// SPDX-License-Identifier: GPL-2.0-or-later /* * Prefix structure. * Copyright (C) 1998 Kunihiro Ishiguro */ #ifndef _ZEBRA_PREFIX_H #define _ZEBRA_PREFIX_H #ifdef GNU_LINUX #include #else #include #endif #include "sockunion.h" #include "ipaddr.h" #include "compiler.h" #ifdef __cplusplus extern "C" { #endif #ifndef ETH_ALEN #define ETH_ALEN 6 #endif /* EVPN route types. */ typedef enum { BGP_EVPN_AD_ROUTE = 1, /* Ethernet Auto-Discovery (A-D) route */ BGP_EVPN_MAC_IP_ROUTE, /* MAC/IP Advertisement route */ BGP_EVPN_IMET_ROUTE, /* Inclusive Multicast Ethernet Tag route */ BGP_EVPN_ES_ROUTE, /* Ethernet Segment route */ BGP_EVPN_IP_PREFIX_ROUTE, /* IP Prefix route */ } bgp_evpn_route_type; /* value of first byte of ESI */ #define ESI_TYPE_ARBITRARY 0 /* */ #define ESI_TYPE_LACP 1 /* <> */ #define ESI_TYPE_BRIDGE 2 /* ::00 */ #define ESI_TYPE_MAC 3 /* : */ #define ESI_TYPE_ROUTER 4 /* : */ #define ESI_TYPE_AS 5 /* : */ #define MAX_ESI {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff} #define EVPN_ETH_TAG_BYTES 4 #define ESI_BYTES 10 #define ESI_STR_LEN (3 * ESI_BYTES) #define EVPN_DF_ALG_STR_LEN 24 /* Maximum number of VTEPs per-ES - * XXX - temporary limit for allocating strings etc. */ #define ES_VTEP_MAX_CNT 10 #define ES_VTEP_LIST_STR_SZ (ES_VTEP_MAX_CNT * 16) #define ETHER_ADDR_STRLEN (3*ETH_ALEN) /* * there isn't a portable ethernet address type. We define our * own to simplify internal handling */ struct ethaddr { uint8_t octet[ETH_ALEN]; } __attribute__((packed)); /* length is the number of valuable bits of prefix structure * 18 bytes is current length in structure, if address is ipv4 * 30 bytes is in case of ipv6 */ #define PREFIX_LEN_ROUTE_TYPE_5_IPV4 (18*8) #define PREFIX_LEN_ROUTE_TYPE_5_IPV6 (30*8) typedef struct esi_t_ { uint8_t val[ESI_BYTES]; } esi_t; struct evpn_ead_addr { esi_t esi; uint32_t eth_tag; struct ipaddr ip; uint16_t frag_id; }; struct evpn_macip_addr { uint32_t eth_tag; uint8_t ip_prefix_length; struct ethaddr mac; struct ipaddr ip; }; struct evpn_imet_addr { uint32_t eth_tag; uint8_t ip_prefix_length; struct ipaddr ip; }; struct evpn_es_addr { esi_t esi; uint8_t ip_prefix_length; struct ipaddr ip; }; struct evpn_prefix_addr { uint32_t eth_tag; uint8_t ip_prefix_length; struct ipaddr ip; }; /* EVPN address (RFC 7432) */ struct evpn_addr { uint8_t route_type; union { struct evpn_ead_addr _ead_addr; struct evpn_macip_addr _macip_addr; struct evpn_imet_addr _imet_addr; struct evpn_es_addr _es_addr; struct evpn_prefix_addr _prefix_addr; } u; #define ead_addr u._ead_addr #define macip_addr u._macip_addr #define imet_addr u._imet_addr #define es_addr u._es_addr #define prefix_addr u._prefix_addr }; /* * A struct prefix contains an address family, a prefix length, and an * address. This can represent either a 'network prefix' as defined * by CIDR, where the 'host bits' of the prefix are 0 * (e.g. AF_INET:10.0.0.0/8), or an address and netmask * (e.g. AF_INET:10.0.0.9/8), such as might be configured on an * interface. */ /* different OSes use different names */ #if defined(AF_PACKET) #define AF_ETHERNET AF_PACKET #else #if defined(AF_LINK) #define AF_ETHERNET AF_LINK #endif #endif /* The 'family' in the prefix structure is internal to FRR and need not * map to standard OS AF_ definitions except where needed for interacting * with the kernel. However, AF_ definitions are currently in use and * prevalent across the code. Define a new FRR-specific AF for EVPN to * distinguish between 'ethernet' (MAC-only) and 'evpn' prefixes and * ensure it does not conflict with any OS AF_ definition. */ #if !defined(AF_EVPN) #define AF_EVPN (AF_MAX + 1) #endif #if !defined(AF_FLOWSPEC) #define AF_FLOWSPEC (AF_MAX + 2) #endif struct flowspec_prefix { uint8_t family; uint16_t prefixlen; /* length in bytes */ uintptr_t ptr; }; /* FRR generic prefix structure. */ struct prefix { uint8_t family; uint16_t prefixlen; union { uint8_t prefix; struct in_addr prefix4; struct in6_addr prefix6; struct { struct in_addr id; struct in_addr adv_router; } lp; struct ethaddr prefix_eth; /* AF_ETHERNET */ uint8_t val[16]; uint32_t val32[4]; uintptr_t ptr; struct evpn_addr prefix_evpn; /* AF_EVPN */ struct flowspec_prefix prefix_flowspec; /* AF_FLOWSPEC */ } u __attribute__((aligned(8))); }; /* IPv4 prefix structure. */ struct prefix_ipv4 { uint8_t family; uint16_t prefixlen; struct in_addr prefix __attribute__((aligned(8))); }; /* IPv6 prefix structure. */ struct prefix_ipv6 { uint8_t family; uint16_t prefixlen; struct in6_addr prefix __attribute__((aligned(8))); }; struct prefix_ls { uint8_t family; uint16_t prefixlen; struct in_addr id __attribute__((aligned(8))); struct in_addr adv_router; }; /* Prefix for routing distinguisher. */ struct prefix_rd { uint8_t family; uint16_t prefixlen; uint8_t val[8] __attribute__((aligned(8))); }; /* Prefix for ethernet. */ struct prefix_eth { uint8_t family; uint16_t prefixlen; struct ethaddr eth_addr __attribute__((aligned(8))); /* AF_ETHERNET */ }; /* EVPN prefix structure. */ struct prefix_evpn { uint8_t family; uint16_t prefixlen; struct evpn_addr prefix __attribute__((aligned(8))); }; static inline int is_evpn_prefix_ipaddr_none(const struct prefix_evpn *evp) { if (evp->prefix.route_type == BGP_EVPN_AD_ROUTE) return IS_IPADDR_NONE(&(evp)->prefix.ead_addr.ip); if (evp->prefix.route_type == BGP_EVPN_MAC_IP_ROUTE) return IS_IPADDR_NONE(&(evp)->prefix.macip_addr.ip); if (evp->prefix.route_type == BGP_EVPN_IMET_ROUTE) return IS_IPADDR_NONE(&(evp)->prefix.imet_addr.ip); if (evp->prefix.route_type == BGP_EVPN_ES_ROUTE) return IS_IPADDR_NONE(&(evp)->prefix.es_addr.ip); if (evp->prefix.route_type == BGP_EVPN_IP_PREFIX_ROUTE) return IS_IPADDR_NONE(&(evp)->prefix.prefix_addr.ip); return 0; } static inline int is_evpn_prefix_ipaddr_v4(const struct prefix_evpn *evp) { if (evp->prefix.route_type == BGP_EVPN_AD_ROUTE) return IS_IPADDR_V4(&(evp)->prefix.ead_addr.ip); if (evp->prefix.route_type == BGP_EVPN_MAC_IP_ROUTE) return IS_IPADDR_V4(&(evp)->prefix.macip_addr.ip); if (evp->prefix.route_type == BGP_EVPN_IMET_ROUTE) return IS_IPADDR_V4(&(evp)->prefix.imet_addr.ip); if (evp->prefix.route_type == BGP_EVPN_ES_ROUTE) return IS_IPADDR_V4(&(evp)->prefix.es_addr.ip); if (evp->prefix.route_type == BGP_EVPN_IP_PREFIX_ROUTE) return IS_IPADDR_V4(&(evp)->prefix.prefix_addr.ip); return 0; } static inline int is_evpn_prefix_ipaddr_v6(const struct prefix_evpn *evp) { if (evp->prefix.route_type == BGP_EVPN_AD_ROUTE) return IS_IPADDR_V6(&(evp)->prefix.ead_addr.ip); if (evp->prefix.route_type == BGP_EVPN_MAC_IP_ROUTE) return IS_IPADDR_V6(&(evp)->prefix.macip_addr.ip); if (evp->prefix.route_type == BGP_EVPN_IMET_ROUTE) return IS_IPADDR_V6(&(evp)->prefix.imet_addr.ip); if (evp->prefix.route_type == BGP_EVPN_ES_ROUTE) return IS_IPADDR_V6(&(evp)->prefix.es_addr.ip); if (evp->prefix.route_type == BGP_EVPN_IP_PREFIX_ROUTE) return IS_IPADDR_V6(&(evp)->prefix.prefix_addr.ip); return 0; } /* Prefix for a Flowspec entry */ struct prefix_fs { uint8_t family; uint16_t prefixlen; /* unused */ struct flowspec_prefix prefix __attribute__((aligned(8))); }; struct prefix_sg { uint8_t family; uint16_t prefixlen; struct in_addr src __attribute__((aligned(8))); struct in_addr grp; }; union prefixptr { prefixtype(prefixptr, struct prefix, p) prefixtype(prefixptr, struct prefix_ipv4, p4) prefixtype(prefixptr, struct prefix_ipv6, p6) prefixtype(prefixptr, struct prefix_evpn, evp) prefixtype(prefixptr, struct prefix_fs, fs) prefixtype(prefixptr, struct prefix_rd, rd) } TRANSPARENT_UNION; union prefixconstptr { prefixtype(prefixconstptr, const struct prefix, p) prefixtype(prefixconstptr, const struct prefix_ipv4, p4) prefixtype(prefixconstptr, const struct prefix_ipv6, p6) prefixtype(prefixconstptr, const struct prefix_evpn, evp) prefixtype(prefixconstptr, const struct prefix_fs, fs) prefixtype(prefixconstptr, const struct prefix_rd, rd) } TRANSPARENT_UNION; #ifndef INET_ADDRSTRLEN #define INET_ADDRSTRLEN 16 #endif /* INET_ADDRSTRLEN */ #ifndef INET6_ADDRSTRLEN /* dead:beef:dead:beef:dead:beef:dead:beef + \0 */ #define INET6_ADDRSTRLEN 46 #endif /* INET6_ADDRSTRLEN */ #ifndef INET6_BUFSIZ #define INET6_BUFSIZ 53 #endif /* INET6_BUFSIZ */ /* Maximum string length of the result of prefix2str */ #define PREFIX_STRLEN 80 /* * Longest possible length of a (S,G) string is 34 bytes * 123.123.123.123 = 15 * 2 * (,) = 3 * NULL Character at end = 1 * (123.123.123.123,123.123.123.123) */ #define PREFIX_SG_STR_LEN 34 /* Max bit/byte length of IPv4 address. */ #define IPV4_MAX_BYTELEN 4 #define IPV4_MAX_BITLEN 32 #define IPV4_ADDR_CMP(D,S) memcmp ((D), (S), IPV4_MAX_BYTELEN) static inline bool ipv4_addr_same(const struct in_addr *a, const struct in_addr *b) { return (a->s_addr == b->s_addr); } #define IPV4_ADDR_SAME(A,B) ipv4_addr_same((A), (B)) static inline void ipv4_addr_copy(struct in_addr *dst, const struct in_addr *src) { dst->s_addr = src->s_addr; } #define IPV4_ADDR_COPY(D,S) ipv4_addr_copy((D), (S)) #define IPV4_NET0(a) ((((uint32_t)(a)) & 0xff000000) == 0x00000000) #define IPV4_NET127(a) ((((uint32_t)(a)) & 0xff000000) == 0x7f000000) #define IPV4_LINKLOCAL(a) ((((uint32_t)(a)) & 0xffff0000) == 0xa9fe0000) #define IPV4_CLASS_D(a) ((((uint32_t)(a)) & 0xf0000000) == 0xe0000000) #define IPV4_CLASS_E(a) ((((uint32_t)(a)) & 0xf0000000) == 0xf0000000) #define IPV4_CLASS_DE(a) ((((uint32_t)(a)) & 0xe0000000) == 0xe0000000) #define IPV4_MC_LINKLOCAL(a) ((((uint32_t)(a)) & 0xffffff00) == 0xe0000000) /* Max bit/byte length of IPv6 address. */ #define IPV6_MAX_BYTELEN 16 #define IPV6_MAX_BITLEN 128 #define IPV6_ADDR_CMP(D,S) memcmp ((D), (S), IPV6_MAX_BYTELEN) #define IPV6_ADDR_SAME(D,S) (memcmp ((D), (S), IPV6_MAX_BYTELEN) == 0) #define IPV6_ADDR_COPY(D,S) memcpy ((D), (S), IPV6_MAX_BYTELEN) /* Count prefix size from mask length */ #define PSIZE(a) (((a) + 7) / (8)) #define BSIZE(a) ((a) * (8)) /* Prefix's family member. */ #define PREFIX_FAMILY(p) ((p)->family) /* glibc defines s6_addr32 to __in6_u.__u6_addr32 if __USE_{MISC || GNU} */ #ifndef s6_addr32 #define s6_addr32 __u6_addr.__u6_addr32 #endif /*s6_addr32*/ /* Prototypes. */ extern int str2family(const char *); extern int afi2family(afi_t); extern afi_t family2afi(int); extern const char *family2str(int family); extern const char *safi2str(safi_t safi); extern const char *afi2str(afi_t afi); extern const char *afi2str_lower(afi_t afi); static inline afi_t prefix_afi(union prefixconstptr pu) { return family2afi(pu.p->family); } /* * Check bit of the prefix. * * prefix * byte buffer * * bit_index * which bit to fetch from byte buffer, 0 indexed. */ extern unsigned int prefix_bit(const uint8_t *prefix, const uint16_t bit_index); extern struct prefix *prefix_new(void); extern void prefix_free(struct prefix **p); /* * Function to handle prefix_free being used as a del function. */ extern void prefix_free_lists(void *arg); extern const char *prefix_family_str(union prefixconstptr pu); extern int prefix_blen(union prefixconstptr pu); extern int str2prefix(const char *, struct prefix *); #define PREFIX2STR_BUFFER PREFIX_STRLEN extern void prefix_mcast_inet4_dump(const char *onfail, struct in_addr addr, char *buf, int buf_size); extern const char *prefix_sg2str(const struct prefix_sg *sg, char *str); extern const char *prefix2str(union prefixconstptr, char *, int); extern int evpn_type5_prefix_match(const struct prefix *evpn_pfx, const struct prefix *match_pfx); extern int prefix_match(union prefixconstptr unet, union prefixconstptr upfx); extern int prefix_match_network_statement(union prefixconstptr unet, union prefixconstptr upfx); extern int prefix_same(union prefixconstptr ua, union prefixconstptr ub); extern int prefix_cmp(union prefixconstptr ua, union prefixconstptr ub); extern int prefix_common_bits(union prefixconstptr ua, union prefixconstptr ub); extern void prefix_copy(union prefixptr udst, union prefixconstptr usrc); extern void apply_mask(union prefixptr pu); #ifdef __clang_analyzer__ /* clang-SA doesn't understand transparent unions, making it think that the * target of prefix_copy is uninitialized. So just memset the target. * cf. https://bugs.llvm.org/show_bug.cgi?id=42811 */ #define prefix_copy(a, b) ({ memset(a, 0, sizeof(*a)); prefix_copy(a, b); }) #endif extern struct prefix *sockunion2hostprefix(const union sockunion *, struct prefix *p); extern void prefix2sockunion(const struct prefix *, union sockunion *); extern int str2prefix_eth(const char *, struct prefix_eth *); extern struct prefix_ipv4 *prefix_ipv4_new(void); extern void prefix_ipv4_free(struct prefix_ipv4 **p); extern int str2prefix_ipv4(const char *, struct prefix_ipv4 *); extern void apply_mask_ipv4(struct prefix_ipv4 *); extern int prefix_ipv4_any(const struct prefix_ipv4 *); extern void apply_classful_mask_ipv4(struct prefix_ipv4 *); extern uint8_t ip_masklen(struct in_addr); extern void masklen2ip(const int, struct in_addr *); /* given the address of a host on a network and the network mask length, * calculate the broadcast address for that network; * special treatment for /31 according to RFC3021 section 3.3 */ extern in_addr_t ipv4_broadcast_addr(in_addr_t hostaddr, int masklen); extern int netmask_str2prefix_str(const char *, const char *, char *, size_t); extern struct prefix_ipv6 *prefix_ipv6_new(void); extern void prefix_ipv6_free(struct prefix_ipv6 **p); extern int str2prefix_ipv6(const char *, struct prefix_ipv6 *); extern void apply_mask_ipv6(struct prefix_ipv6 *); extern int ip6_masklen(struct in6_addr); extern void masklen2ip6(const int, struct in6_addr *); extern int is_zero_mac(const struct ethaddr *mac); extern bool is_mcast_mac(const struct ethaddr *mac); extern bool is_bcast_mac(const struct ethaddr *mac); extern int prefix_str2mac(const char *str, struct ethaddr *mac); extern char *prefix_mac2str(const struct ethaddr *mac, char *buf, int size); extern unsigned prefix_hash_key(const void *pp); extern int str_to_esi(const char *str, esi_t *esi); extern char *esi_to_str(const esi_t *esi, char *buf, int size); extern char *evpn_es_df_alg2str(uint8_t df_alg, char *buf, int buf_len); extern void prefix_evpn_hexdump(const struct prefix_evpn *p); extern bool ipv4_unicast_valid(const struct in_addr *addr); extern int evpn_prefix2prefix(const struct prefix *evpn, struct prefix *to); static inline int ipv6_martian(const struct in6_addr *addr) { struct in6_addr localhost_addr; inet_pton(AF_INET6, "::1", &localhost_addr); if (IPV6_ADDR_SAME(&localhost_addr, addr)) return 1; return 0; } extern int macstr2prefix_evpn(const char *str, struct prefix_evpn *p); /* NOTE: This routine expects the address argument in network byte order. */ static inline bool ipv4_martian(const struct in_addr *addr) { if (!ipv4_unicast_valid(addr)) return true; return false; } static inline bool is_default_prefix4(const struct prefix_ipv4 *p) { return p && p->family == AF_INET && p->prefixlen == 0 && p->prefix.s_addr == INADDR_ANY; } static inline bool is_default_prefix6(const struct prefix_ipv6 *p) { return p && p->family == AF_INET6 && p->prefixlen == 0 && memcmp(&p->prefix, &in6addr_any, sizeof(struct in6_addr)) == 0; } static inline bool is_default_prefix(const struct prefix *p) { if (p == NULL) return false; switch (p->family) { case AF_INET: return is_default_prefix4((const struct prefix_ipv4 *)p); case AF_INET6: return is_default_prefix6((const struct prefix_ipv6 *)p); } return false; } static inline int is_host_route(const struct prefix *p) { if (p->family == AF_INET) return (p->prefixlen == IPV4_MAX_BITLEN); else if (p->family == AF_INET6) return (p->prefixlen == IPV6_MAX_BITLEN); return 0; } static inline int is_default_host_route(const struct prefix *p) { if (p->family == AF_INET) { return (p->u.prefix4.s_addr == INADDR_ANY && p->prefixlen == IPV4_MAX_BITLEN); } else if (p->family == AF_INET6) { return ((!memcmp(&p->u.prefix6, &in6addr_any, sizeof(struct in6_addr))) && p->prefixlen == IPV6_MAX_BITLEN); } return 0; } static inline bool is_ipv6_global_unicast(const struct in6_addr *p) { if (IN6_IS_ADDR_UNSPECIFIED(p) || IN6_IS_ADDR_LOOPBACK(p) || IN6_IS_ADDR_LINKLOCAL(p) || IN6_IS_ADDR_MULTICAST(p)) return false; return true; } /* IPv6 scope values, usable for IPv4 too (cf. below) */ /* clang-format off */ enum { /* 0: reserved */ MCAST_SCOPE_IFACE = 0x1, MCAST_SCOPE_LINK = 0x2, MCAST_SCOPE_REALM = 0x3, MCAST_SCOPE_ADMIN = 0x4, MCAST_SCOPE_SITE = 0x5, /* 6-7: unassigned */ MCAST_SCOPE_ORG = 0x8, /* 9-d: unassigned */ MCAST_SCOPE_GLOBAL = 0xe, /* f: reserved */ }; /* clang-format on */ static inline uint8_t ipv6_mcast_scope(const struct in6_addr *addr) { return addr->s6_addr[1] & 0xf; } static inline bool ipv6_mcast_nofwd(const struct in6_addr *addr) { return (addr->s6_addr[1] & 0xf) <= MCAST_SCOPE_LINK; } static inline bool ipv6_mcast_ssm(const struct in6_addr *addr) { uint32_t bits = ntohl(addr->s6_addr32[0]); /* ff3x:0000::/32 */ return (bits & 0xfff0ffff) == 0xff300000; } static inline uint8_t ipv4_mcast_scope(const struct in_addr *addr) { uint32_t bits = ntohl(addr->s_addr); /* 224.0.0.0/24 - link scope */ if ((bits & 0xffffff00) == 0xe0000000) return MCAST_SCOPE_LINK; /* 239.0.0.0/8 - org scope */ if ((bits & 0xff000000) == 0xef000000) return MCAST_SCOPE_ORG; return MCAST_SCOPE_GLOBAL; } static inline bool ipv4_mcast_nofwd(const struct in_addr *addr) { uint32_t bits = ntohl(addr->s_addr); /* 224.0.0.0/24 */ return (bits & 0xffffff00) == 0xe0000000; } static inline bool ipv4_mcast_ssm(const struct in_addr *addr) { uint32_t bits = ntohl(addr->s_addr); /* 232.0.0.0/8 */ return (bits & 0xff000000) == 0xe8000000; } #ifdef _FRR_ATTRIBUTE_PRINTFRR #pragma FRR printfrr_ext "%pEA" (struct ethaddr *) #pragma FRR printfrr_ext "%pI4" (struct in_addr *) #pragma FRR printfrr_ext "%pI4" (in_addr_t *) #pragma FRR printfrr_ext "%pI6" (struct in6_addr *) #pragma FRR printfrr_ext "%pFX" (struct prefix *) #pragma FRR printfrr_ext "%pFX" (struct prefix_ipv4 *) #pragma FRR printfrr_ext "%pFX" (struct prefix_ipv6 *) #pragma FRR printfrr_ext "%pFX" (struct prefix_eth *) #pragma FRR printfrr_ext "%pFX" (struct prefix_evpn *) #pragma FRR printfrr_ext "%pFX" (struct prefix_fs *) #pragma FRR printfrr_ext "%pRDP" (struct prefix_rd *) /* RD with AS4B with dot and dot+ format */ #pragma FRR printfrr_ext "%pRDD" (struct prefix_rd *) #pragma FRR printfrr_ext "%pRDE" (struct prefix_rd *) #pragma FRR printfrr_ext "%pPSG4" (struct prefix_sg *) #endif #ifdef __cplusplus } #endif #endif /* _ZEBRA_PREFIX_H */