Example: + +:: + + $ yanglint -f tree yang/ietf/ietf-rip@2018-02-03.yang yang/ietf/frr-deviations-ietf-rip.yang + module: ietf-rip + + augment /ietf-routing:routing/ietf-routing:control-plane-protocols/ietf-routing:control-plane-protocol: + +--rw rip + +--rw originate-default-route + | +--rw enabled? boolean <false> + +--rw default-metric? uint8 <1> + +--rw distance? uint8 <0> + +--rw timers + | +--rw update-interval? uint32 <30> + | +--rw holddown-interval? uint32 <180> + | +--rw flush-interval? uint32 <120> + +--rw interfaces + | +--rw interface* [interface] + | +--rw interface ietf-interfaces:interface-ref + | +--rw split-horizon? enumeration <simple> + +--ro ipv4 + +--ro neighbors + | +--ro neighbor* [ipv4-address] + | +--ro ipv4-address ietf-inet-types:ipv4-address + | +--ro last-update? ietf-yang-types:date-and-time + | +--ro bad-packets-rcvd? ietf-yang-types:counter32 + | +--ro bad-routes-rcvd? ietf-yang-types:counter32 + +--ro routes + +--ro route* [ipv4-prefix] + +--ro ipv4-prefix ietf-inet-types:ipv4-prefix + +--ro next-hop? ietf-inet-types:ipv4-address + +--ro interface? ietf-interfaces:interface-ref + +--ro metric? uint8 + + rpcs: + +---x clear-rip-route + +.. + + NOTE: the same output can be obtained using the + ``show yang module module-translator ietf ietf-rip tree`` command in + FRR once the *ietf* module translator is loaded. + +In the example above, it can be seen that the vast majority of the +*ietf-rip* nodes were removed because of the “not-supported” deviations. +When a module translator is loaded, FRR calculates the coverage of the +translator by dividing the number of YANG nodes before applying the +deviations by the number of YANG nodes after applying the deviations. +The calculated coverage is displayed in the output of the +``show yang module-translator`` command: + +:: + + ripd# show yang module-translator + Family Module Deviations Coverage (%) + ----------------------------------------------------------------------- + ietf ietf-interfaces frr-deviations-ietf-interfaces 3.92 + ietf ietf-routing frr-deviations-ietf-routing 1.56 + ietf ietf-rip frr-deviations-ietf-rip 13.60 + +As it can be seen in the output above, the *ietf* module translator +covers only ~13% of the original *ietf-rip* module. This is in part +because the *ietf-rip* module models both RIPv2 and RIPng. Also, +*ietf-rip.yang* contains several knobs that aren’t implemented in *ripd* +yet (e.g. BFD support, per-interface timers, statistics, etc). Work can +be done over time to increase the coverage to a more reasonable number. + +Translation Tables +------------------ + +Below is an example of a translator for the IETF family of models: + +.. code:: json + + { + "frr-module-translator:frr-module-translator": { + "family": "ietf", + "module": [ + { + "name": "ietf-interfaces@2018-01-09", + "deviations": "frr-deviations-ietf-interfaces", + "mappings": [ + { + "custom": "/ietf-interfaces:interfaces/interface[name='KEY1']", + "native": "/frr-interface:lib/interface[name='KEY1'][vrf='default']" + }, + { + "custom": "/ietf-interfaces:interfaces/interface[name='KEY1']/description", + "native": "/frr-interface:lib/interface[name='KEY1'][vrf='default']/description" + } + ] + }, + { + "name": "ietf-routing@2018-01-25", + "deviations": "frr-deviations-ietf-routing", + "mappings": [ + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol[type='ietf-rip:ripv2'][name='main']", + "native": "/frr-ripd:ripd/instance" + } + ] + }, + { + "name": "ietf-rip@2018-02-03", + "deviations": "frr-deviations-ietf-rip", + "mappings": [ + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol[type='ietf-rip:ripv2'][name='main']/ietf-rip:rip/default-metric", + "native": "/frr-ripd:ripd/instance/default-metric" + }, + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol[type='ietf-rip:ripv2'][name='main']/ietf-rip:rip/distance", + "native": "/frr-ripd:ripd/instance/distance/default" + }, + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol[type='ietf-rip:ripv2'][name='main']/ietf-rip:rip/originate-default-route/enabled", + "native": "/frr-ripd:ripd/instance/default-information-originate" + }, + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol[type='ietf-rip:ripv2'][name='main']/ietf-rip:rip/timers/update-interval", + "native": "/frr-ripd:ripd/instance/timers/update-interval" + }, + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol[type='ietf-rip:ripv2'][name='main']/ietf-rip:rip/timers/holddown-interval", + "native": "/frr-ripd:ripd/instance/timers/holddown-interval" + }, + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol[type='ietf-rip:ripv2'][name='main']/ietf-rip:rip/timers/flush-interval", + "native": "/frr-ripd:ripd/instance/timers/flush-interval" + }, + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol[type='ietf-rip:ripv2'][name='main']/ietf-rip:rip/interfaces/interface[interface='KEY1']", + "native": "/frr-ripd:ripd/instance/interface[.='KEY1']" + }, + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol[type='ietf-rip:ripv2'][name='main']/ietf-rip:rip/interfaces/interface[interface='KEY1']/split-horizon", + "native": "/frr-interface:lib/interface[name='KEY1'][vrf='default']/frr-ripd:rip/split-horizon" + }, + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol/ietf-rip:rip/ipv4/neighbors/neighbor[ipv4-address='KEY1']", + "native": "/frr-ripd:ripd/state/neighbors/neighbor[address='KEY1']" + }, + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol/ietf-rip:rip/ipv4/neighbors/neighbor[ipv4-address='KEY1']/last-update", + "native": "/frr-ripd:ripd/state/neighbors/neighbor[address='KEY1']/last-update" + }, + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol/ietf-rip:rip/ipv4/neighbors/neighbor[ipv4-address='KEY1']/bad-packets-rcvd", + "native": "/frr-ripd:ripd/state/neighbors/neighbor[address='KEY1']/bad-packets-rcvd" + }, + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol/ietf-rip:rip/ipv4/neighbors/neighbor[ipv4-address='KEY1']/bad-routes-rcvd", + "native": "/frr-ripd:ripd/state/neighbors/neighbor[address='KEY1']/bad-routes-rcvd" + }, + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol/ietf-rip:rip/ipv4/routes/route[ipv4-prefix='KEY1']", + "native": "/frr-ripd:ripd/state/routes/route[prefix='KEY1']" + }, + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol/ietf-rip:rip/ipv4/routes/route[ipv4-prefix='KEY1']/next-hop", + "native": "/frr-ripd:ripd/state/routes/route[prefix='KEY1']/next-hop" + }, + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol/ietf-rip:rip/ipv4/routes/route[ipv4-prefix='KEY1']/interface", + "native": "/frr-ripd:ripd/state/routes/route[prefix='KEY1']/interface" + }, + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol/ietf-rip:rip/ipv4/routes/route[ipv4-prefix='KEY1']/metric", + "native": "/frr-ripd:ripd/state/routes/route[prefix='KEY1']/metric" + }, + { + "custom": "/ietf-rip:clear-rip-route", + "native": "/frr-ripd:clear-rip-route" + } + ] + } + ] + } + } + +The main motivation to use YANG itself to model YANG module translators +was a practical one: leverage *libyang* to validate the structure of the +user input (JSON files) instead of doing that manually in the +*lib/yang_translator.c* file (tedious and error-prone work). + +Module translators can be loaded using the following CLI command: + +:: + + ripd(config)# yang module-translator load /usr/local/share/yang/ietf/frr-ietf-translator.json + % Module translator "ietf" loaded successfully. + +Module translators can also be loaded/unloaded programatically using the +``yang_translator_load()/yang_translator_unload()`` functions within the +northbound plugins. These functions are documented in the +*lib/yang_translator.h* file. + +Each module translator must be assigned a “family” identifier +(e.g. IETF, OpenConfig), and can contain mappings for multiple +interrelated YANG modules. The mappings consist of pairs of +custom/native XPath expressions that should be equivalent, despite +belonging to different YANG modules. + +Example: + +.. code:: json + + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol[type='ietf-rip:ripv2'][name='main']/ietf-rip:rip/default-metric", + "native": "/frr-ripd:ripd/instance/default-metric" + }, + +The nodes pointed by the custom and native XPaths must have compatible +types. In the case of the example above, both nodes point to a YANG leaf +of type ``uint8``, so the mapping is valid. + +In the example below, the “custom” XPath points to a YANG list +(typeless), and the “native” XPath points to a YANG leaf-list of +strings. In this exceptional case, the types are also considered to be +compatible. + +.. code:: json + + { + "custom": "/ietf-routing:routing/control-plane-protocols/control-plane-protocol[type='ietf-rip:ripv2'][name='main']/ietf-rip:rip/interfaces/interface[interface='KEY1']", + "native": "/frr-ripd:ripd/instance/interface[.='KEY1']" + }, + +The ``KEY1..KEY4`` values have a special meaning and are used to +preserve the list keys while performing the XPath translation. + +Once a YANG module translator is loaded and validated at a syntactic +level using *libyang*, further validations are performed to check for +missing mappings (after loading the deviation modules) and incompatible +YANG types. Example: + +:: + + ripd(config)# yang module-translator load /usr/local/share/yang/ietf/frr-ietf-translator.json + % Failed to load "/usr/local/share/yang/ietf/frr-ietf-translator.json" + + Please check the logs for more details. + +:: + + 2018/09/03 15:18:45 RIP: yang_translator_validate_cb: YANG types are incompatible (xpath: "/ietf-routing:routing/control-plane-protocols/control-plane-protocol/ietf-rip:rip/default-metric") + 2018/09/03 15:18:45 RIP: yang_translator_validate_cb: missing mapping for "/ietf-routing:routing/control-plane-protocols/control-plane-protocol/ietf-rip:rip/distance" + 2018/09/03 15:18:45 RIP: yang_translator_validate: failed to validate "ietf" module translator: 2 error(s) + +Overall, this translation mechanism based on XPath mappings is simple +and functional, but only to a certain extent. The native models need to +be reasonably similar to the models that are going be translated, +otherwise the translation is compromised and a good coverage can’t be +achieved. Other translation techniques must be investigated to address +this shortcoming and make it possible to create more powerful YANG +module translators. + +YANG module translators can be evaluated based on the following metrics: +\* Translation potential: is it possible to make complex translations, +taking several variables into account? \* Complexity: measure of how +easy or hard it is to write a module translator. \* Speed: measure of +how fast the translation can be achieved. Translation speed is of +fundamental importance, especially for operational data. \* Robustness: +can the translator be checked for inconsistencies at load time? A module +translator based on scripts wouldn’t fare well on this metric. \* +Round-trip conversions: can the translated data be translated back to +the original format without information loss? + +CLI Demonstration +----------------- + +As of now the only northbound client that supports the YANG module +translator is the FRR embedded CLI. The confd and sysrepo plugins need +to be extended to support the module translator, which might be used not +only for configuration data, but also for operational data, RPCs and +notifications. + +In this demonstration, we’ll use the CLI ``configuration load`` command +to load the following JSON configuration file specified using the IETF +data hierarchy: + +.. code:: json + + { + "ietf-interfaces:interfaces": { + "interface": [ + { + "description": "Engineering", + "name": "eth0" + } + ] + }, + "ietf-routing:routing": { + "control-plane-protocols": { + "control-plane-protocol": [ + { + "name": "main", + "type": "ietf-rip:ripv2", + "ietf-rip:rip": { + "default-metric": "2", + "distance": "80", + "interfaces": { + "interface": [ + { + "interface": "eth0", + "split-horizon": "poison-reverse" + } + ] + }, + "originate-default-route": { + "enabled": "true" + }, + "timers": { + "flush-interval": "241", + "holddown-interval": "181", + "update-interval": "31" + } + } + } + ] + } + } + } + +In order to load this configuration file, it’s necessary to load the +IETF module translator first. Then, when entering the +``configuration load`` command, the ``translate ietf`` parameters must +be given to specify that the input needs to be translated using the +previously loaded ``ietf`` module translator. Example: + +:: + + ripd(config)# configuration load file json /mnt/renato/git/frr/yang/example/ietf-rip.json + % Failed to load configuration: + + Unknown element "interfaces". + ripd(config)# + ripd(config)# yang module-translator load /usr/local/share/yang/ietf/frr-ietf-translator.json + % Module translator "ietf" loaded successfully. + + ripd(config)# + ripd(config)# configuration load file json translate ietf /mnt/renato/git/frr/yang/example/ietf-rip.json + +Now let’s check the candidate configuration to see if the configuration +file was loaded successfully: + +:: + + ripd(config)# show configuration candidate + Configuration: + ! + frr version 5.1-dev + frr defaults traditional + ! + interface eth0 + description Engineering + ip rip split-horizon poisoned-reverse + ! + router rip + default-metric 2 + distance 80 + network eth0 + default-information originate + timers basic 31 181 241 + ! + end + ripd(config)# show configuration candidate json + { + "frr-interface:lib": { + "interface": [ + { + "name": "eth0", + "vrf": "default", + "description": "Engineering", + "frr-ripd:rip": { + "split-horizon": "poison-reverse" + } + } + ] + }, + "frr-ripd:ripd": { + "instance": { + "default-metric": 2, + "distance": { + "default": 80 + }, + "interface": [ + "eth0" + ], + "default-information-originate": true, + "timers": { + "flush-interval": 241, + "holddown-interval": 181, + "update-interval": 31 + } + } + } + } + +As it can be seen, the candidate configuration is identical to the one +defined in the *ietf-rip.json* file, only the structure is different. +This means that the *ietf-rip.json* file was translated successfully. + +The ``ietf`` module translator can also be used to do the translation in +other direction: transform data from the native format to the IETF +format. This is shown below by altering the output of the +``show configuration candidate json`` command using the +``translate ietf`` parameter: + +:: + + ripd(config)# show configuration candidate json translate ietf + { + "ietf-interfaces:interfaces": { + "interface": [ + { + "name": "eth0", + "description": "Engineering" + } + ] + }, + "ietf-routing:routing": { + "control-plane-protocols": { + "control-plane-protocol": [ + { + "type": "ietf-rip:ripv2", + "name": "main", + "ietf-rip:rip": { + "interfaces": { + "interface": [ + { + "interface": "eth0", + "split-horizon": "poison-reverse" + } + ] + }, + "default-metric": 2, + "distance": 80, + "originate-default-route": { + "enabled": true + }, + "timers": { + "flush-interval": 241, + "holddown-interval": 181, + "update-interval": 31 + } + } + } + ] + } + } + } + +As expected, this output is exactly identical to the configuration +defined in the *ietf-rip.json* file. The module translator was able to +do a round-trip conversion without information loss. + +Implementation Details +---------------------- + +A different libyang context is allocated for each YANG module +translator. This is important to avoid collisions and ensure that +non-native data can’t be instantiated in the running and candidate +configurations. diff --git a/doc/developer/northbound/yang-tools.rst b/doc/developer/northbound/yang-tools.rst new file mode 100644 index 000000000..4eb1a2fb2 --- /dev/null +++ b/doc/developer/northbound/yang-tools.rst @@ -0,0 +1,106 @@ +yanglint cheat sheet +~~~~~~~~~~~~~~~~~~~~ + + libyang project includes a feature-rich tool called yanglint(1) for + validation and conversion of the schemas and YANG modeled data. The + source codes are located at /tools/lint and can be used to explore + how an application is supposed to use the libyang library. + yanglint(1) binary as well as its man page are installed together + with the library itself. + +Validate a YANG module: + +.. code:: sh + + $ yanglint -p <yang-search-path> module.yang + +Generate tree representation of a YANG module: + +.. code:: sh + + $ yanglint -p <yang-search-path> -f tree module.yang + +Validate JSON/XML instance data: + +.. code:: sh + + $ yanglint -p <yang-search-path> module.yang data.{json,xml} + +Convert JSON/XML instance data to another format: + +.. code:: sh + + $ yanglint -p <yang-search-path> -f xml module.yang data.json + $ yanglint -p <yang-search-path> -f json module.yang data.xml + +*yanglint* also features an interactive mode which is very useful when +needing to validate data from multiple modules at the same time. The +*yanglint* README provides several examples: +https://github.com/CESNET/libyang/blob/master/tools/lint/examples/README.md + +Man page (groff): +https://github.com/CESNET/libyang/blob/master/tools/lint/yanglint.1 + +pyang cheat sheet +~~~~~~~~~~~~~~~~~ + + pyang is a YANG validator, transformator and code generator, written + in python. It can be used to validate YANG modules for correctness, + to transform YANG modules into other formats, and to generate code + from the modules. + +Obtaining and installing pyang: + +.. code:: sh + + $ git clone https://github.com/mbj4668/pyang.git + $ cd pyang/ + $ sudo python setup.py install + +Validate a YANG module: + +.. code:: sh + + $ pyang --ietf -p <yang-search-path> module.yang + +Generate tree representation of a YANG module: + +.. code:: sh + + $ pyang -f tree -p <yang-search-path> module.yang + +Indent a YANG file: + +.. code:: sh + + $ pyang -p <yang-search-path> \ + --keep-comments -f yang --yang-canonical \ + module.yang -o module.yang + +Generate skeleton instance data: \* XML: + +.. code:: sh + + $ pyang -p <yang-search-path> \ + -f sample-xml-skeleton --sample-xml-skeleton-defaults \ + module.yang [augmented-module1.yang ...] -o module.xml + +- JSON: + +.. code:: sh + + $ pyang -p <yang-search-path> \ + -f jsonxsl module.yang -o module.xsl + $ xsltproc -o module.json module.xsl module.xml + +Validate XML instance data (works only with YANG 1.0): + +.. code:: sh + + $ yang2dsdl -v module.xml module.yang + +vim +~~~ + +YANG syntax highlighting for vim: +https://github.com/nathanalderson/yang.vim diff --git a/doc/developer/subdir.am b/doc/developer/subdir.am index 840afa9f7..f052956c5 100644 --- a/doc/developer/subdir.am +++ b/doc/developer/subdir.am @@ -67,6 +67,19 @@ dev_RSTFILES = \ doc/developer/workflow.rst \ doc/developer/xrefs.rst \ doc/developer/zebra.rst \ + doc/developer/northbound/advanced-topics.rst \ + doc/developer/northbound/architecture.rst \ + doc/developer/northbound/demos.rst \ + doc/developer/northbound/links.rst \ + doc/developer/northbound/northbound.rst \ + doc/developer/northbound/operational-data-rpcs-and-notifications.rst \ + doc/developer/northbound/plugins-sysrepo.rst \ + doc/developer/northbound/ppr-basic-test-topology.rst \ + doc/developer/northbound/ppr-mpls-basic-test-topology.rst \ + doc/developer/northbound/retrofitting-configuration-commands.rst \ + doc/developer/northbound/transactional-cli.rst \ + doc/developer/northbound/yang-module-translator.rst \ + doc/developer/northbound/yang-tools.rst \ # end EXTRA_DIST += \ |