/* Redistribution Handler * Copyright (C) 1998 Kunihiro Ishiguro * * This file is part of GNU Zebra. * * GNU Zebra is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * GNU Zebra is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; see the file COPYING; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include "vector.h" #include "vty.h" #include "command.h" #include "prefix.h" #include "table.h" #include "stream.h" #include "zclient.h" #include "linklist.h" #include "log.h" #include "vrf.h" #include "srcdest_table.h" #include "zebra/rib.h" #include "zebra/zebra_router.h" #include "zebra/zebra_ns.h" #include "zebra/zebra_vrf.h" #include "zebra/zebra_routemap.h" #include "zebra/redistribute.h" #include "zebra/debug.h" #include "zebra/router-id.h" #include "zebra/zapi_msg.h" #include "zebra/zebra_vxlan.h" #include "zebra/zebra_errors.h" #define ZEBRA_PTM_SUPPORT /* array holding redistribute info about table redistribution */ /* bit AFI is set if that AFI is redistributing routes from this table */ static int zebra_import_table_used[AFI_MAX][ZEBRA_KERNEL_TABLE_MAX]; static uint32_t zebra_import_table_distance[AFI_MAX][ZEBRA_KERNEL_TABLE_MAX]; int is_zebra_import_table_enabled(afi_t afi, vrf_id_t vrf_id, uint32_t table_id) { /* * Make sure that what we are called with actualy makes sense */ if (afi == AFI_MAX) return 0; if (is_zebra_valid_kernel_table(table_id) && table_id < ZEBRA_KERNEL_TABLE_MAX) return zebra_import_table_used[afi][table_id]; return 0; } static void zebra_redistribute_default(struct zserv *client, vrf_id_t vrf_id) { int afi; struct prefix p; struct route_table *table; struct route_node *rn; struct route_entry *newre; for (afi = AFI_IP; afi <= AFI_IP6; afi++) { if (!vrf_bitmap_check(client->redist_default[afi], vrf_id)) continue; /* Lookup table. */ table = zebra_vrf_table(afi, SAFI_UNICAST, vrf_id); if (!table) continue; /* Lookup default route. */ memset(&p, 0, sizeof(p)); p.family = afi2family(afi); rn = route_node_lookup(table, &p); if (!rn) continue; RNODE_FOREACH_RE (rn, newre) { if (CHECK_FLAG(newre->flags, ZEBRA_FLAG_SELECTED)) zsend_redistribute_route( ZEBRA_REDISTRIBUTE_ROUTE_ADD, client, &rn->p, NULL, newre); } route_unlock_node(rn); } } /* Redistribute routes. */ static void zebra_redistribute(struct zserv *client, int type, unsigned short instance, vrf_id_t vrf_id, int afi) { struct route_entry *newre; struct route_table *table; struct route_node *rn; table = zebra_vrf_table(afi, SAFI_UNICAST, vrf_id); if (!table) return; for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) RNODE_FOREACH_RE (rn, newre) { const struct prefix *dst_p, *src_p; srcdest_rnode_prefixes(rn, &dst_p, &src_p); if (IS_ZEBRA_DEBUG_RIB) zlog_debug( "%s: client %s %pFX(%u) checking: selected=%d, type=%d, distance=%d, metric=%d zebra_check_addr=%d", __func__, zebra_route_string(client->proto), dst_p, vrf_id, CHECK_FLAG(newre->flags, ZEBRA_FLAG_SELECTED), newre->type, newre->distance, newre->metric, zebra_check_addr(dst_p)); if (!CHECK_FLAG(newre->flags, ZEBRA_FLAG_SELECTED)) continue; if ((type != ZEBRA_ROUTE_ALL && (newre->type != type || newre->instance != instance))) continue; if (!zebra_check_addr(dst_p)) continue; zsend_redistribute_route(ZEBRA_REDISTRIBUTE_ROUTE_ADD, client, dst_p, src_p, newre); } } /* * Function to check if prefix is candidate for * redistribute. */ static bool zebra_redistribute_check(const struct route_entry *re, struct zserv *client, const struct prefix *p, int afi) { struct zebra_vrf *zvrf; /* Process only if there is valid re */ if (!re) return false; zvrf = vrf_info_lookup(re->vrf_id); if (re->vrf_id == VRF_DEFAULT && zvrf->table_id != re->table) return false; /* If default route and redistributed */ if (is_default_prefix(p) && vrf_bitmap_check(client->redist_default[afi], re->vrf_id)) return true; /* If redistribute in enabled for zebra route all */ if (vrf_bitmap_check(client->redist[afi][ZEBRA_ROUTE_ALL], re->vrf_id)) return true; /* * If multi-instance then check for route * redistribution for given instance. */ if (re->instance && redist_check_instance(&client->mi_redist[afi][re->type], re->instance)) return true; /* If redistribution is enabled for give route type. */ if (vrf_bitmap_check(client->redist[afi][re->type], re->vrf_id)) return true; return false; } /* Either advertise a route for redistribution to registered clients or */ /* withdraw redistribution if add cannot be done for client */ void redistribute_update(const struct prefix *p, const struct prefix *src_p, const struct route_entry *re, const struct route_entry *prev_re) { struct listnode *node, *nnode; struct zserv *client; int afi; if (IS_ZEBRA_DEBUG_RIB) zlog_debug( "(%u:%u):%pFX: Redist update re %p (%s), old %p (%s)", re->vrf_id, re->table, p, re, zebra_route_string(re->type), prev_re, prev_re ? zebra_route_string(prev_re->type) : "None"); afi = family2afi(p->family); if (!afi) { flog_warn(EC_ZEBRA_REDISTRIBUTE_UNKNOWN_AF, "%s: Unknown AFI/SAFI prefix received", __func__); return; } if (!zebra_check_addr(p)) { if (IS_ZEBRA_DEBUG_RIB) zlog_debug("Redist update filter prefix %pFX", p); return; } for (ALL_LIST_ELEMENTS(zrouter.client_list, node, nnode, client)) { if (zebra_redistribute_check(re, client, p, afi)) { if (IS_ZEBRA_DEBUG_RIB) { zlog_debug( "%s: client %s %pFX(%u:%u), type=%d, distance=%d, metric=%d", __func__, zebra_route_string(client->proto), p, re->vrf_id, re->table, re->type, re->distance, re->metric); } zsend_redistribute_route(ZEBRA_REDISTRIBUTE_ROUTE_ADD, client, p, src_p, re); } else if (zebra_redistribute_check(prev_re, client, p, afi)) zsend_redistribute_route(ZEBRA_REDISTRIBUTE_ROUTE_DEL, client, p, src_p, prev_re); } } /* * During a route delete, where 'new_re' is NULL, redist a delete to all * clients registered for the type of 'old_re'. * During a route update, redist a delete to any clients who will not see * an update when the new route is installed. There are cases when a client * may have seen a redist for 'old_re', but will not see * the redist for 'new_re'. */ void redistribute_delete(const struct prefix *p, const struct prefix *src_p, const struct route_entry *old_re, const struct route_entry *new_re) { struct listnode *node, *nnode; struct zserv *client; int afi; vrf_id_t vrfid; if (old_re) vrfid = old_re->vrf_id; else if (new_re) vrfid = new_re->vrf_id; else return; if (IS_ZEBRA_DEBUG_RIB) { zlog_debug("%u:%pFX: Redist del: re %p (%s), new re %p (%s)", vrfid, p, old_re, old_re ? zebra_route_string(old_re->type) : "None", new_re, new_re ? zebra_route_string(new_re->type) : "None"); } afi = family2afi(p->family); if (!afi) { flog_warn(EC_ZEBRA_REDISTRIBUTE_UNKNOWN_AF, "%s: Unknown AFI/SAFI prefix received", __func__); return; } /* Skip invalid (e.g. linklocal) prefix */ if (!zebra_check_addr(p)) { if (IS_ZEBRA_DEBUG_RIB) { zlog_debug( "%u:%pFX: Redist del old: skipping invalid prefix", vrfid, p); } return; } for (ALL_LIST_ELEMENTS(zrouter.client_list, node, nnode, client)) { /* Do not send unsolicited messages to synchronous clients. */ if (client->synchronous) continue; /* * Skip this client if it will receive an update for the * 'new' re */ if (zebra_redistribute_check(new_re, client, p, afi)) continue; /* Send a delete for the 'old' re to any subscribed client. */ if (zebra_redistribute_check(old_re, client, p, afi)) zsend_redistribute_route(ZEBRA_REDISTRIBUTE_ROUTE_DEL, client, p, src_p, old_re); } } void zebra_redistribute_add(ZAPI_HANDLER_ARGS) { afi_t afi = 0; int type = 0; unsigned short instance; STREAM_GETC(msg, afi); STREAM_GETC(msg, type); STREAM_GETW(msg, instance); if (IS_ZEBRA_DEBUG_EVENT) zlog_debug( "%s: client proto %s afi=%d, wants %s, vrf %s(%u), instance=%d", __func__, zebra_route_string(client->proto), afi, zebra_route_string(type), VRF_LOGNAME(zvrf->vrf), zvrf_id(zvrf), instance); if (afi == 0 || afi >= AFI_MAX) { flog_warn(EC_ZEBRA_REDISTRIBUTE_UNKNOWN_AF, "%s: Specified afi %d does not exist", __func__, afi); return; } if (type == 0 || type >= ZEBRA_ROUTE_MAX) { zlog_debug("%s: Specified Route Type %d does not exist", __func__, type); return; } if (instance) { if (!redist_check_instance(&client->mi_redist[afi][type], instance)) { redist_add_instance(&client->mi_redist[afi][type], instance); zebra_redistribute(client, type, instance, zvrf_id(zvrf), afi); } } else { if (!vrf_bitmap_check(client->redist[afi][type], zvrf_id(zvrf))) { if (IS_ZEBRA_DEBUG_EVENT) zlog_debug( "%s: setting vrf %s(%u) redist bitmap", __func__, VRF_LOGNAME(zvrf->vrf), zvrf_id(zvrf)); vrf_bitmap_set(client->redist[afi][type], zvrf_id(zvrf)); zebra_redistribute(client, type, 0, zvrf_id(zvrf), afi); } } stream_failure: return; } void zebra_redistribute_delete(ZAPI_HANDLER_ARGS) { afi_t afi = 0; int type = 0; unsigned short instance; STREAM_GETC(msg, afi); STREAM_GETC(msg, type); STREAM_GETW(msg, instance); if (IS_ZEBRA_DEBUG_EVENT) zlog_debug( "%s: client proto %s afi=%d, no longer wants %s, vrf %s(%u), instance=%d", __func__, zebra_route_string(client->proto), afi, zebra_route_string(type), VRF_LOGNAME(zvrf->vrf), zvrf_id(zvrf), instance); if (afi == 0 || afi >= AFI_MAX) { flog_warn(EC_ZEBRA_REDISTRIBUTE_UNKNOWN_AF, "%s: Specified afi %d does not exist", __func__, afi); return; } if (type == 0 || type >= ZEBRA_ROUTE_MAX) { zlog_debug("%s: Specified Route Type %d does not exist", __func__, type); return; } /* * NOTE: no need to withdraw the previously advertised routes. The * clients * themselves should keep track of the received routes from zebra and * withdraw them when necessary. */ if (instance) redist_del_instance(&client->mi_redist[afi][type], instance); else vrf_bitmap_unset(client->redist[afi][type], zvrf_id(zvrf)); stream_failure: return; } void zebra_redistribute_default_add(ZAPI_HANDLER_ARGS) { afi_t afi = 0; STREAM_GETC(msg, afi); if (afi == 0 || afi >= AFI_MAX) { flog_warn(EC_ZEBRA_REDISTRIBUTE_UNKNOWN_AF, "%s: Specified afi %u does not exist", __func__, afi); return; } vrf_bitmap_set(client->redist_default[afi], zvrf_id(zvrf)); zebra_redistribute_default(client, zvrf_id(zvrf)); stream_failure: return; } void zebra_redistribute_default_delete(ZAPI_HANDLER_ARGS) { afi_t afi = 0; STREAM_GETC(msg, afi); if (afi == 0 || afi >= AFI_MAX) { flog_warn(EC_ZEBRA_REDISTRIBUTE_UNKNOWN_AF, "%s: Specified afi %u does not exist", __func__, afi); return; } vrf_bitmap_unset(client->redist_default[afi], zvrf_id(zvrf)); stream_failure: return; } /* Interface up information. */ void zebra_interface_up_update(struct interface *ifp) { struct listnode *node, *nnode; struct zserv *client; if (IS_ZEBRA_DEBUG_EVENT) zlog_debug("MESSAGE: ZEBRA_INTERFACE_UP %s(%u)", ifp->name, ifp->vrf_id); if (ifp->ptm_status || !ifp->ptm_enable) { for (ALL_LIST_ELEMENTS(zrouter.client_list, node, nnode, client)) { /* Do not send unsolicited messages to synchronous * clients. */ if (client->synchronous) continue; zsend_interface_update(ZEBRA_INTERFACE_UP, client, ifp); zsend_interface_link_params(client, ifp); } } } /* Interface down information. */ void zebra_interface_down_update(struct interface *ifp) { struct listnode *node, *nnode; struct zserv *client; if (IS_ZEBRA_DEBUG_EVENT) zlog_debug("MESSAGE: ZEBRA_INTERFACE_DOWN %s(%u)", ifp->name, ifp->vrf_id); for (ALL_LIST_ELEMENTS(zrouter.client_list, node, nnode, client)) { /* Do not send unsolicited messages to synchronous clients. */ if (client->synchronous) continue; zsend_interface_update(ZEBRA_INTERFACE_DOWN, client, ifp); } } /* Interface information update. */ void zebra_interface_add_update(struct interface *ifp) { struct listnode *node, *nnode; struct zserv *client; if (IS_ZEBRA_DEBUG_EVENT) zlog_debug("MESSAGE: ZEBRA_INTERFACE_ADD %s(%u)", ifp->name, ifp->vrf_id); for (ALL_LIST_ELEMENTS(zrouter.client_list, node, nnode, client)) { /* Do not send unsolicited messages to synchronous clients. */ if (client->synchronous) continue; client->ifadd_cnt++; zsend_interface_add(client, ifp); zsend_interface_link_params(client, ifp); } } void zebra_interface_delete_update(struct interface *ifp) { struct listnode *node, *nnode; struct zserv *client; if (IS_ZEBRA_DEBUG_EVENT) zlog_debug("MESSAGE: ZEBRA_INTERFACE_DELETE %s(%u)", ifp->name, ifp->vrf_id); for (ALL_LIST_ELEMENTS(zrouter.client_list, node, nnode, client)) { /* Do not send unsolicited messages to synchronous clients. */ if (client->synchronous) continue; client->ifdel_cnt++; zsend_interface_delete(client, ifp); } } /* Interface address addition. */ void zebra_interface_address_add_update(struct interface *ifp, struct connected *ifc) { struct listnode *node, *nnode; struct zserv *client; struct prefix *p; if (IS_ZEBRA_DEBUG_EVENT) { p = ifc->address; zlog_debug( "MESSAGE: ZEBRA_INTERFACE_ADDRESS_ADD %pFX on %s(%u)", p, ifp->name, ifp->vrf_id); } if (!CHECK_FLAG(ifc->conf, ZEBRA_IFC_REAL)) flog_warn( EC_ZEBRA_ADVERTISING_UNUSABLE_ADDR, "advertising address to clients that is not yet usable."); zebra_vxlan_add_del_gw_macip(ifp, ifc->address, 1); router_id_add_address(ifc); for (ALL_LIST_ELEMENTS(zrouter.client_list, node, nnode, client)) { /* Do not send unsolicited messages to synchronous clients. */ if (client->synchronous) continue; if (CHECK_FLAG(ifc->conf, ZEBRA_IFC_REAL)) { client->connected_rt_add_cnt++; zsend_interface_address(ZEBRA_INTERFACE_ADDRESS_ADD, client, ifp, ifc); } } } /* Interface address deletion. */ void zebra_interface_address_delete_update(struct interface *ifp, struct connected *ifc) { struct listnode *node, *nnode; struct zserv *client; struct prefix *p; if (IS_ZEBRA_DEBUG_EVENT) { p = ifc->address; zlog_debug( "MESSAGE: ZEBRA_INTERFACE_ADDRESS_DELETE %pFX on %s(%u)", p, ifp->name, ifp->vrf_id); } zebra_vxlan_add_del_gw_macip(ifp, ifc->address, 0); router_id_del_address(ifc); for (ALL_LIST_ELEMENTS(zrouter.client_list, node, nnode, client)) { /* Do not send unsolicited messages to synchronous clients. */ if (client->synchronous) continue; if (CHECK_FLAG(ifc->conf, ZEBRA_IFC_REAL)) { client->connected_rt_del_cnt++; zsend_interface_address(ZEBRA_INTERFACE_ADDRESS_DELETE, client, ifp, ifc); } } } /* Interface VRF change. May need to delete from clients not interested in * the new VRF. Note that this function is invoked *prior* to the VRF change. */ void zebra_interface_vrf_update_del(struct interface *ifp, vrf_id_t new_vrf_id) { struct listnode *node, *nnode; struct zserv *client; if (IS_ZEBRA_DEBUG_EVENT) zlog_debug( "MESSAGE: ZEBRA_INTERFACE_VRF_UPDATE/DEL %s VRF Id %u -> %u", ifp->name, ifp->vrf_id, new_vrf_id); for (ALL_LIST_ELEMENTS(zrouter.client_list, node, nnode, client)) { /* Do not send unsolicited messages to synchronous clients. */ if (client->synchronous) continue; /* Need to delete if the client is not interested in the new * VRF. */ zsend_interface_update(ZEBRA_INTERFACE_DOWN, client, ifp); client->ifdel_cnt++; zsend_interface_delete(client, ifp); zsend_interface_vrf_update(client, ifp, new_vrf_id); } } /* Interface VRF change. This function is invoked *post* VRF change and sends an * add to clients who are interested in the new VRF but not in the old VRF. */ void zebra_interface_vrf_update_add(struct interface *ifp, vrf_id_t old_vrf_id) { struct listnode *node, *nnode; struct zserv *client; if (IS_ZEBRA_DEBUG_EVENT) zlog_debug( "MESSAGE: ZEBRA_INTERFACE_VRF_UPDATE/ADD %s VRF Id %u -> %u", ifp->name, old_vrf_id, ifp->vrf_id); for (ALL_LIST_ELEMENTS(zrouter.client_list, node, nnode, client)) { /* Do not send unsolicited messages to synchronous clients. */ if (client->synchronous) continue; /* Need to add if the client is interested in the new VRF. */ client->ifadd_cnt++; zsend_interface_add(client, ifp); zsend_interface_addresses(client, ifp); } } int zebra_add_import_table_entry(struct zebra_vrf *zvrf, struct route_node *rn, struct route_entry *re, const char *rmap_name) { struct route_entry *newre; struct route_entry *same; struct prefix p; struct nexthop_group *ng; route_map_result_t ret = RMAP_PERMITMATCH; afi_t afi; afi = family2afi(rn->p.family); if (rmap_name) ret = zebra_import_table_route_map_check( afi, re->type, re->instance, &rn->p, re->nhe->nhg.nexthop, zvrf->vrf->vrf_id, re->tag, rmap_name); if (ret != RMAP_PERMITMATCH) { UNSET_FLAG(re->flags, ZEBRA_FLAG_SELECTED); zebra_del_import_table_entry(zvrf, rn, re); return 0; } prefix_copy(&p, &rn->p); RNODE_FOREACH_RE (rn, same) { if (CHECK_FLAG(same->status, ROUTE_ENTRY_REMOVED)) continue; if (same->type == re->type && same->instance == re->instance && same->table == re->table && same->type != ZEBRA_ROUTE_CONNECT) break; } if (same) { UNSET_FLAG(same->flags, ZEBRA_FLAG_SELECTED); zebra_del_import_table_entry(zvrf, rn, same); } newre = XCALLOC(MTYPE_RE, sizeof(struct route_entry)); newre->type = ZEBRA_ROUTE_TABLE; newre->distance = zebra_import_table_distance[afi][re->table]; newre->flags = re->flags; newre->metric = re->metric; newre->mtu = re->mtu; newre->table = zvrf->table_id; newre->uptime = monotime(NULL); newre->instance = re->table; ng = nexthop_group_new(); copy_nexthops(&ng->nexthop, re->nhe->nhg.nexthop, NULL); rib_add_multipath(afi, SAFI_UNICAST, &p, NULL, newre, ng); return 0; } int zebra_del_import_table_entry(struct zebra_vrf *zvrf, struct route_node *rn, struct route_entry *re) { struct prefix p; afi_t afi; afi = family2afi(rn->p.family); prefix_copy(&p, &rn->p); rib_delete(afi, SAFI_UNICAST, zvrf->vrf->vrf_id, ZEBRA_ROUTE_TABLE, re->table, re->flags, &p, NULL, re->nhe->nhg.nexthop, re->nhe_id, zvrf->table_id, re->metric, re->distance, false); return 0; } /* Assuming no one calls this with the main routing table */ int zebra_import_table(afi_t afi, vrf_id_t vrf_id, uint32_t table_id, uint32_t distance, const char *rmap_name, int add) { struct route_table *table; struct route_entry *re; struct route_node *rn; struct zebra_vrf *zvrf = zebra_vrf_lookup_by_id(vrf_id); if (!is_zebra_valid_kernel_table(table_id) || (table_id == RT_TABLE_MAIN)) return -1; if (afi >= AFI_MAX) return -1; table = zebra_vrf_get_table_with_table_id(afi, SAFI_UNICAST, vrf_id, table_id); if (table == NULL) { return 0; } else if (IS_ZEBRA_DEBUG_RIB) { zlog_debug("%s routes from table %d", add ? "Importing" : "Unimporting", table_id); } if (add) { if (rmap_name) zebra_add_import_table_route_map(afi, rmap_name, table_id); else { rmap_name = zebra_get_import_table_route_map(afi, table_id); if (rmap_name) { zebra_del_import_table_route_map(afi, table_id); rmap_name = NULL; } } zebra_import_table_used[afi][table_id] = 1; zebra_import_table_distance[afi][table_id] = distance; } else { zebra_import_table_used[afi][table_id] = 0; zebra_import_table_distance[afi][table_id] = ZEBRA_TABLE_DISTANCE_DEFAULT; rmap_name = zebra_get_import_table_route_map(afi, table_id); if (rmap_name) { zebra_del_import_table_route_map(afi, table_id); rmap_name = NULL; } } for (rn = route_top(table); rn; rn = route_next(rn)) { /* For each entry in the non-default routing table, * add the entry in the main table */ if (!rn->info) continue; RNODE_FOREACH_RE (rn, re) { if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) continue; break; } if (!re) continue; if (((afi == AFI_IP) && (rn->p.family == AF_INET)) || ((afi == AFI_IP6) && (rn->p.family == AF_INET6))) { if (add) zebra_add_import_table_entry(zvrf, rn, re, rmap_name); else zebra_del_import_table_entry(zvrf, rn, re); } } return 0; } int zebra_import_table_config(struct vty *vty, vrf_id_t vrf_id) { int i; afi_t afi; int write = 0; char afi_str[AFI_MAX][10] = {"", "ip", "ipv6", "ethernet"}; const char *rmap_name; for (afi = AFI_IP; afi < AFI_MAX; afi++) { for (i = 1; i < ZEBRA_KERNEL_TABLE_MAX; i++) { if (!is_zebra_import_table_enabled(afi, vrf_id, i)) continue; if (zebra_import_table_distance[afi][i] != ZEBRA_TABLE_DISTANCE_DEFAULT) { vty_out(vty, "%s import-table %d distance %d", afi_str[afi], i, zebra_import_table_distance[afi][i]); } else { vty_out(vty, "%s import-table %d", afi_str[afi], i); } rmap_name = zebra_get_import_table_route_map(afi, i); if (rmap_name) vty_out(vty, " route-map %s", rmap_name); vty_out(vty, "\n"); write = 1; } } return write; } static void zebra_import_table_rm_update_vrf_afi(struct zebra_vrf *zvrf, afi_t afi, int table_id, const char *rmap) { struct route_table *table; struct route_entry *re; struct route_node *rn; const char *rmap_name; rmap_name = zebra_get_import_table_route_map(afi, table_id); if ((!rmap_name) || (strcmp(rmap_name, rmap) != 0)) return; table = zebra_vrf_get_table_with_table_id(afi, SAFI_UNICAST, zvrf->vrf->vrf_id, table_id); if (!table) { if (IS_ZEBRA_DEBUG_RIB_DETAILED) zlog_debug("%s: Table id=%d not found", __func__, table_id); return; } for (rn = route_top(table); rn; rn = route_next(rn)) { /* * For each entry in the non-default routing table, * add the entry in the main table */ if (!rn->info) continue; RNODE_FOREACH_RE (rn, re) { if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) continue; break; } if (!re) continue; if (((afi == AFI_IP) && (rn->p.family == AF_INET)) || ((afi == AFI_IP6) && (rn->p.family == AF_INET6))) zebra_add_import_table_entry(zvrf, rn, re, rmap_name); } return; } static void zebra_import_table_rm_update_vrf(struct zebra_vrf *zvrf, const char *rmap) { afi_t afi; int i; for (afi = AFI_IP; afi < AFI_MAX; afi++) { for (i = 1; i < ZEBRA_KERNEL_TABLE_MAX; i++) { if (!is_zebra_import_table_enabled( afi, zvrf->vrf->vrf_id, i)) continue; zebra_import_table_rm_update_vrf_afi(zvrf, afi, i, rmap); } } } void zebra_import_table_rm_update(const char *rmap) { struct vrf *vrf; struct zebra_vrf *zvrf; RB_FOREACH (vrf, vrf_name_head, &vrfs_by_name) { zvrf = vrf->info; if (!zvrf) continue; zebra_import_table_rm_update_vrf(zvrf, rmap); } } /* Interface parameters update */ void zebra_interface_parameters_update(struct interface *ifp) { struct listnode *node, *nnode; struct zserv *client; if (IS_ZEBRA_DEBUG_EVENT) zlog_debug("MESSAGE: ZEBRA_INTERFACE_LINK_PARAMS %s(%u)", ifp->name, ifp->vrf_id); for (ALL_LIST_ELEMENTS(zrouter.client_list, node, nnode, client)) { /* Do not send unsolicited messages to synchronous clients. */ if (client->synchronous) continue; zsend_interface_link_params(client, ifp); } }