/* Kernel communication using netlink interface. * Copyright (C) 1999 Kunihiro Ishiguro * * This file is part of GNU Zebra. * * GNU Zebra is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * GNU Zebra is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; see the file COPYING; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #ifdef HAVE_NETLINK #include "linklist.h" #include "if.h" #include "log.h" #include "prefix.h" #include "connected.h" #include "table.h" #include "memory.h" #include "zebra_memory.h" #include "rib.h" #include "thread.h" #include "privs.h" #include "nexthop.h" #include "vrf.h" #include "mpls.h" #include "zebra/zserv.h" #include "zebra/zebra_ns.h" #include "zebra/zebra_vrf.h" #include "zebra/rt.h" #include "zebra/debug.h" #include "zebra/kernel_netlink.h" #include "zebra/rt_netlink.h" #include "zebra/if_netlink.h" #include "zebra/rule_netlink.h" #ifndef SO_RCVBUFFORCE #define SO_RCVBUFFORCE (33) #endif /* Hack for GNU libc version 2. */ #ifndef MSG_TRUNC #define MSG_TRUNC 0x20 #endif /* MSG_TRUNC */ #ifndef NLMSG_TAIL #define NLMSG_TAIL(nmsg) \ ((struct rtattr *)(((uint8_t *)(nmsg)) \ + NLMSG_ALIGN((nmsg)->nlmsg_len))) #endif #ifndef RTA_TAIL #define RTA_TAIL(rta) \ ((struct rtattr *)(((uint8_t *)(rta)) + RTA_ALIGN((rta)->rta_len))) #endif #ifndef RTNL_FAMILY_IP6MR #define RTNL_FAMILY_IP6MR 129 #endif #ifndef RTPROT_MROUTED #define RTPROT_MROUTED 17 #endif static const struct message nlmsg_str[] = {{RTM_NEWROUTE, "RTM_NEWROUTE"}, {RTM_DELROUTE, "RTM_DELROUTE"}, {RTM_GETROUTE, "RTM_GETROUTE"}, {RTM_NEWLINK, "RTM_NEWLINK"}, {RTM_DELLINK, "RTM_DELLINK"}, {RTM_GETLINK, "RTM_GETLINK"}, {RTM_NEWADDR, "RTM_NEWADDR"}, {RTM_DELADDR, "RTM_DELADDR"}, {RTM_GETADDR, "RTM_GETADDR"}, {RTM_NEWNEIGH, "RTM_NEWNEIGH"}, {RTM_DELNEIGH, "RTM_DELNEIGH"}, {RTM_GETNEIGH, "RTM_GETNEIGH"}, {RTM_NEWRULE, "RTM_NEWRULE"}, {RTM_DELRULE, "RTM_DELRULE"}, {RTM_GETRULE, "RTM_GETRULE"}, {0}}; static const struct message rtproto_str[] = { {RTPROT_REDIRECT, "redirect"}, {RTPROT_KERNEL, "kernel"}, {RTPROT_BOOT, "boot"}, {RTPROT_STATIC, "static"}, {RTPROT_GATED, "GateD"}, {RTPROT_RA, "router advertisement"}, {RTPROT_MRT, "MRT"}, {RTPROT_ZEBRA, "Zebra"}, #ifdef RTPROT_BIRD {RTPROT_BIRD, "BIRD"}, #endif /* RTPROT_BIRD */ {RTPROT_MROUTED, "mroute"}, {RTPROT_BGP, "BGP"}, {RTPROT_OSPF, "OSPF"}, {RTPROT_ISIS, "IS-IS"}, {RTPROT_RIP, "RIP"}, {RTPROT_RIPNG, "RIPNG"}, {RTPROT_ZSTATIC, "static"}, {0}}; static const struct message family_str[] = {{AF_INET, "ipv4"}, {AF_INET6, "ipv6"}, {AF_BRIDGE, "bridge"}, {RTNL_FAMILY_IPMR, "ipv4MR"}, {RTNL_FAMILY_IP6MR, "ipv6MR"}, {0}}; static const struct message rttype_str[] = {{RTN_UNICAST, "unicast"}, {RTN_MULTICAST, "multicast"}, {0}}; extern struct thread_master *master; extern uint32_t nl_rcvbufsize; extern struct zebra_privs_t zserv_privs; int netlink_talk_filter(struct nlmsghdr *h, ns_id_t ns_id, int startup) { /* * This is an error condition that must be handled during * development. * * The netlink_talk_filter function is used for communication * down the netlink_cmd pipe and we are expecting * an ack being received. So if we get here * then we did not receive the ack and instead * received some other message in an unexpected * way. */ zlog_err("%s: ignoring message type 0x%04x(%s) NS %u", __PRETTY_FUNCTION__, h->nlmsg_type, nl_msg_type_to_str(h->nlmsg_type), ns_id); return 0; } static int netlink_recvbuf(struct nlsock *nl, uint32_t newsize) { uint32_t oldsize; socklen_t newlen = sizeof(newsize); socklen_t oldlen = sizeof(oldsize); int ret; ret = getsockopt(nl->sock, SOL_SOCKET, SO_RCVBUF, &oldsize, &oldlen); if (ret < 0) { zlog_err("Can't get %s receive buffer size: %s", nl->name, safe_strerror(errno)); return -1; } /* Try force option (linux >= 2.6.14) and fall back to normal set */ if (zserv_privs.change(ZPRIVS_RAISE)) zlog_err("routing_socket: Can't raise privileges"); ret = setsockopt(nl->sock, SOL_SOCKET, SO_RCVBUFFORCE, &nl_rcvbufsize, sizeof(nl_rcvbufsize)); if (zserv_privs.change(ZPRIVS_LOWER)) zlog_err("routing_socket: Can't lower privileges"); if (ret < 0) ret = setsockopt(nl->sock, SOL_SOCKET, SO_RCVBUF, &nl_rcvbufsize, sizeof(nl_rcvbufsize)); if (ret < 0) { zlog_err("Can't set %s receive buffer size: %s", nl->name, safe_strerror(errno)); return -1; } ret = getsockopt(nl->sock, SOL_SOCKET, SO_RCVBUF, &newsize, &newlen); if (ret < 0) { zlog_err("Can't get %s receive buffer size: %s", nl->name, safe_strerror(errno)); return -1; } zlog_info("Setting netlink socket receive buffer size: %u -> %u", oldsize, newsize); return 0; } /* Make socket for Linux netlink interface. */ static int netlink_socket(struct nlsock *nl, unsigned long groups, ns_id_t ns_id) { int ret; struct sockaddr_nl snl; int sock; int namelen; int save_errno; if (zserv_privs.change(ZPRIVS_RAISE)) { zlog_err("Can't raise privileges"); return -1; } sock = ns_socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE, ns_id); if (sock < 0) { zlog_err("Can't open %s socket: %s", nl->name, safe_strerror(errno)); return -1; } memset(&snl, 0, sizeof snl); snl.nl_family = AF_NETLINK; snl.nl_groups = groups; /* Bind the socket to the netlink structure for anything. */ ret = bind(sock, (struct sockaddr *)&snl, sizeof snl); save_errno = errno; if (zserv_privs.change(ZPRIVS_LOWER)) zlog_err("Can't lower privileges"); if (ret < 0) { zlog_err("Can't bind %s socket to group 0x%x: %s", nl->name, snl.nl_groups, safe_strerror(save_errno)); close(sock); return -1; } /* multiple netlink sockets will have different nl_pid */ namelen = sizeof snl; ret = getsockname(sock, (struct sockaddr *)&snl, (socklen_t *)&namelen); if (ret < 0 || namelen != sizeof snl) { zlog_err("Can't get %s socket name: %s", nl->name, safe_strerror(errno)); close(sock); return -1; } nl->snl = snl; nl->sock = sock; return ret; } static int netlink_information_fetch(struct nlmsghdr *h, ns_id_t ns_id, int startup) { /* * When we handle new message types here * because we are starting to install them * then lets check the netlink_install_filter * and see if we should add the corresponding * allow through entry there. * Probably not needed to do but please * think about it. */ switch (h->nlmsg_type) { case RTM_NEWROUTE: return netlink_route_change(h, ns_id, startup); case RTM_DELROUTE: return netlink_route_change(h, ns_id, startup); case RTM_NEWLINK: return netlink_link_change(h, ns_id, startup); case RTM_DELLINK: return netlink_link_change(h, ns_id, startup); case RTM_NEWADDR: return netlink_interface_addr(h, ns_id, startup); case RTM_DELADDR: return netlink_interface_addr(h, ns_id, startup); case RTM_NEWNEIGH: return netlink_neigh_change(h, ns_id); case RTM_DELNEIGH: return netlink_neigh_change(h, ns_id); case RTM_NEWRULE: return netlink_rule_change(h, ns_id, startup); case RTM_DELRULE: return netlink_rule_change(h, ns_id, startup); default: /* * If we have received this message then * we have made a mistake during development * and we need to write some code to handle * this message type or not ask for * it to be sent up to us */ zlog_err("Unknown netlink nlmsg_type %s(%d) vrf %u\n", nl_msg_type_to_str(h->nlmsg_type), h->nlmsg_type, ns_id); break; } return 0; } static int kernel_read(struct thread *thread) { struct zebra_ns *zns = (struct zebra_ns *)THREAD_ARG(thread); netlink_parse_info(netlink_information_fetch, &zns->netlink, zns, 5, 0); zns->t_netlink = NULL; thread_add_read(zebrad.master, kernel_read, zns, zns->netlink.sock, &zns->t_netlink); return 0; } /* * Filter out messages from self that occur on listener socket, * caused by our actions on the command socket * * When we add new Netlink message types we probably * do not need to add them here as that we are filtering * on the routes we actually care to receive( which is rarer * then the normal course of operations). We are intentionally * allowing some messages from ourselves through * ( I'm looking at you Interface based netlink messages ) * so that we only had to write one way to handle incoming * address add/delete changes. */ static void netlink_install_filter(int sock, __u32 pid) { /* * BPF_JUMP instructions and where you jump to are based upon * 0 as being the next statement. So count from 0. Writing * this down because every time I look at this I have to * re-remember it. */ struct sock_filter filter[] = { /* * Logic: * if (nlmsg_pid == pid) { * if (the incoming nlmsg_type == * RTM_NEWADDR | RTM_DELADDR) * keep this message * else * skip this message * } else * keep this netlink message */ /* * 0: Load the nlmsg_pid into the BPF register */ BPF_STMT(BPF_LD | BPF_ABS | BPF_W, offsetof(struct nlmsghdr, nlmsg_pid)), /* * 1: Compare to pid */ BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htonl(pid), 0, 4), /* * 2: Load the nlmsg_type into BPF register */ BPF_STMT(BPF_LD | BPF_ABS | BPF_H, offsetof(struct nlmsghdr, nlmsg_type)), /* * 3: Compare to RTM_NEWADDR */ BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htons(RTM_NEWADDR), 2, 0), /* * 4: Compare to RTM_DELADDR */ BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htons(RTM_DELADDR), 1, 0), /* * 5: This is the end state of we want to skip the * message */ BPF_STMT(BPF_RET | BPF_K, 0), /* 6: This is the end state of we want to keep * the message */ BPF_STMT(BPF_RET | BPF_K, 0xffff), }; struct sock_fprog prog = { .len = array_size(filter), .filter = filter, }; if (setsockopt(sock, SOL_SOCKET, SO_ATTACH_FILTER, &prog, sizeof(prog)) < 0) zlog_warn("Can't install socket filter: %s\n", safe_strerror(errno)); } void netlink_parse_rtattr(struct rtattr **tb, int max, struct rtattr *rta, int len) { while (RTA_OK(rta, len)) { if (rta->rta_type <= max) tb[rta->rta_type] = rta; rta = RTA_NEXT(rta, len); } } int addattr_l(struct nlmsghdr *n, unsigned int maxlen, int type, const void *data, unsigned int alen) { int len; struct rtattr *rta; len = RTA_LENGTH(alen); if (NLMSG_ALIGN(n->nlmsg_len) + RTA_ALIGN(len) > maxlen) return -1; rta = (struct rtattr *)(((char *)n) + NLMSG_ALIGN(n->nlmsg_len)); rta->rta_type = type; rta->rta_len = len; if (data) memcpy(RTA_DATA(rta), data, alen); else assert(alen == 0); n->nlmsg_len = NLMSG_ALIGN(n->nlmsg_len) + RTA_ALIGN(len); return 0; } int rta_addattr_l(struct rtattr *rta, unsigned int maxlen, int type, const void *data, unsigned int alen) { unsigned int len; struct rtattr *subrta; len = RTA_LENGTH(alen); if (RTA_ALIGN(rta->rta_len) + RTA_ALIGN(len) > maxlen) return -1; subrta = (struct rtattr *)(((char *)rta) + RTA_ALIGN(rta->rta_len)); subrta->rta_type = type; subrta->rta_len = len; if (data) memcpy(RTA_DATA(subrta), data, alen); else assert(alen == 0); rta->rta_len = NLMSG_ALIGN(rta->rta_len) + RTA_ALIGN(len); return 0; } int addattr16(struct nlmsghdr *n, unsigned int maxlen, int type, uint16_t data) { return addattr_l(n, maxlen, type, &data, sizeof(uint16_t)); } int addattr32(struct nlmsghdr *n, unsigned int maxlen, int type, int data) { return addattr_l(n, maxlen, type, &data, sizeof(uint32_t)); } struct rtattr *addattr_nest(struct nlmsghdr *n, int maxlen, int type) { struct rtattr *nest = NLMSG_TAIL(n); addattr_l(n, maxlen, type, NULL, 0); return nest; } int addattr_nest_end(struct nlmsghdr *n, struct rtattr *nest) { nest->rta_len = (uint8_t *)NLMSG_TAIL(n) - (uint8_t *)nest; return n->nlmsg_len; } struct rtattr *rta_nest(struct rtattr *rta, int maxlen, int type) { struct rtattr *nest = RTA_TAIL(rta); rta_addattr_l(rta, maxlen, type, NULL, 0); return nest; } int rta_nest_end(struct rtattr *rta, struct rtattr *nest) { nest->rta_len = (uint8_t *)RTA_TAIL(rta) - (uint8_t *)nest; return rta->rta_len; } const char *nl_msg_type_to_str(uint16_t msg_type) { return lookup_msg(nlmsg_str, msg_type, ""); } const char *nl_rtproto_to_str(uint8_t rtproto) { return lookup_msg(rtproto_str, rtproto, ""); } const char *nl_family_to_str(uint8_t family) { return lookup_msg(family_str, family, ""); } const char *nl_rttype_to_str(uint8_t rttype) { return lookup_msg(rttype_str, rttype, ""); } #define NL_OK(nla, len) \ ((len) >= (int)sizeof(struct nlattr) \ && (nla)->nla_len >= sizeof(struct nlattr) \ && (nla)->nla_len <= (len)) #define NL_NEXT(nla, attrlen) \ ((attrlen) -= RTA_ALIGN((nla)->nla_len), \ (struct nlattr *)(((char *)(nla)) + RTA_ALIGN((nla)->nla_len))) #define NL_RTA(r) \ ((struct nlattr *)(((char *)(r)) \ + NLMSG_ALIGN(sizeof(struct nlmsgerr)))) static void netlink_parse_nlattr(struct nlattr **tb, int max, struct nlattr *nla, int len) { while (NL_OK(nla, len)) { if (nla->nla_type <= max) tb[nla->nla_type] = nla; nla = NL_NEXT(nla, len); } } static void netlink_parse_extended_ack(struct nlmsghdr *h) { struct nlattr *tb[NLMSGERR_ATTR_MAX + 1]; const struct nlmsgerr *err = (const struct nlmsgerr *)((uint8_t *)h + NLMSG_ALIGN( sizeof(struct nlmsghdr))); const struct nlmsghdr *err_nlh = NULL; uint32_t hlen = sizeof(*err); const char *msg = NULL; uint32_t off = 0; if (!(h->nlmsg_flags & NLM_F_CAPPED)) hlen += h->nlmsg_len - NLMSG_ALIGN(sizeof(struct nlmsghdr)); memset(tb, 0, sizeof(tb)); netlink_parse_nlattr(tb, NLMSGERR_ATTR_MAX, NL_RTA(h), hlen); if (tb[NLMSGERR_ATTR_MSG]) msg = (const char *)RTA_DATA(tb[NLMSGERR_ATTR_MSG]); if (tb[NLMSGERR_ATTR_OFFS]) { off = *(uint32_t *)RTA_DATA(tb[NLMSGERR_ATTR_OFFS]); if (off > h->nlmsg_len) { zlog_err("Invalid offset for NLMSGERR_ATTR_OFFS\n"); } else if (!(h->nlmsg_flags & NLM_F_CAPPED)) { /* * Header of failed message * we are not doing anything currently with it * but noticing it for later. */ err_nlh = &err->msg; zlog_warn("%s: Received %d extended Ack", __PRETTY_FUNCTION__, err_nlh->nlmsg_type); } } if (msg && *msg != '\0') { bool is_err = !!err->error; if (is_err) zlog_err("Extended Error: %s", msg); else zlog_warn("Extended Warning: %s", msg); } } /* * netlink_parse_info * * Receive message from netlink interface and pass those information * to the given function. * * filter -> Function to call to read the results * nl -> netlink socket information * zns -> The zebra namespace data * count -> How many we should read in, 0 means as much as possible * startup -> Are we reading in under startup conditions? passed to * the filter. */ int netlink_parse_info(int (*filter)(struct nlmsghdr *, ns_id_t, int), struct nlsock *nl, struct zebra_ns *zns, int count, int startup) { int status; int ret = 0; int error; int read_in = 0; while (1) { char buf[NL_RCV_PKT_BUF_SIZE]; struct iovec iov = {.iov_base = buf, .iov_len = sizeof buf}; struct sockaddr_nl snl; struct msghdr msg = {.msg_name = (void *)&snl, .msg_namelen = sizeof snl, .msg_iov = &iov, .msg_iovlen = 1}; struct nlmsghdr *h; if (count && read_in >= count) return 0; status = recvmsg(nl->sock, &msg, 0); if (status < 0) { if (errno == EINTR) continue; if (errno == EWOULDBLOCK || errno == EAGAIN) break; zlog_err("%s recvmsg overrun: %s", nl->name, safe_strerror(errno)); /* * In this case we are screwed. * There is no good way to * recover zebra at this point. */ exit(-1); continue; } if (status == 0) { zlog_err("%s EOF", nl->name); return -1; } if (msg.msg_namelen != sizeof snl) { zlog_err("%s sender address length error: length %d", nl->name, msg.msg_namelen); return -1; } if (IS_ZEBRA_DEBUG_KERNEL_MSGDUMP_RECV) { zlog_debug("%s: << netlink message dump [recv]", __func__); zlog_hexdump(buf, status); } read_in++; for (h = (struct nlmsghdr *)buf; NLMSG_OK(h, (unsigned int)status); h = NLMSG_NEXT(h, status)) { /* Finish of reading. */ if (h->nlmsg_type == NLMSG_DONE) return ret; /* Error handling. */ if (h->nlmsg_type == NLMSG_ERROR) { struct nlmsgerr *err = (struct nlmsgerr *)NLMSG_DATA(h); int errnum = err->error; int msg_type = err->msg.nlmsg_type; if (h->nlmsg_len < NLMSG_LENGTH(sizeof(struct nlmsgerr))) { zlog_err("%s error: message truncated", nl->name); return -1; } /* * Parse the extended information before * we actually handle it. * At this point in time we do not * do anything other than report the * issue. */ if (h->nlmsg_flags & NLM_F_ACK_TLVS) netlink_parse_extended_ack(h); /* If the error field is zero, then this is an * ACK */ if (err->error == 0) { if (IS_ZEBRA_DEBUG_KERNEL) { zlog_debug( "%s: %s ACK: type=%s(%u), seq=%u, pid=%u", __FUNCTION__, nl->name, nl_msg_type_to_str( err->msg.nlmsg_type), err->msg.nlmsg_type, err->msg.nlmsg_seq, err->msg.nlmsg_pid); } /* return if not a multipart message, * otherwise continue */ if (!(h->nlmsg_flags & NLM_F_MULTI)) return 0; continue; } /* Deal with errors that occur because of races * in link handling */ if (nl == &zns->netlink_cmd && ((msg_type == RTM_DELROUTE && (-errnum == ENODEV || -errnum == ESRCH)) || (msg_type == RTM_NEWROUTE && (-errnum == ENETDOWN || -errnum == EEXIST)))) { if (IS_ZEBRA_DEBUG_KERNEL) zlog_debug( "%s: error: %s type=%s(%u), seq=%u, pid=%u", nl->name, safe_strerror(-errnum), nl_msg_type_to_str( msg_type), msg_type, err->msg.nlmsg_seq, err->msg.nlmsg_pid); return 0; } /* We see RTM_DELNEIGH when shutting down an * interface with an IPv4 * link-local. The kernel should have already * deleted the neighbor * so do not log these as an error. */ if (msg_type == RTM_DELNEIGH || (nl == &zns->netlink_cmd && msg_type == RTM_NEWROUTE && (-errnum == ESRCH || -errnum == ENETUNREACH))) { /* This is known to happen in some * situations, don't log * as error. */ if (IS_ZEBRA_DEBUG_KERNEL) zlog_debug( "%s error: %s, type=%s(%u), seq=%u, pid=%u", nl->name, safe_strerror(-errnum), nl_msg_type_to_str( msg_type), msg_type, err->msg.nlmsg_seq, err->msg.nlmsg_pid); } else zlog_err( "%s error: %s, type=%s(%u), seq=%u, pid=%u", nl->name, safe_strerror(-errnum), nl_msg_type_to_str(msg_type), msg_type, err->msg.nlmsg_seq, err->msg.nlmsg_pid); return -1; } /* OK we got netlink message. */ if (IS_ZEBRA_DEBUG_KERNEL) zlog_debug( "netlink_parse_info: %s type %s(%u), len=%d, seq=%u, pid=%u", nl->name, nl_msg_type_to_str(h->nlmsg_type), h->nlmsg_type, h->nlmsg_len, h->nlmsg_seq, h->nlmsg_pid); /* * Ignore messages that maybe sent from * other actors besides the kernel */ if (snl.nl_pid != 0) { zlog_err("Ignoring message from pid %u", snl.nl_pid); continue; } error = (*filter)(h, zns->ns_id, startup); if (error < 0) { zlog_err("%s filter function error", nl->name); zlog_backtrace(LOG_ERR); ret = error; } } /* After error care. */ if (msg.msg_flags & MSG_TRUNC) { zlog_err("%s error: message truncated", nl->name); continue; } if (status) { zlog_err("%s error: data remnant size %d", nl->name, status); return -1; } } return ret; } /* * netlink_talk * * sendmsg() to netlink socket then recvmsg(). * Calls netlink_parse_info to parse returned data * * filter -> The filter to read final results from kernel * nlmsghdr -> The data to send to the kernel * nl -> The netlink socket information * zns -> The zebra namespace information * startup -> Are we reading in under startup conditions * This is passed through eventually to filter. */ int netlink_talk(int (*filter)(struct nlmsghdr *, ns_id_t, int startup), struct nlmsghdr *n, struct nlsock *nl, struct zebra_ns *zns, int startup) { int status; struct sockaddr_nl snl; struct iovec iov; struct msghdr msg; int save_errno; memset(&snl, 0, sizeof snl); memset(&iov, 0, sizeof iov); memset(&msg, 0, sizeof msg); iov.iov_base = n; iov.iov_len = n->nlmsg_len; msg.msg_name = (void *)&snl; msg.msg_namelen = sizeof snl; msg.msg_iov = &iov; msg.msg_iovlen = 1; snl.nl_family = AF_NETLINK; n->nlmsg_seq = ++nl->seq; n->nlmsg_pid = nl->snl.nl_pid; if (IS_ZEBRA_DEBUG_KERNEL) zlog_debug( "netlink_talk: %s type %s(%u), len=%d seq=%u flags 0x%x", nl->name, nl_msg_type_to_str(n->nlmsg_type), n->nlmsg_type, n->nlmsg_len, n->nlmsg_seq, n->nlmsg_flags); /* Send message to netlink interface. */ if (zserv_privs.change(ZPRIVS_RAISE)) zlog_err("Can't raise privileges"); status = sendmsg(nl->sock, &msg, 0); save_errno = errno; if (zserv_privs.change(ZPRIVS_LOWER)) zlog_err("Can't lower privileges"); if (IS_ZEBRA_DEBUG_KERNEL_MSGDUMP_SEND) { zlog_debug("%s: >> netlink message dump [sent]", __func__); zlog_hexdump(n, n->nlmsg_len); } if (status < 0) { zlog_err("netlink_talk sendmsg() error: %s", safe_strerror(save_errno)); return -1; } /* * Get reply from netlink socket. * The reply should either be an acknowlegement or an error. */ return netlink_parse_info(filter, nl, zns, 0, startup); } /* Issue request message to kernel via netlink socket. GET messages * are issued through this interface. */ int netlink_request(struct nlsock *nl, struct nlmsghdr *n) { int ret; struct sockaddr_nl snl; int save_errno; /* Check netlink socket. */ if (nl->sock < 0) { zlog_err("%s socket isn't active.", nl->name); return -1; } /* Fill common fields for all requests. */ n->nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST; n->nlmsg_pid = nl->snl.nl_pid; n->nlmsg_seq = ++nl->seq; memset(&snl, 0, sizeof snl); snl.nl_family = AF_NETLINK; /* Raise capabilities and send message, then lower capabilities. */ if (zserv_privs.change(ZPRIVS_RAISE)) { zlog_err("Can't raise privileges"); return -1; } ret = sendto(nl->sock, (void *)n, n->nlmsg_len, 0, (struct sockaddr *)&snl, sizeof snl); save_errno = errno; if (zserv_privs.change(ZPRIVS_LOWER)) zlog_err("Can't lower privileges"); if (ret < 0) { zlog_err("%s sendto failed: %s", nl->name, safe_strerror(save_errno)); return -1; } return 0; } /* Exported interface function. This function simply calls netlink_socket (). */ void kernel_init(struct zebra_ns *zns) { unsigned long groups; #if defined SOL_NETLINK int one, ret; #endif /* * Initialize netlink sockets * * If RTMGRP_XXX exists use that, but at some point * I think the kernel developers realized that * keeping track of all the different values would * lead to confusion, so we need to convert the * RTNLGRP_XXX to a bit position for ourself */ groups = RTMGRP_LINK | RTMGRP_IPV4_ROUTE | RTMGRP_IPV4_IFADDR | RTMGRP_IPV6_ROUTE | RTMGRP_IPV6_IFADDR | RTMGRP_IPV4_MROUTE | RTMGRP_NEIGH | (1 << (RTNLGRP_IPV4_RULE - 1)) | (1 << (RTNLGRP_IPV6_RULE - 1)); snprintf(zns->netlink.name, sizeof(zns->netlink.name), "netlink-listen (NS %u)", zns->ns_id); zns->netlink.sock = -1; if (netlink_socket(&zns->netlink, groups, zns->ns_id) < 0) { zlog_err("Failure to create %s socket", zns->netlink.name); exit(-1); } snprintf(zns->netlink_cmd.name, sizeof(zns->netlink_cmd.name), "netlink-cmd (NS %u)", zns->ns_id); zns->netlink_cmd.sock = -1; if (netlink_socket(&zns->netlink_cmd, 0, zns->ns_id) < 0) { zlog_err("Failure to create %s socket", zns->netlink_cmd.name); exit(-1); } /* * SOL_NETLINK is not available on all platforms yet * apparently. It's in bits/socket.h which I am not * sure that we want to pull into our build system. */ #if defined SOL_NETLINK /* * Let's tell the kernel that we want to receive extended * ACKS over our command socket */ one = 1; ret = setsockopt(zns->netlink_cmd.sock, SOL_NETLINK, NETLINK_EXT_ACK, &one, sizeof(one)); if (ret < 0) zlog_notice("Registration for extended ACK failed : %d %s", errno, safe_strerror(errno)); #endif /* Register kernel socket. */ if (fcntl(zns->netlink.sock, F_SETFL, O_NONBLOCK) < 0) zlog_err("Can't set %s socket error: %s(%d)", zns->netlink.name, safe_strerror(errno), errno); if (fcntl(zns->netlink_cmd.sock, F_SETFL, O_NONBLOCK) < 0) zlog_err("Can't set %s socket error: %s(%d)", zns->netlink_cmd.name, safe_strerror(errno), errno); /* Set receive buffer size if it's set from command line */ if (nl_rcvbufsize) netlink_recvbuf(&zns->netlink, nl_rcvbufsize); netlink_install_filter(zns->netlink.sock, zns->netlink_cmd.snl.nl_pid); zns->t_netlink = NULL; thread_add_read(zebrad.master, kernel_read, zns, zns->netlink.sock, &zns->t_netlink); rt_netlink_init(); } void kernel_terminate(struct zebra_ns *zns) { THREAD_READ_OFF(zns->t_netlink); if (zns->netlink.sock >= 0) { close(zns->netlink.sock); zns->netlink.sock = -1; } if (zns->netlink_cmd.sock >= 0) { close(zns->netlink_cmd.sock); zns->netlink_cmd.sock = -1; } } #endif /* HAVE_NETLINK */