/* Thread management routine * Copyright (C) 1998, 2000 Kunihiro Ishiguro * * This file is part of GNU Zebra. * * GNU Zebra is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * GNU Zebra is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Zebra; see the file COPYING. If not, write to the Free * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA * 02111-1307, USA. */ /* #define DEBUG */ #include #include "thread.h" #include "memory.h" #include "log.h" #include "hash.h" #include "pqueue.h" #include "command.h" #include "sigevent.h" #if defined HAVE_SNMP && defined SNMP_AGENTX #include #include #include #include extern int agentx_enabled; #endif #if defined(__APPLE__) #include #include #endif /* Recent absolute time of day */ struct timeval recent_time; static struct timeval last_recent_time; /* Relative time, since startup */ static struct timeval relative_time; static struct timeval relative_time_base; /* init flag */ static unsigned short timers_inited; static struct hash *cpu_record = NULL; /* Struct timeval's tv_usec one second value. */ #define TIMER_SECOND_MICRO 1000000L /* Adjust so that tv_usec is in the range [0,TIMER_SECOND_MICRO). And change negative values to 0. */ static struct timeval timeval_adjust (struct timeval a) { while (a.tv_usec >= TIMER_SECOND_MICRO) { a.tv_usec -= TIMER_SECOND_MICRO; a.tv_sec++; } while (a.tv_usec < 0) { a.tv_usec += TIMER_SECOND_MICRO; a.tv_sec--; } if (a.tv_sec < 0) /* Change negative timeouts to 0. */ a.tv_sec = a.tv_usec = 0; return a; } static struct timeval timeval_subtract (struct timeval a, struct timeval b) { struct timeval ret; ret.tv_usec = a.tv_usec - b.tv_usec; ret.tv_sec = a.tv_sec - b.tv_sec; return timeval_adjust (ret); } static long timeval_cmp (struct timeval a, struct timeval b) { return (a.tv_sec == b.tv_sec ? a.tv_usec - b.tv_usec : a.tv_sec - b.tv_sec); } unsigned long timeval_elapsed (struct timeval a, struct timeval b) { return (((a.tv_sec - b.tv_sec) * TIMER_SECOND_MICRO) + (a.tv_usec - b.tv_usec)); } #if !defined(HAVE_CLOCK_MONOTONIC) && !defined(__APPLE__) static void quagga_gettimeofday_relative_adjust (void) { struct timeval diff; if (timeval_cmp (recent_time, last_recent_time) < 0) { relative_time.tv_sec++; relative_time.tv_usec = 0; } else { diff = timeval_subtract (recent_time, last_recent_time); relative_time.tv_sec += diff.tv_sec; relative_time.tv_usec += diff.tv_usec; relative_time = timeval_adjust (relative_time); } last_recent_time = recent_time; } #endif /* !HAVE_CLOCK_MONOTONIC && !__APPLE__ */ /* gettimeofday wrapper, to keep recent_time updated */ static int quagga_gettimeofday (struct timeval *tv) { int ret; assert (tv); if (!(ret = gettimeofday (&recent_time, NULL))) { /* init... */ if (!timers_inited) { relative_time_base = last_recent_time = recent_time; timers_inited = 1; } /* avoid copy if user passed recent_time pointer.. */ if (tv != &recent_time) *tv = recent_time; return 0; } return ret; } static int quagga_get_relative (struct timeval *tv) { int ret; #ifdef HAVE_CLOCK_MONOTONIC { struct timespec tp; if (!(ret = clock_gettime (CLOCK_MONOTONIC, &tp))) { relative_time.tv_sec = tp.tv_sec; relative_time.tv_usec = tp.tv_nsec / 1000; } } #elif defined(__APPLE__) { uint64_t ticks; uint64_t useconds; static mach_timebase_info_data_t timebase_info; ticks = mach_absolute_time(); if (timebase_info.denom == 0) mach_timebase_info(&timebase_info); useconds = ticks * timebase_info.numer / timebase_info.denom / 1000; relative_time.tv_sec = useconds / 1000000; relative_time.tv_usec = useconds % 1000000; return 0; } #else /* !HAVE_CLOCK_MONOTONIC && !__APPLE__ */ if (!(ret = quagga_gettimeofday (&recent_time))) quagga_gettimeofday_relative_adjust(); #endif /* HAVE_CLOCK_MONOTONIC */ if (tv) *tv = relative_time; return ret; } /* Get absolute time stamp, but in terms of the internal timer * Could be wrong, but at least won't go back. */ static void quagga_real_stabilised (struct timeval *tv) { *tv = relative_time_base; tv->tv_sec += relative_time.tv_sec; tv->tv_usec += relative_time.tv_usec; *tv = timeval_adjust (*tv); } /* Exported Quagga timestamp function. * Modelled on POSIX clock_gettime. */ int quagga_gettime (enum quagga_clkid clkid, struct timeval *tv) { switch (clkid) { case QUAGGA_CLK_REALTIME: return quagga_gettimeofday (tv); case QUAGGA_CLK_MONOTONIC: return quagga_get_relative (tv); case QUAGGA_CLK_REALTIME_STABILISED: quagga_real_stabilised (tv); return 0; default: errno = EINVAL; return -1; } } /* time_t value in terms of stabilised absolute time. * replacement for POSIX time() */ time_t quagga_time (time_t *t) { struct timeval tv; quagga_real_stabilised (&tv); if (t) *t = tv.tv_sec; return tv.tv_sec; } /* Public export of recent_relative_time by value */ struct timeval recent_relative_time (void) { return relative_time; } static unsigned int cpu_record_hash_key (struct cpu_thread_history *a) { return (uintptr_t) a->func; } static int cpu_record_hash_cmp (const struct cpu_thread_history *a, const struct cpu_thread_history *b) { return a->func == b->func; } static void * cpu_record_hash_alloc (struct cpu_thread_history *a) { struct cpu_thread_history *new; new = XCALLOC (MTYPE_THREAD_STATS, sizeof (struct cpu_thread_history)); new->func = a->func; strcpy(new->funcname, a->funcname); return new; } static void cpu_record_hash_free (void *a) { struct cpu_thread_history *hist = a; XFREE (MTYPE_THREAD_STATS, hist); } static void vty_out_cpu_thread_history(struct vty* vty, struct cpu_thread_history *a) { #ifdef HAVE_RUSAGE vty_out(vty, "%7ld.%03ld %9d %8ld %9ld %8ld %9ld", a->cpu.total/1000, a->cpu.total%1000, a->total_calls, a->cpu.total/a->total_calls, a->cpu.max, a->real.total/a->total_calls, a->real.max); #else vty_out(vty, "%7ld.%03ld %9d %8ld %9ld", a->real.total/1000, a->real.total%1000, a->total_calls, a->real.total/a->total_calls, a->real.max); #endif vty_out(vty, " %c%c%c%c%c%c %s%s", a->types & (1 << THREAD_READ) ? 'R':' ', a->types & (1 << THREAD_WRITE) ? 'W':' ', a->types & (1 << THREAD_TIMER) ? 'T':' ', a->types & (1 << THREAD_EVENT) ? 'E':' ', a->types & (1 << THREAD_EXECUTE) ? 'X':' ', a->types & (1 << THREAD_BACKGROUND) ? 'B' : ' ', a->funcname, VTY_NEWLINE); } static void cpu_record_hash_print(struct hash_backet *bucket, void *args[]) { struct cpu_thread_history *totals = args[0]; struct vty *vty = args[1]; thread_type *filter = args[2]; struct cpu_thread_history *a = bucket->data; a = bucket->data; if ( !(a->types & *filter) ) return; vty_out_cpu_thread_history(vty,a); totals->total_calls += a->total_calls; totals->real.total += a->real.total; if (totals->real.max < a->real.max) totals->real.max = a->real.max; #ifdef HAVE_RUSAGE totals->cpu.total += a->cpu.total; if (totals->cpu.max < a->cpu.max) totals->cpu.max = a->cpu.max; #endif } static void cpu_record_print(struct vty *vty, thread_type filter) { struct cpu_thread_history tmp; void *args[3] = {&tmp, vty, &filter}; memset(&tmp, 0, sizeof tmp); strcpy(tmp.funcname, "TOTAL"); tmp.types = filter; #ifdef HAVE_RUSAGE vty_out(vty, "%21s %18s %18s%s", "", "CPU (user+system):", "Real (wall-clock):", VTY_NEWLINE); #endif vty_out(vty, "Runtime(ms) Invoked Avg uSec Max uSecs"); #ifdef HAVE_RUSAGE vty_out(vty, " Avg uSec Max uSecs"); #endif vty_out(vty, " Type Thread%s", VTY_NEWLINE); hash_iterate(cpu_record, (void(*)(struct hash_backet*,void*))cpu_record_hash_print, args); if (tmp.total_calls > 0) vty_out_cpu_thread_history(vty, &tmp); } DEFUN(show_thread_cpu, show_thread_cpu_cmd, "show thread cpu [FILTER]", SHOW_STR "Thread information\n" "Thread CPU usage\n" "Display filter (rwtexb)\n") { int i = 0; thread_type filter = (thread_type) -1U; if (argc > 0) { filter = 0; while (argv[0][i] != '\0') { switch ( argv[0][i] ) { case 'r': case 'R': filter |= (1 << THREAD_READ); break; case 'w': case 'W': filter |= (1 << THREAD_WRITE); break; case 't': case 'T': filter |= (1 << THREAD_TIMER); break; case 'e': case 'E': filter |= (1 << THREAD_EVENT); break; case 'x': case 'X': filter |= (1 << THREAD_EXECUTE); break; case 'b': case 'B': filter |= (1 << THREAD_BACKGROUND); break; default: break; } ++i; } if (filter == 0) { vty_out(vty, "Invalid filter \"%s\" specified," " must contain at least one of 'RWTEXB'%s", argv[0], VTY_NEWLINE); return CMD_WARNING; } } cpu_record_print(vty, filter); return CMD_SUCCESS; } static void cpu_record_hash_clear (struct hash_backet *bucket, void *args) { thread_type *filter = args; struct cpu_thread_history *a = bucket->data; a = bucket->data; if ( !(a->types & *filter) ) return; hash_release (cpu_record, bucket->data); } static void cpu_record_clear (thread_type filter) { thread_type *tmp = &filter; hash_iterate (cpu_record, (void (*) (struct hash_backet*,void*)) cpu_record_hash_clear, tmp); } DEFUN(clear_thread_cpu, clear_thread_cpu_cmd, "clear thread cpu [FILTER]", "Clear stored data\n" "Thread information\n" "Thread CPU usage\n" "Display filter (rwtexb)\n") { int i = 0; thread_type filter = (thread_type) -1U; if (argc > 0) { filter = 0; while (argv[0][i] != '\0') { switch ( argv[0][i] ) { case 'r': case 'R': filter |= (1 << THREAD_READ); break; case 'w': case 'W': filter |= (1 << THREAD_WRITE); break; case 't': case 'T': filter |= (1 << THREAD_TIMER); break; case 'e': case 'E': filter |= (1 << THREAD_EVENT); break; case 'x': case 'X': filter |= (1 << THREAD_EXECUTE); break; case 'b': case 'B': filter |= (1 << THREAD_BACKGROUND); break; default: break; } ++i; } if (filter == 0) { vty_out(vty, "Invalid filter \"%s\" specified," " must contain at least one of 'RWTEXB'%s", argv[0], VTY_NEWLINE); return CMD_WARNING; } } cpu_record_clear (filter); return CMD_SUCCESS; } static int thread_timer_cmp(void *a, void *b) { struct thread *thread_a = a; struct thread *thread_b = b; long cmp = timeval_cmp(thread_a->u.sands, thread_b->u.sands); if (cmp < 0) return -1; if (cmp > 0) return 1; return 0; } static void thread_timer_update(void *node, int actual_position) { struct thread *thread = node; thread->index = actual_position; } /* Allocate new thread master. */ struct thread_master * thread_master_create () { struct thread_master *rv; if (cpu_record == NULL) cpu_record = hash_create ((unsigned int (*) (void *))cpu_record_hash_key, (int (*) (const void *, const void *))cpu_record_hash_cmp); rv = XCALLOC (MTYPE_THREAD_MASTER, sizeof (struct thread_master)); /* Initialize the timer queues */ rv->timer = pqueue_create(); rv->background = pqueue_create(); rv->timer->cmp = rv->background->cmp = thread_timer_cmp; rv->timer->update = rv->background->update = thread_timer_update; return rv; } /* Add a new thread to the list. */ static void thread_list_add (struct thread_list *list, struct thread *thread) { thread->next = NULL; thread->prev = list->tail; if (list->tail) list->tail->next = thread; else list->head = thread; list->tail = thread; list->count++; } /* Delete a thread from the list. */ static struct thread * thread_list_delete (struct thread_list *list, struct thread *thread) { if (thread->next) thread->next->prev = thread->prev; else list->tail = thread->prev; if (thread->prev) thread->prev->next = thread->next; else list->head = thread->next; thread->next = thread->prev = NULL; list->count--; return thread; } /* Move thread to unuse list. */ static void thread_add_unuse (struct thread_master *m, struct thread *thread) { assert (m != NULL && thread != NULL); assert (thread->next == NULL); assert (thread->prev == NULL); assert (thread->type == THREAD_UNUSED); thread_list_add (&m->unuse, thread); /* XXX: Should we deallocate funcname here? */ } /* Free all unused thread. */ static void thread_list_free (struct thread_master *m, struct thread_list *list) { struct thread *t; struct thread *next; for (t = list->head; t; t = next) { next = t->next; XFREE (MTYPE_THREAD, t); list->count--; m->alloc--; } } static void thread_queue_free (struct thread_master *m, struct pqueue *queue) { int i; for (i = 0; i < queue->size; i++) XFREE(MTYPE_THREAD, queue->array[i]); m->alloc -= queue->size; pqueue_delete(queue); } /* Stop thread scheduler. */ void thread_master_free (struct thread_master *m) { thread_list_free (m, &m->read); thread_list_free (m, &m->write); thread_queue_free (m, m->timer); thread_list_free (m, &m->event); thread_list_free (m, &m->ready); thread_list_free (m, &m->unuse); thread_queue_free (m, m->background); XFREE (MTYPE_THREAD_MASTER, m); if (cpu_record) { hash_clean (cpu_record, cpu_record_hash_free); hash_free (cpu_record); cpu_record = NULL; } } /* Thread list is empty or not. */ static int thread_empty (struct thread_list *list) { return list->head ? 0 : 1; } /* Delete top of the list and return it. */ static struct thread * thread_trim_head (struct thread_list *list) { if (!thread_empty (list)) return thread_list_delete (list, list->head); return NULL; } /* Return remain time in second. */ unsigned long thread_timer_remain_second (struct thread *thread) { quagga_get_relative (NULL); if (thread->u.sands.tv_sec - relative_time.tv_sec > 0) return thread->u.sands.tv_sec - relative_time.tv_sec; else return 0; } /* Trim blankspace and "()"s */ void strip_funcname (char *dest, const char *funcname) { char buff[FUNCNAME_LEN]; char tmp, *e, *b = buff; strncpy(buff, funcname, sizeof(buff)); buff[ sizeof(buff) -1] = '\0'; e = buff +strlen(buff) -1; /* Wont work for funcname == "Word (explanation)" */ while (*b == ' ' || *b == '(') ++b; while (*e == ' ' || *e == ')') --e; e++; tmp = *e; *e = '\0'; strcpy (dest, b); *e = tmp; } /* Get new thread. */ static struct thread * thread_get (struct thread_master *m, u_char type, int (*func) (struct thread *), void *arg, const char* funcname) { struct thread *thread = thread_trim_head (&m->unuse); if (! thread) { thread = XCALLOC (MTYPE_THREAD, sizeof (struct thread)); m->alloc++; } thread->type = type; thread->add_type = type; thread->master = m; thread->func = func; thread->arg = arg; thread->index = -1; thread->yield = THREAD_YIELD_TIME_SLOT; /* default */ strip_funcname (thread->funcname, funcname); return thread; } /* Add new read thread. */ struct thread * funcname_thread_add_read (struct thread_master *m, int (*func) (struct thread *), void *arg, int fd, const char* funcname) { struct thread *thread; assert (m != NULL); if (FD_ISSET (fd, &m->readfd)) { zlog (NULL, LOG_WARNING, "There is already read fd [%d]", fd); return NULL; } thread = thread_get (m, THREAD_READ, func, arg, funcname); FD_SET (fd, &m->readfd); thread->u.fd = fd; thread_list_add (&m->read, thread); return thread; } /* Add new write thread. */ struct thread * funcname_thread_add_write (struct thread_master *m, int (*func) (struct thread *), void *arg, int fd, const char* funcname) { struct thread *thread; assert (m != NULL); if (FD_ISSET (fd, &m->writefd)) { zlog (NULL, LOG_WARNING, "There is already write fd [%d]", fd); return NULL; } thread = thread_get (m, THREAD_WRITE, func, arg, funcname); FD_SET (fd, &m->writefd); thread->u.fd = fd; thread_list_add (&m->write, thread); return thread; } static struct thread * funcname_thread_add_timer_timeval (struct thread_master *m, int (*func) (struct thread *), int type, void *arg, struct timeval *time_relative, const char* funcname) { struct thread *thread; struct pqueue *queue; struct timeval alarm_time; assert (m != NULL); assert (type == THREAD_TIMER || type == THREAD_BACKGROUND); assert (time_relative); queue = ((type == THREAD_TIMER) ? m->timer : m->background); thread = thread_get (m, type, func, arg, funcname); /* Do we need jitter here? */ quagga_get_relative (NULL); alarm_time.tv_sec = relative_time.tv_sec + time_relative->tv_sec; alarm_time.tv_usec = relative_time.tv_usec + time_relative->tv_usec; thread->u.sands = timeval_adjust(alarm_time); pqueue_enqueue(thread, queue); return thread; } /* Add timer event thread. */ struct thread * funcname_thread_add_timer (struct thread_master *m, int (*func) (struct thread *), void *arg, long timer, const char* funcname) { struct timeval trel; assert (m != NULL); trel.tv_sec = timer; trel.tv_usec = 0; return funcname_thread_add_timer_timeval (m, func, THREAD_TIMER, arg, &trel, funcname); } /* Add timer event thread with "millisecond" resolution */ struct thread * funcname_thread_add_timer_msec (struct thread_master *m, int (*func) (struct thread *), void *arg, long timer, const char* funcname) { struct timeval trel; assert (m != NULL); trel.tv_sec = timer / 1000; trel.tv_usec = 1000*(timer % 1000); return funcname_thread_add_timer_timeval (m, func, THREAD_TIMER, arg, &trel, funcname); } /* Add a background thread, with an optional millisec delay */ struct thread * funcname_thread_add_background (struct thread_master *m, int (*func) (struct thread *), void *arg, long delay, const char *funcname) { struct timeval trel; assert (m != NULL); if (delay) { trel.tv_sec = delay / 1000; trel.tv_usec = 1000*(delay % 1000); } else { trel.tv_sec = 0; trel.tv_usec = 0; } return funcname_thread_add_timer_timeval (m, func, THREAD_BACKGROUND, arg, &trel, funcname); } /* Add simple event thread. */ struct thread * funcname_thread_add_event (struct thread_master *m, int (*func) (struct thread *), void *arg, int val, const char* funcname) { struct thread *thread; assert (m != NULL); thread = thread_get (m, THREAD_EVENT, func, arg, funcname); thread->u.val = val; thread_list_add (&m->event, thread); return thread; } /* Cancel thread from scheduler. */ void thread_cancel (struct thread *thread) { struct thread_list *list = NULL; struct pqueue *queue = NULL; switch (thread->type) { case THREAD_READ: assert (FD_ISSET (thread->u.fd, &thread->master->readfd)); FD_CLR (thread->u.fd, &thread->master->readfd); list = &thread->master->read; break; case THREAD_WRITE: assert (FD_ISSET (thread->u.fd, &thread->master->writefd)); FD_CLR (thread->u.fd, &thread->master->writefd); list = &thread->master->write; break; case THREAD_TIMER: queue = thread->master->timer; break; case THREAD_EVENT: list = &thread->master->event; break; case THREAD_READY: list = &thread->master->ready; break; case THREAD_BACKGROUND: queue = thread->master->background; break; default: return; break; } if (queue) { assert(thread->index >= 0); assert(thread == queue->array[thread->index]); pqueue_remove_at(thread->index, queue); } else if (list) { thread_list_delete (list, thread); } else { assert(!"Thread should be either in queue or list!"); } thread->type = THREAD_UNUSED; thread_add_unuse (thread->master, thread); } /* Delete all events which has argument value arg. */ unsigned int thread_cancel_event (struct thread_master *m, void *arg) { unsigned int ret = 0; struct thread *thread; thread = m->event.head; while (thread) { struct thread *t; t = thread; thread = t->next; if (t->arg == arg) { ret++; thread_list_delete (&m->event, t); t->type = THREAD_UNUSED; thread_add_unuse (m, t); } } /* thread can be on the ready list too */ thread = m->ready.head; while (thread) { struct thread *t; t = thread; thread = t->next; if (t->arg == arg) { ret++; thread_list_delete (&m->ready, t); t->type = THREAD_UNUSED; thread_add_unuse (m, t); } } return ret; } static struct timeval * thread_timer_wait (struct pqueue *queue, struct timeval *timer_val) { if (queue->size) { struct thread *next_timer = queue->array[0]; *timer_val = timeval_subtract (next_timer->u.sands, relative_time); return timer_val; } return NULL; } static struct thread * thread_run (struct thread_master *m, struct thread *thread, struct thread *fetch) { *fetch = *thread; thread->type = THREAD_UNUSED; thread_add_unuse (m, thread); return fetch; } static int thread_process_fd (struct thread_list *list, fd_set *fdset, fd_set *mfdset) { struct thread *thread; struct thread *next; int ready = 0; assert (list); for (thread = list->head; thread; thread = next) { next = thread->next; if (FD_ISSET (THREAD_FD (thread), fdset)) { assert (FD_ISSET (THREAD_FD (thread), mfdset)); FD_CLR(THREAD_FD (thread), mfdset); thread_list_delete (list, thread); thread_list_add (&thread->master->ready, thread); thread->type = THREAD_READY; ready++; } } return ready; } /* Add all timers that have popped to the ready list. */ static unsigned int thread_timer_process (struct pqueue *queue, struct timeval *timenow) { struct thread *thread; unsigned int ready = 0; while (queue->size) { thread = queue->array[0]; if (timeval_cmp (*timenow, thread->u.sands) < 0) return ready; pqueue_dequeue(queue); thread->type = THREAD_READY; thread_list_add (&thread->master->ready, thread); ready++; } return ready; } /* process a list en masse, e.g. for event thread lists */ static unsigned int thread_process (struct thread_list *list) { struct thread *thread; struct thread *next; unsigned int ready = 0; for (thread = list->head; thread; thread = next) { next = thread->next; thread_list_delete (list, thread); thread->type = THREAD_READY; thread_list_add (&thread->master->ready, thread); ready++; } return ready; } /* Fetch next ready thread. */ struct thread * thread_fetch (struct thread_master *m, struct thread *fetch) { struct thread *thread; fd_set readfd; fd_set writefd; fd_set exceptfd; struct timeval timer_val = { .tv_sec = 0, .tv_usec = 0 }; struct timeval timer_val_bg; struct timeval *timer_wait = &timer_val; struct timeval *timer_wait_bg; while (1) { int num = 0; #if defined HAVE_SNMP && defined SNMP_AGENTX struct timeval snmp_timer_wait; int snmpblock = 0; int fdsetsize; #endif /* Signals pre-empt everything */ quagga_sigevent_process (); /* Drain the ready queue of already scheduled jobs, before scheduling * more. */ if ((thread = thread_trim_head (&m->ready)) != NULL) return thread_run (m, thread, fetch); /* To be fair to all kinds of threads, and avoid starvation, we * need to be careful to consider all thread types for scheduling * in each quanta. I.e. we should not return early from here on. */ /* Normal event are the next highest priority. */ thread_process (&m->event); /* Structure copy. */ readfd = m->readfd; writefd = m->writefd; exceptfd = m->exceptfd; /* Calculate select wait timer if nothing else to do */ if (m->ready.count == 0) { quagga_get_relative (NULL); timer_wait = thread_timer_wait (m->timer, &timer_val); timer_wait_bg = thread_timer_wait (m->background, &timer_val_bg); if (timer_wait_bg && (!timer_wait || (timeval_cmp (*timer_wait, *timer_wait_bg) > 0))) timer_wait = timer_wait_bg; } #if defined HAVE_SNMP && defined SNMP_AGENTX /* When SNMP is enabled, we may have to select() on additional FD. snmp_select_info() will add them to `readfd'. The trick with this function is its last argument. We need to set it to 0 if timer_wait is not NULL and we need to use the provided new timer only if it is still set to 0. */ if (agentx_enabled) { fdsetsize = FD_SETSIZE; snmpblock = 1; if (timer_wait) { snmpblock = 0; memcpy(&snmp_timer_wait, timer_wait, sizeof(struct timeval)); } snmp_select_info(&fdsetsize, &readfd, &snmp_timer_wait, &snmpblock); if (snmpblock == 0) timer_wait = &snmp_timer_wait; } #endif num = select (FD_SETSIZE, &readfd, &writefd, &exceptfd, timer_wait); /* Signals should get quick treatment */ if (num < 0) { if (errno == EINTR) continue; /* signal received - process it */ zlog_warn ("select() error: %s", safe_strerror (errno)); return NULL; } #if defined HAVE_SNMP && defined SNMP_AGENTX if (agentx_enabled) { if (num > 0) snmp_read(&readfd); else if (num == 0) { snmp_timeout(); run_alarms(); } netsnmp_check_outstanding_agent_requests(); } #endif /* Check foreground timers. Historically, they have had higher priority than I/O threads, so let's push them onto the ready list in front of the I/O threads. */ quagga_get_relative (NULL); thread_timer_process (m->timer, &relative_time); /* Got IO, process it */ if (num > 0) { /* Normal priority read thead. */ thread_process_fd (&m->read, &readfd, &m->readfd); /* Write thead. */ thread_process_fd (&m->write, &writefd, &m->writefd); } #if 0 /* If any threads were made ready above (I/O or foreground timer), perhaps we should avoid adding background timers to the ready list at this time. If this is code is uncommented, then background timer threads will not run unless there is nothing else to do. */ if ((thread = thread_trim_head (&m->ready)) != NULL) return thread_run (m, thread, fetch); #endif /* Background timer/events, lowest priority */ thread_timer_process (m->background, &relative_time); if ((thread = thread_trim_head (&m->ready)) != NULL) return thread_run (m, thread, fetch); } } unsigned long thread_consumed_time (RUSAGE_T *now, RUSAGE_T *start, unsigned long *cputime) { #ifdef HAVE_RUSAGE /* This is 'user + sys' time. */ *cputime = timeval_elapsed (now->cpu.ru_utime, start->cpu.ru_utime) + timeval_elapsed (now->cpu.ru_stime, start->cpu.ru_stime); #else *cputime = 0; #endif /* HAVE_RUSAGE */ return timeval_elapsed (now->real, start->real); } /* We should aim to yield after yield milliseconds, which defaults to THREAD_YIELD_TIME_SLOT . Note: we are using real (wall clock) time for this calculation. It could be argued that CPU time may make more sense in certain contexts. The things to consider are whether the thread may have blocked (in which case wall time increases, but CPU time does not), or whether the system is heavily loaded with other processes competing for CPU time. On balance, wall clock time seems to make sense. Plus it has the added benefit that gettimeofday should be faster than calling getrusage. */ int thread_should_yield (struct thread *thread) { quagga_get_relative (NULL); return (timeval_elapsed(relative_time, thread->real) > thread->yield); } void thread_set_yield_time (struct thread *thread, unsigned long yield_time) { thread->yield = yield_time; } void thread_getrusage (RUSAGE_T *r) { quagga_get_relative (NULL); #ifdef HAVE_RUSAGE getrusage(RUSAGE_SELF, &(r->cpu)); #endif r->real = relative_time; #ifdef HAVE_CLOCK_MONOTONIC /* quagga_get_relative() only updates recent_time if gettimeofday * based, not when using CLOCK_MONOTONIC. As we export recent_time * and guarantee to update it before threads are run... */ quagga_gettimeofday(&recent_time); #endif /* HAVE_CLOCK_MONOTONIC */ } /* We check thread consumed time. If the system has getrusage, we'll use that to get in-depth stats on the performance of the thread in addition to wall clock time stats from gettimeofday. */ void thread_call (struct thread *thread) { unsigned long realtime, cputime; RUSAGE_T before, after; /* Cache a pointer to the relevant cpu history thread, if the thread * does not have it yet. * * Callers submitting 'dummy threads' hence must take care that * thread->cpu is NULL */ if (!thread->hist) { struct cpu_thread_history tmp; tmp.func = thread->func; strcpy(tmp.funcname, thread->funcname); thread->hist = hash_get (cpu_record, &tmp, (void * (*) (void *))cpu_record_hash_alloc); } GETRUSAGE (&before); thread->real = before.real; (*thread->func) (thread); GETRUSAGE (&after); realtime = thread_consumed_time (&after, &before, &cputime); thread->hist->real.total += realtime; if (thread->hist->real.max < realtime) thread->hist->real.max = realtime; #ifdef HAVE_RUSAGE thread->hist->cpu.total += cputime; if (thread->hist->cpu.max < cputime) thread->hist->cpu.max = cputime; #endif ++(thread->hist->total_calls); thread->hist->types |= (1 << thread->add_type); #ifdef CONSUMED_TIME_CHECK if (realtime > CONSUMED_TIME_CHECK) { /* * We have a CPU Hog on our hands. * Whinge about it now, so we're aware this is yet another task * to fix. */ zlog_warn ("SLOW THREAD: task %s (%lx) ran for %lums (cpu time %lums)", thread->funcname, (unsigned long) thread->func, realtime/1000, cputime/1000); } #endif /* CONSUMED_TIME_CHECK */ } /* Execute thread */ struct thread * funcname_thread_execute (struct thread_master *m, int (*func)(struct thread *), void *arg, int val, const char* funcname) { struct thread dummy; memset (&dummy, 0, sizeof (struct thread)); dummy.type = THREAD_EVENT; dummy.add_type = THREAD_EXECUTE; dummy.master = NULL; dummy.func = func; dummy.arg = arg; dummy.u.val = val; strip_funcname (dummy.funcname, funcname); thread_call (&dummy); return NULL; }