/* BGP network related fucntions * Copyright (C) 1999 Kunihiro Ishiguro * * This file is part of GNU Zebra. * * GNU Zebra is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * GNU Zebra is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; see the file COPYING; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include "thread.h" #include "sockunion.h" #include "sockopt.h" #include "memory.h" #include "log.h" #include "if.h" #include "prefix.h" #include "command.h" #include "privs.h" #include "linklist.h" #include "network.h" #include "queue.h" #include "hash.h" #include "filter.h" #include "ns.h" #include "lib_errors.h" #include "nexthop.h" #include "bgpd/bgpd.h" #include "bgpd/bgp_open.h" #include "bgpd/bgp_fsm.h" #include "bgpd/bgp_attr.h" #include "bgpd/bgp_debug.h" #include "bgpd/bgp_errors.h" #include "bgpd/bgp_network.h" #include "bgpd/bgp_zebra.h" extern struct zebra_privs_t bgpd_privs; static char *bgp_get_bound_name(struct peer *peer); /* BGP listening socket. */ struct bgp_listener { int fd; union sockunion su; struct thread *thread; struct bgp *bgp; }; /* * Set MD5 key for the socket, for the given IPv4 peer address. * If the password is NULL or zero-length, the option will be disabled. */ static int bgp_md5_set_socket(int socket, union sockunion *su, uint16_t prefixlen, const char *password) { int ret = -1; int en = ENOSYS; #if HAVE_DECL_TCP_MD5SIG union sockunion su2; #endif /* HAVE_TCP_MD5SIG */ assert(socket >= 0); #if HAVE_DECL_TCP_MD5SIG /* Ensure there is no extraneous port information. */ memcpy(&su2, su, sizeof(union sockunion)); if (su2.sa.sa_family == AF_INET) su2.sin.sin_port = 0; else su2.sin6.sin6_port = 0; /* For addresses, use the non-extended signature functionality */ if ((su2.sa.sa_family == AF_INET && prefixlen == IPV4_MAX_PREFIXLEN) || (su2.sa.sa_family == AF_INET6 && prefixlen == IPV6_MAX_PREFIXLEN)) ret = sockopt_tcp_signature(socket, &su2, password); else ret = sockopt_tcp_signature_ext(socket, &su2, prefixlen, password); en = errno; #endif /* HAVE_TCP_MD5SIG */ if (ret < 0) { char sabuf[SU_ADDRSTRLEN]; sockunion2str(su, sabuf, sizeof(sabuf)); switch (ret) { case -2: flog_warn( EC_BGP_NO_TCP_MD5, "Unable to set TCP MD5 option on socket for peer %s (sock=%d): This platform does not support MD5 auth for prefixes", sabuf, socket); break; default: flog_warn( EC_BGP_NO_TCP_MD5, "Unable to set TCP MD5 option on socket for peer %s (sock=%d): %s", sabuf, socket, safe_strerror(en)); } } return ret; } /* Helper for bgp_connect */ static int bgp_md5_set_connect(int socket, union sockunion *su, uint16_t prefixlen, const char *password) { int ret = -1; #if HAVE_DECL_TCP_MD5SIG frr_elevate_privs(&bgpd_privs) { ret = bgp_md5_set_socket(socket, su, prefixlen, password); } #endif /* HAVE_TCP_MD5SIG */ return ret; } static int bgp_md5_set_password(struct peer *peer, const char *password) { struct listnode *node; int ret = 0; struct bgp_listener *listener; /* * Set or unset the password on the listen socket(s). Outbound * connections are taken care of in bgp_connect() below. */ frr_elevate_privs(&bgpd_privs) { for (ALL_LIST_ELEMENTS_RO(bm->listen_sockets, node, listener)) if (listener->su.sa.sa_family == peer->su.sa.sa_family) { uint16_t prefixlen = peer->su.sa.sa_family == AF_INET ? IPV4_MAX_PREFIXLEN : IPV6_MAX_PREFIXLEN; ret = bgp_md5_set_socket(listener->fd, &peer->su, prefixlen, password); break; } } return ret; } int bgp_md5_set_prefix(struct prefix *p, const char *password) { int ret = 0; union sockunion su; struct listnode *node; struct bgp_listener *listener; /* Set or unset the password on the listen socket(s). */ frr_elevate_privs(&bgpd_privs) { for (ALL_LIST_ELEMENTS_RO(bm->listen_sockets, node, listener)) if (listener->su.sa.sa_family == p->family) { prefix2sockunion(p, &su); ret = bgp_md5_set_socket(listener->fd, &su, p->prefixlen, password); break; } } return ret; } int bgp_md5_unset_prefix(struct prefix *p) { return bgp_md5_set_prefix(p, NULL); } int bgp_md5_set(struct peer *peer) { /* Set the password from listen socket. */ return bgp_md5_set_password(peer, peer->password); } int bgp_md5_unset(struct peer *peer) { /* Unset the password from listen socket. */ return bgp_md5_set_password(peer, NULL); } int bgp_set_socket_ttl(struct peer *peer, int bgp_sock) { char buf[INET_ADDRSTRLEN]; int ret = 0; /* In case of peer is EBGP, we should set TTL for this connection. */ if (!peer->gtsm_hops && (peer_sort(peer) == BGP_PEER_EBGP)) { ret = sockopt_ttl(peer->su.sa.sa_family, bgp_sock, peer->ttl); if (ret) { flog_err( EC_LIB_SOCKET, "%s: Can't set TxTTL on peer (rtrid %s) socket, err = %d", __func__, inet_ntop(AF_INET, &peer->remote_id, buf, sizeof(buf)), errno); return ret; } } else if (peer->gtsm_hops) { /* On Linux, setting minttl without setting ttl seems to mess with the outgoing ttl. Therefore setting both. */ ret = sockopt_ttl(peer->su.sa.sa_family, bgp_sock, MAXTTL); if (ret) { flog_err( EC_LIB_SOCKET, "%s: Can't set TxTTL on peer (rtrid %s) socket, err = %d", __func__, inet_ntop(AF_INET, &peer->remote_id, buf, sizeof(buf)), errno); return ret; } ret = sockopt_minttl(peer->su.sa.sa_family, bgp_sock, MAXTTL + 1 - peer->gtsm_hops); if (ret) { flog_err( EC_LIB_SOCKET, "%s: Can't set MinTTL on peer (rtrid %s) socket, err = %d", __func__, inet_ntop(AF_INET, &peer->remote_id, buf, sizeof(buf)), errno); return ret; } } return ret; } /* * Obtain the BGP instance that the incoming connection should be processed * against. This is important because more than one VRF could be using the * same IP address space. The instance is got by obtaining the device to * which the incoming connection is bound to. This could either be a VRF * or it could be an interface, which in turn determines the VRF. */ static int bgp_get_instance_for_inc_conn(int sock, struct bgp **bgp_inst) { #ifndef SO_BINDTODEVICE /* only Linux has SO_BINDTODEVICE, but we're in Linux-specific code here * anyway since the assumption is that the interface name returned by * getsockopt() is useful in identifying the VRF, particularly with * Linux's * VRF l3master device. The whole mechanism is specific to Linux, so... * when other platforms add VRF support, this will need handling here as * well. (or, some restructuring) */ *bgp_inst = bgp_get_default(); return !*bgp_inst; #else char name[VRF_NAMSIZ + 1]; socklen_t name_len = VRF_NAMSIZ; struct bgp *bgp; int rc; struct listnode *node, *nnode; *bgp_inst = NULL; name[0] = '\0'; rc = getsockopt(sock, SOL_SOCKET, SO_BINDTODEVICE, name, &name_len); if (rc != 0) { #if defined(HAVE_CUMULUS) flog_err(EC_LIB_SOCKET, "[Error] BGP SO_BINDTODEVICE get failed (%s), sock %d", safe_strerror(errno), sock); return -1; #endif } if (!strlen(name)) { *bgp_inst = bgp_get_default(); return 0; /* default instance. */ } /* First try match to instance; if that fails, check for interfaces. */ bgp = bgp_lookup_by_name(name); if (bgp) { if (!bgp->vrf_id) // unexpected return -1; *bgp_inst = bgp; return 0; } /* TODO - This will be optimized once interfaces move into the NS */ for (ALL_LIST_ELEMENTS(bm->bgp, node, nnode, bgp)) { struct interface *ifp; if (bgp->inst_type == BGP_INSTANCE_TYPE_VIEW) continue; ifp = if_lookup_by_name(name, vrf_lookup_by_id(bgp->vrf_id)); if (ifp) { *bgp_inst = bgp; return 0; } } /* We didn't match to either an instance or an interface. */ return -1; #endif } /* Accept bgp connection. */ static int bgp_accept(struct thread *thread) { int bgp_sock; int accept_sock; union sockunion su; struct bgp_listener *listener = THREAD_ARG(thread); struct peer *peer; struct peer *peer1; char buf[SU_ADDRSTRLEN]; struct bgp *bgp = NULL; sockunion_init(&su); /* Register accept thread. */ accept_sock = THREAD_FD(thread); if (accept_sock < 0) { flog_err_sys(EC_LIB_SOCKET, "accept_sock is nevative value %d", accept_sock); return -1; } listener->thread = NULL; thread_add_read(bm->master, bgp_accept, listener, accept_sock, &listener->thread); /* Accept client connection. */ bgp_sock = sockunion_accept(accept_sock, &su); if (bgp_sock < 0) { flog_err_sys(EC_LIB_SOCKET, "[Error] BGP socket accept failed (%s)", safe_strerror(errno)); return -1; } set_nonblocking(bgp_sock); /* Obtain BGP instance this connection is meant for. * - if it is a VRF netns sock, then BGP is in listener structure * - otherwise, the bgp instance need to be demultiplexed */ if (listener->bgp) bgp = listener->bgp; else if (bgp_get_instance_for_inc_conn(bgp_sock, &bgp)) { if (bgp_debug_neighbor_events(NULL)) zlog_debug( "[Event] Could not get instance for incoming conn from %s", inet_sutop(&su, buf)); close(bgp_sock); return -1; } /* Set socket send buffer size */ setsockopt_so_sendbuf(bgp_sock, BGP_SOCKET_SNDBUF_SIZE); /* Check remote IP address */ peer1 = peer_lookup(bgp, &su); if (!peer1) { peer1 = peer_lookup_dynamic_neighbor(bgp, &su); if (peer1) { /* Dynamic neighbor has been created, let it proceed */ peer1->fd = bgp_sock; bgp_fsm_change_status(peer1, Active); BGP_TIMER_OFF( peer1->t_start); /* created in peer_create() */ if (peer_active(peer1)) BGP_EVENT_ADD(peer1, TCP_connection_open); return 0; } } if (!peer1) { if (bgp_debug_neighbor_events(NULL)) { zlog_debug( "[Event] %s connection rejected - not configured" " and not valid for dynamic", inet_sutop(&su, buf)); } close(bgp_sock); return -1; } if (CHECK_FLAG(peer1->flags, PEER_FLAG_SHUTDOWN)) { if (bgp_debug_neighbor_events(peer1)) zlog_debug( "[Event] connection from %s rejected due to admin shutdown", inet_sutop(&su, buf)); close(bgp_sock); return -1; } /* * Do not accept incoming connections in Clearing state. This can result * in incorect state transitions - e.g., the connection goes back to * Established and then the Clearing_Completed event is generated. Also, * block incoming connection in Deleted state. */ if (peer1->status == Clearing || peer1->status == Deleted) { if (bgp_debug_neighbor_events(peer1)) zlog_debug( "[Event] Closing incoming conn for %s (%p) state %d", peer1->host, peer1, peer1->status); close(bgp_sock); return -1; } /* Check that at least one AF is activated for the peer. */ if (!peer_active(peer1)) { if (bgp_debug_neighbor_events(peer1)) zlog_debug( "%s - incoming conn rejected - no AF activated for peer", peer1->host); close(bgp_sock); return -1; } if (bgp_debug_neighbor_events(peer1)) zlog_debug("[Event] BGP connection from host %s fd %d", inet_sutop(&su, buf), bgp_sock); if (peer1->doppelganger) { /* We have an existing connection. Kill the existing one and run with this one. */ if (bgp_debug_neighbor_events(peer1)) zlog_debug( "[Event] New active connection from peer %s, Killing" " previous active connection", peer1->host); peer_delete(peer1->doppelganger); } if (bgp_set_socket_ttl(peer1, bgp_sock) < 0) if (bgp_debug_neighbor_events(peer1)) zlog_debug( "[Event] Unable to set min/max TTL on peer %s, Continuing", peer1->host); peer = peer_create(&su, peer1->conf_if, peer1->bgp, peer1->local_as, peer1->as, peer1->as_type, 0, 0, NULL); hash_release(peer->bgp->peerhash, peer); hash_get(peer->bgp->peerhash, peer, hash_alloc_intern); peer_xfer_config(peer, peer1); UNSET_FLAG(peer->flags, PEER_FLAG_CONFIG_NODE); peer->doppelganger = peer1; peer1->doppelganger = peer; peer->fd = bgp_sock; vrf_bind(peer->bgp->vrf_id, bgp_sock, bgp_get_bound_name(peer)); bgp_fsm_change_status(peer, Active); BGP_TIMER_OFF(peer->t_start); /* created in peer_create() */ SET_FLAG(peer->sflags, PEER_STATUS_ACCEPT_PEER); /* Make dummy peer until read Open packet. */ if (peer1->status == Established && CHECK_FLAG(peer1->sflags, PEER_STATUS_NSF_MODE)) { /* If we have an existing established connection with graceful * restart * capability announced with one or more address families, then * drop * existing established connection and move state to connect. */ peer1->last_reset = PEER_DOWN_NSF_CLOSE_SESSION; SET_FLAG(peer1->sflags, PEER_STATUS_NSF_WAIT); bgp_event_update(peer1, TCP_connection_closed); } if (peer_active(peer)) { BGP_EVENT_ADD(peer, TCP_connection_open); } return 0; } /* BGP socket bind. */ static char *bgp_get_bound_name(struct peer *peer) { char *name = NULL; if (!peer) return NULL; if ((peer->bgp->vrf_id == VRF_DEFAULT) && !peer->ifname && !peer->conf_if) return NULL; if (peer->su.sa.sa_family != AF_INET && peer->su.sa.sa_family != AF_INET6) return NULL; // unexpected /* For IPv6 peering, interface (unnumbered or link-local with interface) * takes precedence over VRF. For IPv4 peering, explicit interface or * VRF are the situations to bind. */ if (peer->su.sa.sa_family == AF_INET6) name = (peer->conf_if ? peer->conf_if : (peer->ifname ? peer->ifname : peer->bgp->name)); else name = peer->ifname ? peer->ifname : peer->bgp->name; return name; } static int bgp_update_address(struct interface *ifp, const union sockunion *dst, union sockunion *addr) { struct prefix *p, *sel, d; struct connected *connected; struct listnode *node; int common; sockunion2hostprefix(dst, &d); sel = NULL; common = -1; for (ALL_LIST_ELEMENTS_RO(ifp->connected, node, connected)) { p = connected->address; if (p->family != d.family) continue; if (prefix_common_bits(p, &d) > common) { sel = p; common = prefix_common_bits(sel, &d); } } if (!sel) return 1; prefix2sockunion(sel, addr); return 0; } /* Update source selection. */ static int bgp_update_source(struct peer *peer) { struct interface *ifp; union sockunion addr; int ret = 0; sockunion_init(&addr); /* Source is specified with interface name. */ if (peer->update_if) { ifp = if_lookup_by_name(peer->update_if, vrf_lookup_by_id(peer->bgp->vrf_id)); if (!ifp) return -1; if (bgp_update_address(ifp, &peer->su, &addr)) return -1; ret = sockunion_bind(peer->fd, &addr, 0, &addr); } /* Source is specified with IP address. */ if (peer->update_source) ret = sockunion_bind(peer->fd, peer->update_source, 0, peer->update_source); return ret; } /* BGP try to connect to the peer. */ int bgp_connect(struct peer *peer) { assert(!CHECK_FLAG(peer->thread_flags, PEER_THREAD_WRITES_ON)); assert(!CHECK_FLAG(peer->thread_flags, PEER_THREAD_READS_ON)); ifindex_t ifindex = 0; if (peer->conf_if && BGP_PEER_SU_UNSPEC(peer)) { zlog_debug("Peer address not learnt: Returning from connect"); return 0; } frr_elevate_privs(&bgpd_privs) { /* Make socket for the peer. */ peer->fd = vrf_sockunion_socket(&peer->su, peer->bgp->vrf_id, bgp_get_bound_name(peer)); } if (peer->fd < 0) return -1; set_nonblocking(peer->fd); /* Set socket send buffer size */ setsockopt_so_sendbuf(peer->fd, BGP_SOCKET_SNDBUF_SIZE); if (bgp_set_socket_ttl(peer, peer->fd) < 0) return -1; sockopt_reuseaddr(peer->fd); sockopt_reuseport(peer->fd); #ifdef IPTOS_PREC_INTERNETCONTROL frr_elevate_privs(&bgpd_privs) { if (sockunion_family(&peer->su) == AF_INET) setsockopt_ipv4_tos(peer->fd, IPTOS_PREC_INTERNETCONTROL); else if (sockunion_family(&peer->su) == AF_INET6) setsockopt_ipv6_tclass(peer->fd, IPTOS_PREC_INTERNETCONTROL); } #endif if (peer->password) { uint16_t prefixlen = peer->su.sa.sa_family == AF_INET ? IPV4_MAX_PREFIXLEN : IPV6_MAX_PREFIXLEN; bgp_md5_set_connect(peer->fd, &peer->su, prefixlen, peer->password); } /* Update source bind. */ if (bgp_update_source(peer) < 0) { return connect_error; } if (peer->conf_if || peer->ifname) ifindex = ifname2ifindex(peer->conf_if ? peer->conf_if : peer->ifname, peer->bgp->vrf_id); if (bgp_debug_neighbor_events(peer)) zlog_debug("%s [Event] Connect start to %s fd %d", peer->host, peer->host, peer->fd); /* Connect to the remote peer. */ return sockunion_connect(peer->fd, &peer->su, htons(peer->port), ifindex); } /* After TCP connection is established. Get local address and port. */ int bgp_getsockname(struct peer *peer) { if (peer->su_local) { sockunion_free(peer->su_local); peer->su_local = NULL; } if (peer->su_remote) { sockunion_free(peer->su_remote); peer->su_remote = NULL; } peer->su_local = sockunion_getsockname(peer->fd); if (!peer->su_local) return -1; peer->su_remote = sockunion_getpeername(peer->fd); if (!peer->su_remote) return -1; if (!bgp_zebra_nexthop_set(peer->su_local, peer->su_remote, &peer->nexthop, peer)) { flog_err(EC_BGP_NH_UPD, "%s: nexthop_set failed, resetting connection - intf %p", peer->host, peer->nexthop.ifp); return -1; } return 0; } static int bgp_listener(int sock, struct sockaddr *sa, socklen_t salen, struct bgp *bgp) { struct bgp_listener *listener; int ret, en; sockopt_reuseaddr(sock); sockopt_reuseport(sock); frr_elevate_privs(&bgpd_privs) { #ifdef IPTOS_PREC_INTERNETCONTROL if (sa->sa_family == AF_INET) setsockopt_ipv4_tos(sock, IPTOS_PREC_INTERNETCONTROL); else if (sa->sa_family == AF_INET6) setsockopt_ipv6_tclass(sock, IPTOS_PREC_INTERNETCONTROL); #endif sockopt_v6only(sa->sa_family, sock); ret = bind(sock, sa, salen); en = errno; } if (ret < 0) { flog_err_sys(EC_LIB_SOCKET, "bind: %s", safe_strerror(en)); return ret; } ret = listen(sock, SOMAXCONN); if (ret < 0) { flog_err_sys(EC_LIB_SOCKET, "listen: %s", safe_strerror(errno)); return ret; } listener = XCALLOC(MTYPE_BGP_LISTENER, sizeof(*listener)); listener->fd = sock; /* this socket needs a change of ns. record bgp back pointer */ if (bgp->vrf_id != VRF_DEFAULT && vrf_is_backend_netns()) listener->bgp = bgp; memcpy(&listener->su, sa, salen); listener->thread = NULL; thread_add_read(bm->master, bgp_accept, listener, sock, &listener->thread); listnode_add(bm->listen_sockets, listener); return 0; } /* IPv6 supported version of BGP server socket setup. */ int bgp_socket(struct bgp *bgp, unsigned short port, const char *address) { struct addrinfo *ainfo; struct addrinfo *ainfo_save; static const struct addrinfo req = { .ai_family = AF_UNSPEC, .ai_flags = AI_PASSIVE, .ai_socktype = SOCK_STREAM, }; int ret, count; char port_str[BUFSIZ]; snprintf(port_str, sizeof(port_str), "%d", port); port_str[sizeof(port_str) - 1] = '\0'; frr_elevate_privs(&bgpd_privs) { ret = vrf_getaddrinfo(address, port_str, &req, &ainfo_save, bgp->vrf_id); } if (ret != 0) { flog_err_sys(EC_LIB_SOCKET, "getaddrinfo: %s", gai_strerror(ret)); return -1; } if (bgp_option_check(BGP_OPT_NO_ZEBRA) && bgp->vrf_id != VRF_DEFAULT) { freeaddrinfo(ainfo_save); return -1; } count = 0; for (ainfo = ainfo_save; ainfo; ainfo = ainfo->ai_next) { int sock; if (ainfo->ai_family != AF_INET && ainfo->ai_family != AF_INET6) continue; frr_elevate_privs(&bgpd_privs) { sock = vrf_socket(ainfo->ai_family, ainfo->ai_socktype, ainfo->ai_protocol, bgp->vrf_id, (bgp->inst_type == BGP_INSTANCE_TYPE_VRF ? bgp->name : NULL)); } if (sock < 0) { flog_err_sys(EC_LIB_SOCKET, "socket: %s", safe_strerror(errno)); continue; } /* if we intend to implement ttl-security, this socket needs * ttl=255 */ sockopt_ttl(ainfo->ai_family, sock, MAXTTL); ret = bgp_listener(sock, ainfo->ai_addr, ainfo->ai_addrlen, bgp); if (ret == 0) ++count; else close(sock); } freeaddrinfo(ainfo_save); if (count == 0 && bgp->inst_type != BGP_INSTANCE_TYPE_VRF) { flog_err( EC_LIB_SOCKET, "%s: no usable addresses please check other programs usage of specified port %d", __func__, port); flog_err_sys(EC_LIB_SOCKET, "%s: Program cannot continue", __func__); exit(-1); } return 0; } /* this function closes vrf socket * this should be called only for vrf socket with netns backend */ void bgp_close_vrf_socket(struct bgp *bgp) { struct listnode *node, *next; struct bgp_listener *listener; if (!bgp) return; if (bm->listen_sockets == NULL) return; for (ALL_LIST_ELEMENTS(bm->listen_sockets, node, next, listener)) { if (listener->bgp == bgp) { thread_cancel(listener->thread); close(listener->fd); listnode_delete(bm->listen_sockets, listener); XFREE(MTYPE_BGP_LISTENER, listener); } } } /* this function closes main socket */ void bgp_close(void) { struct listnode *node, *next; struct bgp_listener *listener; if (bm->listen_sockets == NULL) return; for (ALL_LIST_ELEMENTS(bm->listen_sockets, node, next, listener)) { if (listener->bgp) continue; thread_cancel(listener->thread); close(listener->fd); listnode_delete(bm->listen_sockets, listener); XFREE(MTYPE_BGP_LISTENER, listener); } }