/********************************************************************* * Copyright 2013 Cumulus Networks, LLC. All rights reserved. * Copyright 2014,2015,2016,2017 Cumulus Networks, Inc. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program; see the file COPYING; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * bfd.c: implements the BFD protocol. * * Authors * ------- * Shrijeet Mukherjee [shm@cumulusnetworks.com] * Kanna Rajagopal [kanna@cumulusnetworks.com] * Radhika Mahankali [Radhika@cumulusnetworks.com] */ #include #include "lib/jhash.h" #include "bfd.h" DEFINE_QOBJ_TYPE(bfd_session); /* * Prototypes */ void gen_bfd_key(struct bfd_key *key, struct sockaddr_any *peer, struct sockaddr_any *local, bool mhop, const char *ifname, const char *vrfname); static uint32_t ptm_bfd_gen_ID(void); static void ptm_bfd_echo_xmt_TO(struct bfd_session *bfd); static void bfd_session_free(struct bfd_session *bs); static struct bfd_session *bfd_session_new(void); static struct bfd_session *bfd_find_disc(struct sockaddr_any *sa, uint32_t ldisc); static int bfd_session_update(struct bfd_session *bs, struct bfd_peer_cfg *bpc); static const char *get_diag_str(int diag); static void bs_admin_down_handler(struct bfd_session *bs, int nstate); static void bs_down_handler(struct bfd_session *bs, int nstate); static void bs_init_handler(struct bfd_session *bs, int nstate); static void bs_up_handler(struct bfd_session *bs, int nstate); /* Zeroed array with the size of an IPv6 address. */ struct in6_addr zero_addr; /* * Functions */ void gen_bfd_key(struct bfd_key *key, struct sockaddr_any *peer, struct sockaddr_any *local, bool mhop, const char *ifname, const char *vrfname) { memset(key, 0, sizeof(*key)); switch (peer->sa_sin.sin_family) { case AF_INET: key->family = AF_INET; memcpy(&key->peer, &peer->sa_sin.sin_addr, sizeof(peer->sa_sin.sin_addr)); memcpy(&key->local, &local->sa_sin.sin_addr, sizeof(local->sa_sin.sin_addr)); break; case AF_INET6: key->family = AF_INET6; memcpy(&key->peer, &peer->sa_sin6.sin6_addr, sizeof(peer->sa_sin6.sin6_addr)); memcpy(&key->local, &local->sa_sin6.sin6_addr, sizeof(local->sa_sin6.sin6_addr)); break; } key->mhop = mhop; if (ifname && ifname[0]) strlcpy(key->ifname, ifname, sizeof(key->ifname)); if (vrfname && vrfname[0]) strlcpy(key->vrfname, vrfname, sizeof(key->vrfname)); } struct bfd_session *bs_peer_find(struct bfd_peer_cfg *bpc) { struct bfd_session *bs; struct peer_label *pl; struct bfd_key key; /* Try to find label first. */ if (bpc->bpc_has_label) { pl = pl_find(bpc->bpc_label); if (pl != NULL) { bs = pl->pl_bs; return bs; } } /* Otherwise fallback to peer/local hash lookup. */ gen_bfd_key(&key, &bpc->bpc_peer, &bpc->bpc_local, bpc->bpc_mhop, bpc->bpc_localif, bpc->bpc_vrfname); return bfd_key_lookup(key); } /* * Starts a disabled BFD session. * * A session is disabled when the specified interface/VRF doesn't exist * yet. It might happen on FRR boot or with virtual interfaces. */ int bfd_session_enable(struct bfd_session *bs) { struct interface *ifp = NULL; struct vrf *vrf = NULL; int psock; /* * If the interface or VRF doesn't exist, then we must register * the session but delay its start. */ if (bs->key.ifname[0]) { ifp = if_lookup_by_name_all_vrf(bs->key.ifname); if (ifp == NULL) { log_error( "session-enable: specified interface doesn't exists."); return 0; } vrf = vrf_lookup_by_id(ifp->vrf_id); if (vrf == NULL) { log_error( "session-enable: specified VRF doesn't exists."); return 0; } } if (bs->key.vrfname[0]) { vrf = vrf_lookup_by_name(bs->key.vrfname); if (vrf == NULL) { log_error( "session-enable: specified VRF doesn't exists."); return 0; } } /* Assign interface/VRF pointers. */ bs->vrf = vrf; if (bs->vrf == NULL) bs->vrf = vrf_lookup_by_id(VRF_DEFAULT); if (bs->key.ifname[0] && BFD_CHECK_FLAG(bs->flags, BFD_SESS_FLAG_MH) == 0) bs->ifp = ifp; /* Sanity check: don't leak open sockets. */ if (bs->sock != -1) { zlog_debug("session-enable: previous socket open"); close(bs->sock); bs->sock = -1; } /* * Get socket for transmitting control packets. Note that if we * could use the destination port (3784) for the source * port we wouldn't need a socket per session. */ if (BFD_CHECK_FLAG(bs->flags, BFD_SESS_FLAG_IPV6) == 0) { psock = bp_peer_socket(bs); if (psock == -1) return 0; } else { psock = bp_peer_socketv6(bs); if (psock == -1) return 0; } /* * We've got a valid socket, lets start the timers and the * protocol. */ bs->sock = psock; bfd_recvtimer_update(bs); ptm_bfd_start_xmt_timer(bs, false); return 0; } /* * Disabled a running BFD session. * * A session is disabled when the specified interface/VRF gets removed * (e.g. virtual interfaces). */ void bfd_session_disable(struct bfd_session *bs) { /* Free up socket resources. */ if (bs->sock != -1) { close(bs->sock); bs->sock = -1; } /* Disable all timers. */ bfd_recvtimer_delete(bs); bfd_echo_recvtimer_delete(bs); bfd_xmttimer_delete(bs); bfd_echo_xmttimer_delete(bs); } static uint32_t ptm_bfd_gen_ID(void) { uint32_t session_id; /* * RFC 5880, Section 6.8.1. recommends that we should generate * random session identification numbers. */ do { session_id = ((random() << 16) & 0xFFFF0000) | (random() & 0x0000FFFF); } while (session_id == 0 || bfd_id_lookup(session_id) != NULL); return session_id; } void ptm_bfd_start_xmt_timer(struct bfd_session *bfd, bool is_echo) { uint64_t jitter, xmt_TO; int maxpercent; xmt_TO = is_echo ? bfd->echo_xmt_TO : bfd->xmt_TO; /* * From section 6.5.2: trasmit interval should be randomly jittered * between * 75% and 100% of nominal value, unless detect_mult is 1, then should * be * between 75% and 90%. */ maxpercent = (bfd->detect_mult == 1) ? 16 : 26; jitter = (xmt_TO * (75 + (random() % maxpercent))) / 100; /* XXX remove that division above */ if (is_echo) bfd_echo_xmttimer_update(bfd, jitter); else bfd_xmttimer_update(bfd, jitter); } static void ptm_bfd_echo_xmt_TO(struct bfd_session *bfd) { /* Send the scheduled echo packet */ ptm_bfd_echo_snd(bfd); /* Restart the timer for next time */ ptm_bfd_start_xmt_timer(bfd, true); } void ptm_bfd_xmt_TO(struct bfd_session *bfd, int fbit) { /* Send the scheduled control packet */ ptm_bfd_snd(bfd, fbit); /* Restart the timer for next time */ ptm_bfd_start_xmt_timer(bfd, false); } void ptm_bfd_echo_stop(struct bfd_session *bfd) { bfd->echo_xmt_TO = 0; bfd->echo_detect_TO = 0; BFD_UNSET_FLAG(bfd->flags, BFD_SESS_FLAG_ECHO_ACTIVE); bfd_echo_xmttimer_delete(bfd); bfd_echo_recvtimer_delete(bfd); } void ptm_bfd_echo_start(struct bfd_session *bfd) { bfd->echo_detect_TO = (bfd->remote_detect_mult * bfd->echo_xmt_TO); if (bfd->echo_detect_TO > 0) ptm_bfd_echo_xmt_TO(bfd); } void ptm_bfd_ses_up(struct bfd_session *bfd) { int old_state = bfd->ses_state; bfd->local_diag = 0; bfd->ses_state = PTM_BFD_UP; monotime(&bfd->uptime); /* Connection is up, lets negotiate timers. */ bfd_set_polling(bfd); /* Start sending control packets with poll bit immediately. */ ptm_bfd_snd(bfd, 0); control_notify(bfd); if (old_state != bfd->ses_state) { bfd->stats.session_up++; log_info("state-change: [%s] %s -> %s", bs_to_string(bfd), state_list[old_state].str, state_list[bfd->ses_state].str); } } void ptm_bfd_ses_dn(struct bfd_session *bfd, uint8_t diag) { int old_state = bfd->ses_state; bfd->local_diag = diag; bfd->discrs.remote_discr = 0; bfd->ses_state = PTM_BFD_DOWN; bfd->polling = 0; bfd->demand_mode = 0; monotime(&bfd->downtime); ptm_bfd_snd(bfd, 0); /* Slow down the control packets, the connection is down. */ bs_set_slow_timers(bfd); /* only signal clients when going from up->down state */ if (old_state == PTM_BFD_UP) control_notify(bfd); /* Stop echo packet transmission if they are active */ if (BFD_CHECK_FLAG(bfd->flags, BFD_SESS_FLAG_ECHO_ACTIVE)) ptm_bfd_echo_stop(bfd); if (old_state != bfd->ses_state) { bfd->stats.session_down++; log_info("state-change: [%s] %s -> %s reason:%s", bs_to_string(bfd), state_list[old_state].str, state_list[bfd->ses_state].str, get_diag_str(bfd->local_diag)); } } static struct bfd_session *bfd_find_disc(struct sockaddr_any *sa, uint32_t ldisc) { struct bfd_session *bs; bs = bfd_id_lookup(ldisc); if (bs == NULL) return NULL; switch (bs->key.family) { case AF_INET: if (memcmp(&sa->sa_sin.sin_addr, &bs->key.peer, sizeof(sa->sa_sin.sin_addr))) return NULL; break; case AF_INET6: if (memcmp(&sa->sa_sin6.sin6_addr, &bs->key.peer, sizeof(sa->sa_sin6.sin6_addr))) return NULL; break; } return bs; } struct bfd_session *ptm_bfd_sess_find(struct bfd_pkt *cp, struct sockaddr_any *peer, struct sockaddr_any *local, ifindex_t ifindex, vrf_id_t vrfid, bool is_mhop) { struct interface *ifp; struct vrf *vrf; struct bfd_key key; /* Find our session using the ID signaled by the remote end. */ if (cp->discrs.remote_discr) return bfd_find_disc(peer, ntohl(cp->discrs.remote_discr)); /* Search for session without using discriminator. */ ifp = if_lookup_by_index(ifindex, vrfid); if (vrfid == VRF_DEFAULT) { /* * Don't use the default vrf, otherwise we won't find * sessions that doesn't specify it. */ vrf = NULL; } else vrf = vrf_lookup_by_id(vrfid); gen_bfd_key(&key, peer, local, is_mhop, ifp ? ifp->name : NULL, vrf ? vrf->name : NULL); /* XXX maybe remoteDiscr should be checked for remoteHeard cases. */ return bfd_key_lookup(key); } int bfd_xmt_cb(struct thread *t) { struct bfd_session *bs = THREAD_ARG(t); ptm_bfd_xmt_TO(bs, 0); return 0; } int bfd_echo_xmt_cb(struct thread *t) { struct bfd_session *bs = THREAD_ARG(t); if (bs->echo_xmt_TO > 0) ptm_bfd_echo_xmt_TO(bs); return 0; } /* Was ptm_bfd_detect_TO() */ int bfd_recvtimer_cb(struct thread *t) { struct bfd_session *bs = THREAD_ARG(t); switch (bs->ses_state) { case PTM_BFD_INIT: case PTM_BFD_UP: ptm_bfd_ses_dn(bs, BD_CONTROL_EXPIRED); bfd_recvtimer_update(bs); break; default: /* Second detect time expiration, zero remote discr (section * 6.5.1) */ bs->discrs.remote_discr = 0; break; } return 0; } /* Was ptm_bfd_echo_detect_TO() */ int bfd_echo_recvtimer_cb(struct thread *t) { struct bfd_session *bs = THREAD_ARG(t); switch (bs->ses_state) { case PTM_BFD_INIT: case PTM_BFD_UP: ptm_bfd_ses_dn(bs, BD_ECHO_FAILED); break; } return 0; } static struct bfd_session *bfd_session_new(void) { struct bfd_session *bs; bs = XCALLOC(MTYPE_BFDD_CONFIG, sizeof(*bs)); QOBJ_REG(bs, bfd_session); bs->timers.desired_min_tx = BFD_DEFDESIREDMINTX; bs->timers.required_min_rx = BFD_DEFREQUIREDMINRX; bs->timers.required_min_echo = BFD_DEF_REQ_MIN_ECHO; bs->detect_mult = BFD_DEFDETECTMULT; bs->mh_ttl = BFD_DEF_MHOP_TTL; bs->ses_state = PTM_BFD_DOWN; /* Initiate connection with slow timers. */ bs_set_slow_timers(bs); /* Initiate remote settings as well. */ bs->remote_timers = bs->cur_timers; bs->remote_detect_mult = BFD_DEFDETECTMULT; bs->sock = -1; monotime(&bs->uptime); bs->downtime = bs->uptime; return bs; } int bfd_session_update_label(struct bfd_session *bs, const char *nlabel) { /* New label treatment: * - Check if the label is taken; * - Try to allocate the memory for it and register; */ if (bs->pl == NULL) { if (pl_find(nlabel) != NULL) { /* Someone is already using it. */ return -1; } if (pl_new(nlabel, bs) == NULL) return -1; return 0; } /* * Test label change consistency: * - Do nothing if it's the same label; * - Check if the future label is already taken; * - Change label; */ if (strcmp(nlabel, bs->pl->pl_label) == 0) return -1; if (pl_find(nlabel) != NULL) return -1; strlcpy(bs->pl->pl_label, nlabel, sizeof(bs->pl->pl_label)); return 0; } static void _bfd_session_update(struct bfd_session *bs, struct bfd_peer_cfg *bpc) { if (bpc->bpc_echo) { /* Check if echo mode is already active. */ if (BFD_CHECK_FLAG(bs->flags, BFD_SESS_FLAG_ECHO)) goto skip_echo; BFD_SET_FLAG(bs->flags, BFD_SESS_FLAG_ECHO); /* Activate/update echo receive timeout timer. */ bs_echo_timer_handler(bs); } else { /* Check if echo mode is already disabled. */ if (!BFD_CHECK_FLAG(bs->flags, BFD_SESS_FLAG_ECHO)) goto skip_echo; BFD_UNSET_FLAG(bs->flags, BFD_SESS_FLAG_ECHO); ptm_bfd_echo_stop(bs); } skip_echo: if (bpc->bpc_has_txinterval) bs->timers.desired_min_tx = bpc->bpc_txinterval * 1000; if (bpc->bpc_has_recvinterval) bs->timers.required_min_rx = bpc->bpc_recvinterval * 1000; if (bpc->bpc_has_detectmultiplier) bs->detect_mult = bpc->bpc_detectmultiplier; if (bpc->bpc_has_echointerval) bs->timers.required_min_echo = bpc->bpc_echointerval * 1000; if (bpc->bpc_has_label) bfd_session_update_label(bs, bpc->bpc_label); if (bpc->bpc_shutdown) { /* Check if already shutdown. */ if (BFD_CHECK_FLAG(bs->flags, BFD_SESS_FLAG_SHUTDOWN)) return; BFD_SET_FLAG(bs->flags, BFD_SESS_FLAG_SHUTDOWN); /* Disable all events. */ bfd_recvtimer_delete(bs); bfd_echo_recvtimer_delete(bs); bfd_xmttimer_delete(bs); bfd_echo_xmttimer_delete(bs); /* Change and notify state change. */ bs->ses_state = PTM_BFD_ADM_DOWN; control_notify(bs); /* Don't try to send packets with a disabled session. */ if (bs->sock != -1) ptm_bfd_snd(bs, 0); } else { /* Check if already working. */ if (!BFD_CHECK_FLAG(bs->flags, BFD_SESS_FLAG_SHUTDOWN)) return; BFD_UNSET_FLAG(bs->flags, BFD_SESS_FLAG_SHUTDOWN); /* Change and notify state change. */ bs->ses_state = PTM_BFD_DOWN; control_notify(bs); /* Enable all timers. */ bfd_recvtimer_update(bs); bfd_xmttimer_update(bs, bs->xmt_TO); } } static int bfd_session_update(struct bfd_session *bs, struct bfd_peer_cfg *bpc) { /* User didn't want to update, return failure. */ if (bpc->bpc_createonly) return -1; _bfd_session_update(bs, bpc); control_notify_config(BCM_NOTIFY_CONFIG_UPDATE, bs); return 0; } static void bfd_session_free(struct bfd_session *bs) { struct bfd_session_observer *bso; bfd_session_disable(bs); bfd_key_delete(bs->key); bfd_id_delete(bs->discrs.my_discr); /* Remove observer if any. */ TAILQ_FOREACH(bso, &bglobal.bg_obslist, bso_entry) { if (bso->bso_bs != bs) continue; break; } if (bso != NULL) bs_observer_del(bso); pl_free(bs->pl); QOBJ_UNREG(bs); XFREE(MTYPE_BFDD_CONFIG, bs); } struct bfd_session *ptm_bfd_sess_new(struct bfd_peer_cfg *bpc) { struct bfd_session *bfd, *l_bfd; /* check to see if this needs a new session */ l_bfd = bs_peer_find(bpc); if (l_bfd) { /* Requesting a duplicated peer means update configuration. */ if (bfd_session_update(l_bfd, bpc) == 0) return l_bfd; else return NULL; } /* Get BFD session storage with its defaults. */ bfd = bfd_session_new(); if (bfd == NULL) { log_error("session-new: allocation failed"); return NULL; } /* * Store interface/VRF name in case we need to delay session * start. See `bfd_session_enable` for more information. */ if (bpc->bpc_has_localif) strlcpy(bfd->key.ifname, bpc->bpc_localif, sizeof(bfd->key.ifname)); if (bpc->bpc_has_vrfname) strlcpy(bfd->key.vrfname, bpc->bpc_vrfname, sizeof(bfd->key.vrfname)); /* Copy remaining data. */ if (bpc->bpc_ipv4 == false) BFD_SET_FLAG(bfd->flags, BFD_SESS_FLAG_IPV6); bfd->key.family = (bpc->bpc_ipv4) ? AF_INET : AF_INET6; switch (bfd->key.family) { case AF_INET: memcpy(&bfd->key.peer, &bpc->bpc_peer.sa_sin.sin_addr, sizeof(bpc->bpc_peer.sa_sin.sin_addr)); memcpy(&bfd->key.local, &bpc->bpc_local.sa_sin.sin_addr, sizeof(bpc->bpc_local.sa_sin.sin_addr)); break; case AF_INET6: memcpy(&bfd->key.peer, &bpc->bpc_peer.sa_sin6.sin6_addr, sizeof(bpc->bpc_peer.sa_sin6.sin6_addr)); memcpy(&bfd->key.local, &bpc->bpc_local.sa_sin6.sin6_addr, sizeof(bpc->bpc_local.sa_sin6.sin6_addr)); break; default: assert(1); break; } if (bpc->bpc_mhop) BFD_SET_FLAG(bfd->flags, BFD_SESS_FLAG_MH); bfd->key.mhop = bpc->bpc_mhop; /* Registrate session into data structures. */ bfd_key_insert(bfd); bfd->discrs.my_discr = ptm_bfd_gen_ID(); bfd_id_insert(bfd); /* Try to enable session and schedule for packet receive/send. */ if (bfd_session_enable(bfd) == -1) { /* Unrecoverable failure, remove the session/peer. */ bfd_session_free(bfd); return NULL; } /* Add observer if we have moving parts. */ if (bfd->key.ifname[0] || bfd->key.vrfname[0] || bfd->sock == -1) bs_observer_add(bfd); /* Apply other configurations. */ _bfd_session_update(bfd, bpc); log_info("session-new: %s", bs_to_string(bfd)); control_notify_config(BCM_NOTIFY_CONFIG_ADD, bfd); return bfd; } int ptm_bfd_ses_del(struct bfd_peer_cfg *bpc) { struct bfd_session *bs; /* Find session and call free(). */ bs = bs_peer_find(bpc); if (bs == NULL) return -1; /* This pointer is being referenced, don't let it be deleted. */ if (bs->refcount > 0) { log_error("session-delete: refcount failure: %" PRIu64 " references", bs->refcount); return -1; } log_info("session-delete: %s", bs_to_string(bs)); control_notify_config(BCM_NOTIFY_CONFIG_DELETE, bs); bfd_session_free(bs); return 0; } void bfd_set_polling(struct bfd_session *bs) { /* * Start polling procedure: the only timers that require polling * to change value without losing connection are: * * - Desired minimum transmission interval; * - Required minimum receive interval; * * RFC 5880, Section 6.8.3. */ bs->polling = 1; } /* * bs__handler() functions implement the BFD state machine * transition mechanism. `` is the current session state and * the parameter `nstate` is the peer new state. */ static void bs_admin_down_handler(struct bfd_session *bs __attribute__((__unused__)), int nstate __attribute__((__unused__))) { /* * We are administratively down, there is no state machine * handling. */ } static void bs_down_handler(struct bfd_session *bs, int nstate) { switch (nstate) { case PTM_BFD_ADM_DOWN: /* * Remote peer doesn't want to talk, so lets keep the * connection down. */ case PTM_BFD_UP: /* Peer can't be up yet, wait it go to 'init' or 'down'. */ break; case PTM_BFD_DOWN: /* * Remote peer agreed that the path is down, lets try to * bring it up. */ bs->ses_state = PTM_BFD_INIT; break; case PTM_BFD_INIT: /* * Remote peer told us his path is up, lets turn * activate the session. */ ptm_bfd_ses_up(bs); break; default: log_debug("state-change: unhandled neighbor state: %d", nstate); break; } } static void bs_init_handler(struct bfd_session *bs, int nstate) { switch (nstate) { case PTM_BFD_ADM_DOWN: /* * Remote peer doesn't want to talk, so lets make the * connection down. */ bs->ses_state = PTM_BFD_DOWN; break; case PTM_BFD_DOWN: /* Remote peer hasn't moved to first stage yet. */ break; case PTM_BFD_INIT: case PTM_BFD_UP: /* We agreed on the settings and the path is up. */ ptm_bfd_ses_up(bs); break; default: log_debug("state-change: unhandled neighbor state: %d", nstate); break; } } static void bs_up_handler(struct bfd_session *bs, int nstate) { switch (nstate) { case PTM_BFD_ADM_DOWN: case PTM_BFD_DOWN: /* Peer lost or asked to shutdown connection. */ ptm_bfd_ses_dn(bs, BD_NEIGHBOR_DOWN); break; case PTM_BFD_INIT: case PTM_BFD_UP: /* Path is up and working. */ break; default: log_debug("state-change: unhandled neighbor state: %d", nstate); break; } } void bs_state_handler(struct bfd_session *bs, int nstate) { switch (bs->ses_state) { case PTM_BFD_ADM_DOWN: bs_admin_down_handler(bs, nstate); break; case PTM_BFD_DOWN: bs_down_handler(bs, nstate); break; case PTM_BFD_INIT: bs_init_handler(bs, nstate); break; case PTM_BFD_UP: bs_up_handler(bs, nstate); break; default: log_debug("state-change: [%s] is in invalid state: %d", bs_to_string(bs), nstate); break; } } /* * Handles echo timer manipulation after updating timer. */ void bs_echo_timer_handler(struct bfd_session *bs) { uint32_t old_timer; /* * Before doing any echo handling, check if it is possible to * use it. * * - Check for `echo-mode` configuration. * - Check that we are not using multi hop (RFC 5883, * Section 3). * - Check that we are already at the up state. */ if (BFD_CHECK_FLAG(bs->flags, BFD_SESS_FLAG_ECHO) == 0 || BFD_CHECK_FLAG(bs->flags, BFD_SESS_FLAG_MH) || bs->ses_state != PTM_BFD_UP) return; /* Remote peer asked to stop echo. */ if (bs->remote_timers.required_min_echo == 0) { if (BFD_CHECK_FLAG(bs->flags, BFD_SESS_FLAG_ECHO_ACTIVE)) ptm_bfd_echo_stop(bs); return; } /* * Calculate the echo transmission timer: we must not send * echo packets faster than the minimum required time * announced by the remote system. * * RFC 5880, Section 6.8.9. */ old_timer = bs->echo_xmt_TO; if (bs->remote_timers.required_min_echo > bs->timers.required_min_echo) bs->echo_xmt_TO = bs->remote_timers.required_min_echo; else bs->echo_xmt_TO = bs->timers.required_min_echo; if (BFD_CHECK_FLAG(bs->flags, BFD_SESS_FLAG_ECHO_ACTIVE) == 0 || old_timer != bs->echo_xmt_TO) ptm_bfd_echo_start(bs); } /* * RFC 5880 Section 6.5. * * When a BFD control packet with the final bit is received, we must * update the session parameters. */ void bs_final_handler(struct bfd_session *bs) { /* Start using our new timers. */ bs->cur_timers.desired_min_tx = bs->timers.desired_min_tx; bs->cur_timers.required_min_rx = bs->timers.required_min_rx; /* * TODO: demand mode. See RFC 5880 Section 6.1. * * When using demand mode we must disable the detection timer * for lost control packets. */ if (bs->demand_mode) { /* Notify watchers about changed timers. */ control_notify_config(BCM_NOTIFY_CONFIG_UPDATE, bs); return; } /* * Calculate detection time based on new timers. * * Transmission calculation: * We must respect the RequiredMinRxInterval from the remote * system: if our desired transmission timer is more than the * minimum receive rate, then we must lower it to at least the * minimum receive interval. * * RFC 5880, Section 6.8.3. */ if (bs->timers.desired_min_tx > bs->remote_timers.required_min_rx) bs->xmt_TO = bs->remote_timers.required_min_rx; else bs->xmt_TO = bs->timers.desired_min_tx; /* Apply new transmission timer immediately. */ ptm_bfd_start_xmt_timer(bs, false); /* * Detection timeout calculation: * The minimum detection timeout is the remote detection * multipler (number of packets to be missed) times the agreed * transmission interval. * * RFC 5880, Section 6.8.4. * * TODO: support sending/counting more packets inside detection * timeout. */ if (bs->remote_timers.required_min_rx > bs->timers.desired_min_tx) bs->detect_TO = bs->remote_detect_mult * bs->remote_timers.required_min_rx; else bs->detect_TO = bs->remote_detect_mult * bs->timers.desired_min_tx; /* Apply new receive timer immediately. */ bfd_recvtimer_update(bs); /* Notify watchers about changed timers. */ control_notify_config(BCM_NOTIFY_CONFIG_UPDATE, bs); } void bs_set_slow_timers(struct bfd_session *bs) { /* * BFD connection must use slow timers before going up or after * losing connectivity to avoid wasting bandwidth. * * RFC 5880, Section 6.8.3. */ bs->cur_timers.desired_min_tx = BFD_DEF_SLOWTX; bs->cur_timers.required_min_rx = BFD_DEF_SLOWTX; bs->cur_timers.required_min_echo = 0; /* Set the appropriated timeouts for slow connection. */ bs->detect_TO = (BFD_DEFDETECTMULT * BFD_DEF_SLOWTX); bs->xmt_TO = BFD_DEF_SLOWTX; } /* * Helper functions. */ static const char *get_diag_str(int diag) { for (int i = 0; diag_list[i].str; i++) { if (diag_list[i].type == diag) return diag_list[i].str; } return "N/A"; } const char *satostr(struct sockaddr_any *sa) { #define INETSTR_BUFCOUNT 8 static char buf[INETSTR_BUFCOUNT][INET6_ADDRSTRLEN]; static int bufidx; struct sockaddr_in *sin = &sa->sa_sin; struct sockaddr_in6 *sin6 = &sa->sa_sin6; bufidx += (bufidx + 1) % INETSTR_BUFCOUNT; buf[bufidx][0] = 0; switch (sin->sin_family) { case AF_INET: inet_ntop(AF_INET, &sin->sin_addr, buf[bufidx], sizeof(buf[bufidx])); break; case AF_INET6: inet_ntop(AF_INET6, &sin6->sin6_addr, buf[bufidx], sizeof(buf[bufidx])); break; default: strlcpy(buf[bufidx], "unknown", sizeof(buf[bufidx])); break; } return buf[bufidx]; } const char *diag2str(uint8_t diag) { switch (diag) { case 0: return "ok"; case 1: return "control detection time expired"; case 2: return "echo function failed"; case 3: return "neighbor signaled session down"; case 4: return "forwarding plane reset"; case 5: return "path down"; case 6: return "concatenated path down"; case 7: return "administratively down"; case 8: return "reverse concatenated path down"; default: return "unknown"; } } int strtosa(const char *addr, struct sockaddr_any *sa) { memset(sa, 0, sizeof(*sa)); if (inet_pton(AF_INET, addr, &sa->sa_sin.sin_addr) == 1) { sa->sa_sin.sin_family = AF_INET; #ifdef HAVE_STRUCT_SOCKADDR_SA_LEN sa->sa_sin.sin_len = sizeof(sa->sa_sin); #endif /* HAVE_STRUCT_SOCKADDR_SA_LEN */ return 0; } if (inet_pton(AF_INET6, addr, &sa->sa_sin6.sin6_addr) == 1) { sa->sa_sin6.sin6_family = AF_INET6; #ifdef HAVE_STRUCT_SOCKADDR_SA_LEN sa->sa_sin6.sin6_len = sizeof(sa->sa_sin6); #endif /* HAVE_STRUCT_SOCKADDR_SA_LEN */ return 0; } return -1; } void integer2timestr(uint64_t time, char *buf, size_t buflen) { unsigned int year, month, day, hour, minute, second; int rv; #define MINUTES (60) #define HOURS (60 * MINUTES) #define DAYS (24 * HOURS) #define MONTHS (30 * DAYS) #define YEARS (12 * MONTHS) if (time >= YEARS) { year = time / YEARS; time -= year * YEARS; rv = snprintf(buf, buflen, "%u year(s), ", year); buf += rv; buflen -= rv; } if (time >= MONTHS) { month = time / MONTHS; time -= month * MONTHS; rv = snprintf(buf, buflen, "%u month(s), ", month); buf += rv; buflen -= rv; } if (time >= DAYS) { day = time / DAYS; time -= day * DAYS; rv = snprintf(buf, buflen, "%u day(s), ", day); buf += rv; buflen -= rv; } if (time >= HOURS) { hour = time / HOURS; time -= hour * HOURS; rv = snprintf(buf, buflen, "%u hour(s), ", hour); buf += rv; buflen -= rv; } if (time >= MINUTES) { minute = time / MINUTES; time -= minute * MINUTES; rv = snprintf(buf, buflen, "%u minute(s), ", minute); buf += rv; buflen -= rv; } second = time % MINUTES; snprintf(buf, buflen, "%u second(s)", second); } const char *bs_to_string(const struct bfd_session *bs) { static char buf[256]; char addr_buf[INET6_ADDRSTRLEN]; int pos; bool is_mhop = BFD_CHECK_FLAG(bs->flags, BFD_SESS_FLAG_MH); pos = snprintf(buf, sizeof(buf), "mhop:%s", is_mhop ? "yes" : "no"); pos += snprintf(buf + pos, sizeof(buf) - pos, " peer:%s", inet_ntop(bs->key.family, &bs->key.peer, addr_buf, sizeof(addr_buf))); pos += snprintf(buf + pos, sizeof(buf) - pos, " local:%s", inet_ntop(bs->key.family, &bs->key.local, addr_buf, sizeof(addr_buf))); if (bs->key.vrfname[0]) pos += snprintf(buf + pos, sizeof(buf) - pos, " vrf:%s", bs->key.vrfname); if (bs->key.ifname[0]) pos += snprintf(buf + pos, sizeof(buf) - pos, " ifname:%s", bs->key.ifname); (void)pos; return buf; } int bs_observer_add(struct bfd_session *bs) { struct bfd_session_observer *bso; bso = XCALLOC(MTYPE_BFDD_SESSION_OBSERVER, sizeof(*bso)); bso->bso_isaddress = false; bso->bso_bs = bs; bso->bso_isinterface = !BFD_CHECK_FLAG(bs->flags, BFD_SESS_FLAG_MH); if (bso->bso_isinterface) strlcpy(bso->bso_entryname, bs->key.ifname, sizeof(bso->bso_entryname)); else strlcpy(bso->bso_entryname, bs->key.vrfname, sizeof(bso->bso_entryname)); /* Handle socket binding failures caused by missing local addresses. */ if (bs->sock == -1) { bso->bso_isaddress = true; bso->bso_addr.family = bs->key.family; memcpy(&bso->bso_addr.u.prefix, &bs->key.local, sizeof(bs->key.local)); } TAILQ_INSERT_TAIL(&bglobal.bg_obslist, bso, bso_entry); return 0; } void bs_observer_del(struct bfd_session_observer *bso) { TAILQ_REMOVE(&bglobal.bg_obslist, bso, bso_entry); XFREE(MTYPE_BFDD_SESSION_OBSERVER, bso); } void bs_to_bpc(struct bfd_session *bs, struct bfd_peer_cfg *bpc) { memset(bpc, 0, sizeof(*bpc)); bpc->bpc_ipv4 = (bs->key.family == AF_INET); bpc->bpc_mhop = bs->key.mhop; switch (bs->key.family) { case AF_INET: bpc->bpc_peer.sa_sin.sin_family = AF_INET; memcpy(&bpc->bpc_peer.sa_sin.sin_addr, &bs->key.peer, sizeof(bpc->bpc_peer.sa_sin.sin_addr)); if (memcmp(&bs->key.local, &zero_addr, sizeof(bs->key.local))) { bpc->bpc_local.sa_sin.sin_family = AF_INET6; memcpy(&bpc->bpc_local.sa_sin.sin_addr, &bs->key.local, sizeof(bpc->bpc_local.sa_sin.sin_addr)); } break; case AF_INET6: bpc->bpc_peer.sa_sin.sin_family = AF_INET6; memcpy(&bpc->bpc_peer.sa_sin6.sin6_addr, &bs->key.peer, sizeof(bpc->bpc_peer.sa_sin6.sin6_addr)); bpc->bpc_local.sa_sin6.sin6_family = AF_INET6; memcpy(&bpc->bpc_local.sa_sin6.sin6_addr, &bs->key.local, sizeof(bpc->bpc_local.sa_sin6.sin6_addr)); break; } if (bs->key.ifname[0]) { bpc->bpc_has_localif = true; strlcpy(bpc->bpc_localif, bs->key.ifname, sizeof(bpc->bpc_localif)); } if (bs->key.vrfname[0]) { bpc->bpc_has_vrfname = true; strlcpy(bpc->bpc_vrfname, bs->key.vrfname, sizeof(bpc->bpc_vrfname)); } } /* * BFD hash data structures to find sessions. */ static struct hash *bfd_id_hash; static struct hash *bfd_key_hash; static unsigned int bfd_id_hash_do(void *p); static unsigned int bfd_key_hash_do(void *p); static void _bfd_free(struct hash_bucket *hb, void *arg __attribute__((__unused__))); /* BFD hash for our discriminator. */ static unsigned int bfd_id_hash_do(void *p) { struct bfd_session *bs = p; return jhash_1word(bs->discrs.my_discr, 0); } static bool bfd_id_hash_cmp(const void *n1, const void *n2) { const struct bfd_session *bs1 = n1, *bs2 = n2; return bs1->discrs.my_discr == bs2->discrs.my_discr; } /* BFD hash for single hop. */ static unsigned int bfd_key_hash_do(void *p) { struct bfd_session *bs = p; return jhash(&bs->key, sizeof(bs->key), 0); } static bool bfd_key_hash_cmp(const void *n1, const void *n2) { const struct bfd_session *bs1 = n1, *bs2 = n2; return memcmp(&bs1->key, &bs2->key, sizeof(bs1->key)) == 0; } /* * Hash public interface / exported functions. */ /* Lookup functions. */ struct bfd_session *bfd_id_lookup(uint32_t id) { struct bfd_session bs; bs.discrs.my_discr = id; return hash_lookup(bfd_id_hash, &bs); } struct bfd_session *bfd_key_lookup(struct bfd_key key) { struct bfd_session bs, *bsp; bs.key = key; bsp = hash_lookup(bfd_key_hash, &bs); /* Handle cases where local-address is optional. */ if (bsp == NULL && bs.key.family == AF_INET) { memset(&bs.key.local, 0, sizeof(bs.key.local)); bsp = hash_lookup(bfd_key_hash, &bs); } /* Handle cases where ifname is optional. */ bs.key = key; if (bsp == NULL && bs.key.ifname[0]) { memset(bs.key.ifname, 0, sizeof(bs.key.ifname)); bsp = hash_lookup(bfd_key_hash, &bs); /* Handle cases where local-address and ifname are optional. */ if (bsp == NULL && bs.key.family == AF_INET) { memset(&bs.key.local, 0, sizeof(bs.key.local)); bsp = hash_lookup(bfd_key_hash, &bs); } } return bsp; } /* * Delete functions. * * Delete functions searches and remove the item from the hash and * returns a pointer to the removed item data. If the item was not found * then it returns NULL. * * The data stored inside the hash is not free()ed, so you must do it * manually after getting the pointer back. */ struct bfd_session *bfd_id_delete(uint32_t id) { struct bfd_session bs; bs.discrs.my_discr = id; return hash_release(bfd_id_hash, &bs); } struct bfd_session *bfd_key_delete(struct bfd_key key) { struct bfd_session bs, *bsp; bs.key = key; bsp = hash_lookup(bfd_key_hash, &bs); if (bsp == NULL && key.ifname[0]) { memset(bs.key.ifname, 0, sizeof(bs.key.ifname)); bsp = hash_lookup(bfd_key_hash, &bs); } return hash_release(bfd_key_hash, bsp); } /* Iteration functions. */ void bfd_id_iterate(hash_iter_func hif, void *arg) { hash_iterate(bfd_id_hash, hif, arg); } void bfd_key_iterate(hash_iter_func hif, void *arg) { hash_iterate(bfd_key_hash, hif, arg); } /* * Insert functions. * * Inserts session into hash and returns `true` on success, otherwise * `false`. */ bool bfd_id_insert(struct bfd_session *bs) { return (hash_get(bfd_id_hash, bs, hash_alloc_intern) == bs); } bool bfd_key_insert(struct bfd_session *bs) { return (hash_get(bfd_key_hash, bs, hash_alloc_intern) == bs); } void bfd_initialize(void) { bfd_id_hash = hash_create(bfd_id_hash_do, bfd_id_hash_cmp, "BFD session discriminator hash"); bfd_key_hash = hash_create(bfd_key_hash_do, bfd_key_hash_cmp, "BFD session hash"); } static void _bfd_free(struct hash_bucket *hb, void *arg __attribute__((__unused__))) { struct bfd_session *bs = hb->data; bfd_session_free(bs); } void bfd_shutdown(void) { /* * Close and free all BFD sessions. * * _bfd_free() will call bfd_session_free() which will take care * of removing the session from all hashes, so we just run an * assert() here to make sure it really happened. */ bfd_id_iterate(_bfd_free, NULL); assert(bfd_key_hash->count == 0); /* Now free the hashes themselves. */ hash_free(bfd_id_hash); hash_free(bfd_key_hash); }