/* * Zebra dataplane layer. * Copyright (c) 2018 Volta Networks, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; see the file COPYING; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "lib/libfrr.h" #include "lib/debug.h" #include "lib/frratomic.h" #include "lib/frr_pthread.h" #include "lib/memory.h" #include "lib/queue.h" #include "lib/zebra.h" #include "zebra/zebra_memory.h" #include "zebra/zebra_router.h" #include "zebra/zebra_dplane.h" #include "zebra/zebra_vxlan_private.h" #include "zebra/zebra_mpls.h" #include "zebra/rt.h" #include "zebra/debug.h" #include "zebra/zebra_pbr.h" /* Memory type for context blocks */ DEFINE_MTYPE_STATIC(ZEBRA, DP_CTX, "Zebra DPlane Ctx") DEFINE_MTYPE_STATIC(ZEBRA, DP_PROV, "Zebra DPlane Provider") #ifndef AOK # define AOK 0 #endif /* Enable test dataplane provider */ /*#define DPLANE_TEST_PROVIDER 1 */ /* Default value for max queued incoming updates */ const uint32_t DPLANE_DEFAULT_MAX_QUEUED = 200; /* Default value for new work per cycle */ const uint32_t DPLANE_DEFAULT_NEW_WORK = 100; /* Validation check macro for context blocks */ /* #define DPLANE_DEBUG 1 */ #ifdef DPLANE_DEBUG # define DPLANE_CTX_VALID(p) \ assert((p) != NULL) #else # define DPLANE_CTX_VALID(p) #endif /* DPLANE_DEBUG */ /* * Nexthop information captured for nexthop/nexthop group updates */ struct dplane_nexthop_info { uint32_t id; uint32_t old_id; afi_t afi; vrf_id_t vrf_id; int type; struct nexthop_group ng; struct nh_grp nh_grp[MULTIPATH_NUM]; uint8_t nh_grp_count; }; /* * Route information captured for route updates. */ struct dplane_route_info { /* Dest and (optional) source prefixes */ struct prefix zd_dest; struct prefix zd_src; afi_t zd_afi; safi_t zd_safi; int zd_type; int zd_old_type; route_tag_t zd_tag; route_tag_t zd_old_tag; uint32_t zd_metric; uint32_t zd_old_metric; uint16_t zd_instance; uint16_t zd_old_instance; uint8_t zd_distance; uint8_t zd_old_distance; uint32_t zd_mtu; uint32_t zd_nexthop_mtu; /* Nexthop hash entry info */ struct dplane_nexthop_info nhe; /* Nexthops */ uint32_t zd_nhg_id; struct nexthop_group zd_ng; /* Backup nexthops (if present) */ struct nexthop_group backup_ng; /* "Previous" nexthops, used only in route updates without netlink */ struct nexthop_group zd_old_ng; struct nexthop_group old_backup_ng; /* TODO -- use fixed array of nexthops, to avoid mallocs? */ }; /* * Pseudowire info for the dataplane */ struct dplane_pw_info { int type; int af; int status; uint32_t flags; union g_addr dest; mpls_label_t local_label; mpls_label_t remote_label; /* Nexthops */ struct nexthop_group nhg; union pw_protocol_fields fields; }; /* * Interface/prefix info for the dataplane */ struct dplane_intf_info { uint32_t metric; uint32_t flags; #define DPLANE_INTF_CONNECTED (1 << 0) /* Connected peer, p2p */ #define DPLANE_INTF_SECONDARY (1 << 1) #define DPLANE_INTF_BROADCAST (1 << 2) #define DPLANE_INTF_HAS_DEST DPLANE_INTF_CONNECTED #define DPLANE_INTF_HAS_LABEL (1 << 4) /* Interface address/prefix */ struct prefix prefix; /* Dest address, for p2p, or broadcast prefix */ struct prefix dest_prefix; char *label; char label_buf[32]; }; /* * EVPN MAC address info for the dataplane. */ struct dplane_mac_info { vlanid_t vid; ifindex_t br_ifindex; struct ethaddr mac; struct in_addr vtep_ip; bool is_sticky; uint32_t nhg_id; uint32_t update_flags; }; /* * Neighbor info for the dataplane */ struct dplane_neigh_info { struct ipaddr ip_addr; struct ethaddr mac; uint32_t flags; uint16_t state; uint32_t update_flags; }; /* * Policy based routing rule info for the dataplane */ struct dplane_ctx_rule { uint32_t priority; /* The route table pointed by this rule */ uint32_t table; /* Filter criteria */ uint32_t filter_bm; uint32_t fwmark; uint8_t dsfield; struct prefix src_ip; struct prefix dst_ip; char ifname[INTERFACE_NAMSIZ + 1]; }; struct dplane_rule_info { /* * Originating zclient sock fd, so we can know who to send * back to. */ int sock; int unique; int seq; struct dplane_ctx_rule new; struct dplane_ctx_rule old; }; /* * The context block used to exchange info about route updates across * the boundary between the zebra main context (and pthread) and the * dataplane layer (and pthread). */ struct zebra_dplane_ctx { /* Operation code */ enum dplane_op_e zd_op; /* Status on return */ enum zebra_dplane_result zd_status; /* Dplane provider id */ uint32_t zd_provider; /* Flags - used by providers, e.g. */ int zd_flags; bool zd_is_update; uint32_t zd_seq; uint32_t zd_old_seq; /* Some updates may be generated by notifications: allow the * plugin to notice and ignore results from its own notifications. */ uint32_t zd_notif_provider; /* TODO -- internal/sub-operation status? */ enum zebra_dplane_result zd_remote_status; enum zebra_dplane_result zd_kernel_status; vrf_id_t zd_vrf_id; uint32_t zd_table_id; char zd_ifname[INTERFACE_NAMSIZ]; ifindex_t zd_ifindex; /* Support info for different kinds of updates */ union { struct dplane_route_info rinfo; zebra_lsp_t lsp; struct dplane_pw_info pw; struct dplane_intf_info intf; struct dplane_mac_info macinfo; struct dplane_neigh_info neigh; struct dplane_rule_info rule; } u; /* Namespace info, used especially for netlink kernel communication */ struct zebra_dplane_info zd_ns_info; /* Embedded list linkage */ TAILQ_ENTRY(zebra_dplane_ctx) zd_q_entries; }; /* Flag that can be set by a pre-kernel provider as a signal that an update * should bypass the kernel. */ #define DPLANE_CTX_FLAG_NO_KERNEL 0x01 /* * Registration block for one dataplane provider. */ struct zebra_dplane_provider { /* Name */ char dp_name[DPLANE_PROVIDER_NAMELEN + 1]; /* Priority, for ordering among providers */ uint8_t dp_priority; /* Id value */ uint32_t dp_id; /* Mutex */ pthread_mutex_t dp_mutex; /* Plugin-provided extra data */ void *dp_data; /* Flags */ int dp_flags; int (*dp_start)(struct zebra_dplane_provider *prov); int (*dp_fp)(struct zebra_dplane_provider *prov); int (*dp_fini)(struct zebra_dplane_provider *prov, bool early_p); _Atomic uint32_t dp_in_counter; _Atomic uint32_t dp_in_queued; _Atomic uint32_t dp_in_max; _Atomic uint32_t dp_out_counter; _Atomic uint32_t dp_out_queued; _Atomic uint32_t dp_out_max; _Atomic uint32_t dp_error_counter; /* Queue of contexts inbound to the provider */ struct dplane_ctx_q dp_ctx_in_q; /* Queue of completed contexts outbound from the provider back * towards the dataplane module. */ struct dplane_ctx_q dp_ctx_out_q; /* Embedded list linkage for provider objects */ TAILQ_ENTRY(zebra_dplane_provider) dp_prov_link; }; /* * Globals */ static struct zebra_dplane_globals { /* Mutex to control access to dataplane components */ pthread_mutex_t dg_mutex; /* Results callback registered by zebra 'core' */ int (*dg_results_cb)(struct dplane_ctx_q *ctxlist); /* Sentinel for beginning of shutdown */ volatile bool dg_is_shutdown; /* Sentinel for end of shutdown */ volatile bool dg_run; /* Update context queue inbound to the dataplane */ TAILQ_HEAD(zdg_ctx_q, zebra_dplane_ctx) dg_update_ctx_q; /* Ordered list of providers */ TAILQ_HEAD(zdg_prov_q, zebra_dplane_provider) dg_providers_q; /* Counter used to assign internal ids to providers */ uint32_t dg_provider_id; /* Limit number of pending, unprocessed updates */ _Atomic uint32_t dg_max_queued_updates; /* Control whether system route notifications should be produced. */ bool dg_sys_route_notifs; /* Limit number of new updates dequeued at once, to pace an * incoming burst. */ uint32_t dg_updates_per_cycle; _Atomic uint32_t dg_routes_in; _Atomic uint32_t dg_routes_queued; _Atomic uint32_t dg_routes_queued_max; _Atomic uint32_t dg_route_errors; _Atomic uint32_t dg_other_errors; _Atomic uint32_t dg_nexthops_in; _Atomic uint32_t dg_nexthop_errors; _Atomic uint32_t dg_lsps_in; _Atomic uint32_t dg_lsp_errors; _Atomic uint32_t dg_pws_in; _Atomic uint32_t dg_pw_errors; _Atomic uint32_t dg_intf_addrs_in; _Atomic uint32_t dg_intf_addr_errors; _Atomic uint32_t dg_macs_in; _Atomic uint32_t dg_mac_errors; _Atomic uint32_t dg_neighs_in; _Atomic uint32_t dg_neigh_errors; _Atomic uint32_t dg_rules_in; _Atomic uint32_t dg_rule_errors; _Atomic uint32_t dg_update_yields; /* Dataplane pthread */ struct frr_pthread *dg_pthread; /* Event-delivery context 'master' for the dplane */ struct thread_master *dg_master; /* Event/'thread' pointer for queued updates */ struct thread *dg_t_update; /* Event pointer for pending shutdown check loop */ struct thread *dg_t_shutdown_check; } zdplane_info; /* * Lock and unlock for interactions with the zebra 'core' pthread */ #define DPLANE_LOCK() pthread_mutex_lock(&zdplane_info.dg_mutex) #define DPLANE_UNLOCK() pthread_mutex_unlock(&zdplane_info.dg_mutex) /* * Lock and unlock for individual providers */ #define DPLANE_PROV_LOCK(p) pthread_mutex_lock(&((p)->dp_mutex)) #define DPLANE_PROV_UNLOCK(p) pthread_mutex_unlock(&((p)->dp_mutex)) /* Prototypes */ static int dplane_thread_loop(struct thread *event); static void dplane_info_from_zns(struct zebra_dplane_info *ns_info, struct zebra_ns *zns); static enum zebra_dplane_result lsp_update_internal(zebra_lsp_t *lsp, enum dplane_op_e op); static enum zebra_dplane_result pw_update_internal(struct zebra_pw *pw, enum dplane_op_e op); static enum zebra_dplane_result intf_addr_update_internal( const struct interface *ifp, const struct connected *ifc, enum dplane_op_e op); static enum zebra_dplane_result mac_update_common( enum dplane_op_e op, const struct interface *ifp, const struct interface *br_ifp, vlanid_t vid, const struct ethaddr *mac, struct in_addr vtep_ip, bool sticky, uint32_t nhg_id, uint32_t update_flags); static enum zebra_dplane_result neigh_update_internal( enum dplane_op_e op, const struct interface *ifp, const struct ethaddr *mac, const struct ipaddr *ip, uint32_t flags, uint16_t state, uint32_t update_flags); /* * Public APIs */ /* Obtain thread_master for dataplane thread */ struct thread_master *dplane_get_thread_master(void) { return zdplane_info.dg_master; } /* * Allocate a dataplane update context */ struct zebra_dplane_ctx *dplane_ctx_alloc(void) { struct zebra_dplane_ctx *p; /* TODO -- just alloc'ing memory, but would like to maintain * a pool */ p = XCALLOC(MTYPE_DP_CTX, sizeof(struct zebra_dplane_ctx)); return p; } /* Enable system route notifications */ void dplane_enable_sys_route_notifs(void) { zdplane_info.dg_sys_route_notifs = true; } /* * Clean up dependent/internal allocations inside a context object */ static void dplane_ctx_free_internal(struct zebra_dplane_ctx *ctx) { /* * Some internal allocations may need to be freed, depending on * the type of info captured in the ctx. */ switch (ctx->zd_op) { case DPLANE_OP_ROUTE_INSTALL: case DPLANE_OP_ROUTE_UPDATE: case DPLANE_OP_ROUTE_DELETE: case DPLANE_OP_SYS_ROUTE_ADD: case DPLANE_OP_SYS_ROUTE_DELETE: case DPLANE_OP_ROUTE_NOTIFY: /* Free allocated nexthops */ if (ctx->u.rinfo.zd_ng.nexthop) { /* This deals with recursive nexthops too */ nexthops_free(ctx->u.rinfo.zd_ng.nexthop); ctx->u.rinfo.zd_ng.nexthop = NULL; } /* Free backup info also (if present) */ if (ctx->u.rinfo.backup_ng.nexthop) { /* This deals with recursive nexthops too */ nexthops_free(ctx->u.rinfo.backup_ng.nexthop); ctx->u.rinfo.backup_ng.nexthop = NULL; } if (ctx->u.rinfo.zd_old_ng.nexthop) { /* This deals with recursive nexthops too */ nexthops_free(ctx->u.rinfo.zd_old_ng.nexthop); ctx->u.rinfo.zd_old_ng.nexthop = NULL; } if (ctx->u.rinfo.old_backup_ng.nexthop) { /* This deals with recursive nexthops too */ nexthops_free(ctx->u.rinfo.old_backup_ng.nexthop); ctx->u.rinfo.old_backup_ng.nexthop = NULL; } break; case DPLANE_OP_NH_INSTALL: case DPLANE_OP_NH_UPDATE: case DPLANE_OP_NH_DELETE: { if (ctx->u.rinfo.nhe.ng.nexthop) { /* This deals with recursive nexthops too */ nexthops_free(ctx->u.rinfo.nhe.ng.nexthop); ctx->u.rinfo.nhe.ng.nexthop = NULL; } break; } case DPLANE_OP_LSP_INSTALL: case DPLANE_OP_LSP_UPDATE: case DPLANE_OP_LSP_DELETE: case DPLANE_OP_LSP_NOTIFY: { zebra_nhlfe_t *nhlfe; /* Unlink and free allocated NHLFEs */ frr_each_safe(nhlfe_list, &ctx->u.lsp.nhlfe_list, nhlfe) { nhlfe_list_del(&ctx->u.lsp.nhlfe_list, nhlfe); zebra_mpls_nhlfe_free(nhlfe); } /* Unlink and free allocated backup NHLFEs, if present */ frr_each_safe(nhlfe_list, &(ctx->u.lsp.backup_nhlfe_list), nhlfe) { nhlfe_list_del(&ctx->u.lsp.backup_nhlfe_list, nhlfe); zebra_mpls_nhlfe_free(nhlfe); } /* Clear pointers in lsp struct, in case we're caching * free context structs. */ nhlfe_list_init(&ctx->u.lsp.nhlfe_list); ctx->u.lsp.best_nhlfe = NULL; nhlfe_list_init(&ctx->u.lsp.backup_nhlfe_list); break; } case DPLANE_OP_PW_INSTALL: case DPLANE_OP_PW_UNINSTALL: /* Free allocated nexthops */ if (ctx->u.pw.nhg.nexthop) { /* This deals with recursive nexthops too */ nexthops_free(ctx->u.pw.nhg.nexthop); ctx->u.pw.nhg.nexthop = NULL; } break; case DPLANE_OP_ADDR_INSTALL: case DPLANE_OP_ADDR_UNINSTALL: /* Maybe free label string, if allocated */ if (ctx->u.intf.label != NULL && ctx->u.intf.label != ctx->u.intf.label_buf) { free(ctx->u.intf.label); ctx->u.intf.label = NULL; } break; case DPLANE_OP_MAC_INSTALL: case DPLANE_OP_MAC_DELETE: case DPLANE_OP_NEIGH_INSTALL: case DPLANE_OP_NEIGH_UPDATE: case DPLANE_OP_NEIGH_DELETE: case DPLANE_OP_VTEP_ADD: case DPLANE_OP_VTEP_DELETE: case DPLANE_OP_RULE_ADD: case DPLANE_OP_RULE_DELETE: case DPLANE_OP_RULE_UPDATE: case DPLANE_OP_NEIGH_DISCOVER: case DPLANE_OP_NONE: break; } } /* * Free a dataplane results context. */ static void dplane_ctx_free(struct zebra_dplane_ctx **pctx) { if (pctx == NULL) return; DPLANE_CTX_VALID(*pctx); /* TODO -- just freeing memory, but would like to maintain * a pool */ /* Some internal allocations may need to be freed, depending on * the type of info captured in the ctx. */ dplane_ctx_free_internal(*pctx); XFREE(MTYPE_DP_CTX, *pctx); } /* * Reset an allocated context object for re-use. All internal allocations are * freed and the context is memset. */ void dplane_ctx_reset(struct zebra_dplane_ctx *ctx) { dplane_ctx_free_internal(ctx); memset(ctx, 0, sizeof(*ctx)); } /* * Return a context block to the dplane module after processing */ void dplane_ctx_fini(struct zebra_dplane_ctx **pctx) { /* TODO -- maintain pool; for now, just free */ dplane_ctx_free(pctx); } /* Enqueue a context block */ void dplane_ctx_enqueue_tail(struct dplane_ctx_q *q, const struct zebra_dplane_ctx *ctx) { TAILQ_INSERT_TAIL(q, (struct zebra_dplane_ctx *)ctx, zd_q_entries); } /* Append a list of context blocks to another list */ void dplane_ctx_list_append(struct dplane_ctx_q *to_list, struct dplane_ctx_q *from_list) { if (TAILQ_FIRST(from_list)) { TAILQ_CONCAT(to_list, from_list, zd_q_entries); /* And clear 'from' list */ TAILQ_INIT(from_list); } } /* Dequeue a context block from the head of a list */ struct zebra_dplane_ctx *dplane_ctx_dequeue(struct dplane_ctx_q *q) { struct zebra_dplane_ctx *ctx = TAILQ_FIRST(q); if (ctx) TAILQ_REMOVE(q, ctx, zd_q_entries); return ctx; } /* * Accessors for information from the context object */ enum zebra_dplane_result dplane_ctx_get_status( const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->zd_status; } void dplane_ctx_set_status(struct zebra_dplane_ctx *ctx, enum zebra_dplane_result status) { DPLANE_CTX_VALID(ctx); ctx->zd_status = status; } /* Retrieve last/current provider id */ uint32_t dplane_ctx_get_provider(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->zd_provider; } /* Providers run before the kernel can control whether a kernel * update should be done. */ void dplane_ctx_set_skip_kernel(struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); SET_FLAG(ctx->zd_flags, DPLANE_CTX_FLAG_NO_KERNEL); } bool dplane_ctx_is_skip_kernel(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return CHECK_FLAG(ctx->zd_flags, DPLANE_CTX_FLAG_NO_KERNEL); } void dplane_ctx_set_op(struct zebra_dplane_ctx *ctx, enum dplane_op_e op) { DPLANE_CTX_VALID(ctx); ctx->zd_op = op; } enum dplane_op_e dplane_ctx_get_op(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->zd_op; } const char *dplane_op2str(enum dplane_op_e op) { const char *ret = "UNKNOWN"; switch (op) { case DPLANE_OP_NONE: ret = "NONE"; break; /* Route update */ case DPLANE_OP_ROUTE_INSTALL: ret = "ROUTE_INSTALL"; break; case DPLANE_OP_ROUTE_UPDATE: ret = "ROUTE_UPDATE"; break; case DPLANE_OP_ROUTE_DELETE: ret = "ROUTE_DELETE"; break; case DPLANE_OP_ROUTE_NOTIFY: ret = "ROUTE_NOTIFY"; break; /* Nexthop update */ case DPLANE_OP_NH_INSTALL: ret = "NH_INSTALL"; break; case DPLANE_OP_NH_UPDATE: ret = "NH_UPDATE"; break; case DPLANE_OP_NH_DELETE: ret = "NH_DELETE"; break; case DPLANE_OP_LSP_INSTALL: ret = "LSP_INSTALL"; break; case DPLANE_OP_LSP_UPDATE: ret = "LSP_UPDATE"; break; case DPLANE_OP_LSP_DELETE: ret = "LSP_DELETE"; break; case DPLANE_OP_LSP_NOTIFY: ret = "LSP_NOTIFY"; break; case DPLANE_OP_PW_INSTALL: ret = "PW_INSTALL"; break; case DPLANE_OP_PW_UNINSTALL: ret = "PW_UNINSTALL"; break; case DPLANE_OP_SYS_ROUTE_ADD: ret = "SYS_ROUTE_ADD"; break; case DPLANE_OP_SYS_ROUTE_DELETE: ret = "SYS_ROUTE_DEL"; break; case DPLANE_OP_ADDR_INSTALL: ret = "ADDR_INSTALL"; break; case DPLANE_OP_ADDR_UNINSTALL: ret = "ADDR_UNINSTALL"; break; case DPLANE_OP_MAC_INSTALL: ret = "MAC_INSTALL"; break; case DPLANE_OP_MAC_DELETE: ret = "MAC_DELETE"; break; case DPLANE_OP_NEIGH_INSTALL: ret = "NEIGH_INSTALL"; break; case DPLANE_OP_NEIGH_UPDATE: ret = "NEIGH_UPDATE"; break; case DPLANE_OP_NEIGH_DELETE: ret = "NEIGH_DELETE"; break; case DPLANE_OP_VTEP_ADD: ret = "VTEP_ADD"; break; case DPLANE_OP_VTEP_DELETE: ret = "VTEP_DELETE"; break; case DPLANE_OP_RULE_ADD: ret = "RULE_ADD"; break; case DPLANE_OP_RULE_DELETE: ret = "RULE_DELETE"; break; case DPLANE_OP_RULE_UPDATE: ret = "RULE_UPDATE"; break; case DPLANE_OP_NEIGH_DISCOVER: ret = "NEIGH_DISCOVER"; break; } return ret; } const char *dplane_res2str(enum zebra_dplane_result res) { const char *ret = ""; switch (res) { case ZEBRA_DPLANE_REQUEST_FAILURE: ret = "FAILURE"; break; case ZEBRA_DPLANE_REQUEST_QUEUED: ret = "QUEUED"; break; case ZEBRA_DPLANE_REQUEST_SUCCESS: ret = "SUCCESS"; break; } return ret; } void dplane_ctx_set_dest(struct zebra_dplane_ctx *ctx, const struct prefix *dest) { DPLANE_CTX_VALID(ctx); prefix_copy(&(ctx->u.rinfo.zd_dest), dest); } const struct prefix *dplane_ctx_get_dest(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.rinfo.zd_dest); } void dplane_ctx_set_src(struct zebra_dplane_ctx *ctx, const struct prefix *src) { DPLANE_CTX_VALID(ctx); if (src) prefix_copy(&(ctx->u.rinfo.zd_src), src); else memset(&(ctx->u.rinfo.zd_src), 0, sizeof(struct prefix)); } /* Source prefix is a little special - return NULL for "no src prefix" */ const struct prefix *dplane_ctx_get_src(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); if (ctx->u.rinfo.zd_src.prefixlen == 0 && IN6_IS_ADDR_UNSPECIFIED(&(ctx->u.rinfo.zd_src.u.prefix6))) { return NULL; } else { return &(ctx->u.rinfo.zd_src); } } bool dplane_ctx_is_update(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->zd_is_update; } uint32_t dplane_ctx_get_seq(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->zd_seq; } uint32_t dplane_ctx_get_old_seq(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->zd_old_seq; } void dplane_ctx_set_vrf(struct zebra_dplane_ctx *ctx, vrf_id_t vrf) { DPLANE_CTX_VALID(ctx); ctx->zd_vrf_id = vrf; } vrf_id_t dplane_ctx_get_vrf(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->zd_vrf_id; } bool dplane_ctx_is_from_notif(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return (ctx->zd_notif_provider != 0); } uint32_t dplane_ctx_get_notif_provider(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->zd_notif_provider; } void dplane_ctx_set_notif_provider(struct zebra_dplane_ctx *ctx, uint32_t id) { DPLANE_CTX_VALID(ctx); ctx->zd_notif_provider = id; } const char *dplane_ctx_get_ifname(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->zd_ifname; } void dplane_ctx_set_ifname(struct zebra_dplane_ctx *ctx, const char *ifname) { DPLANE_CTX_VALID(ctx); if (!ifname) return; strlcpy(ctx->zd_ifname, ifname, sizeof(ctx->zd_ifname)); } ifindex_t dplane_ctx_get_ifindex(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->zd_ifindex; } void dplane_ctx_set_type(struct zebra_dplane_ctx *ctx, int type) { DPLANE_CTX_VALID(ctx); ctx->u.rinfo.zd_type = type; } int dplane_ctx_get_type(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.zd_type; } int dplane_ctx_get_old_type(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.zd_old_type; } void dplane_ctx_set_afi(struct zebra_dplane_ctx *ctx, afi_t afi) { DPLANE_CTX_VALID(ctx); ctx->u.rinfo.zd_afi = afi; } afi_t dplane_ctx_get_afi(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.zd_afi; } void dplane_ctx_set_safi(struct zebra_dplane_ctx *ctx, safi_t safi) { DPLANE_CTX_VALID(ctx); ctx->u.rinfo.zd_safi = safi; } safi_t dplane_ctx_get_safi(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.zd_safi; } void dplane_ctx_set_table(struct zebra_dplane_ctx *ctx, uint32_t table) { DPLANE_CTX_VALID(ctx); ctx->zd_table_id = table; } uint32_t dplane_ctx_get_table(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->zd_table_id; } route_tag_t dplane_ctx_get_tag(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.zd_tag; } void dplane_ctx_set_tag(struct zebra_dplane_ctx *ctx, route_tag_t tag) { DPLANE_CTX_VALID(ctx); ctx->u.rinfo.zd_tag = tag; } route_tag_t dplane_ctx_get_old_tag(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.zd_old_tag; } uint16_t dplane_ctx_get_instance(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.zd_instance; } void dplane_ctx_set_instance(struct zebra_dplane_ctx *ctx, uint16_t instance) { DPLANE_CTX_VALID(ctx); ctx->u.rinfo.zd_instance = instance; } uint16_t dplane_ctx_get_old_instance(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.zd_old_instance; } uint32_t dplane_ctx_get_metric(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.zd_metric; } uint32_t dplane_ctx_get_old_metric(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.zd_old_metric; } uint32_t dplane_ctx_get_mtu(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.zd_mtu; } uint32_t dplane_ctx_get_nh_mtu(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.zd_nexthop_mtu; } uint8_t dplane_ctx_get_distance(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.zd_distance; } void dplane_ctx_set_distance(struct zebra_dplane_ctx *ctx, uint8_t distance) { DPLANE_CTX_VALID(ctx); ctx->u.rinfo.zd_distance = distance; } uint8_t dplane_ctx_get_old_distance(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.zd_old_distance; } /* * Set the nexthops associated with a context: note that processing code * may well expect that nexthops are in canonical (sorted) order, so we * will enforce that here. */ void dplane_ctx_set_nexthops(struct zebra_dplane_ctx *ctx, struct nexthop *nh) { DPLANE_CTX_VALID(ctx); if (ctx->u.rinfo.zd_ng.nexthop) { nexthops_free(ctx->u.rinfo.zd_ng.nexthop); ctx->u.rinfo.zd_ng.nexthop = NULL; } nexthop_group_copy_nh_sorted(&(ctx->u.rinfo.zd_ng), nh); } /* * Set the list of backup nexthops; their ordering is preserved (they're not * re-sorted.) */ void dplane_ctx_set_backup_nhg(struct zebra_dplane_ctx *ctx, const struct nexthop_group *nhg) { struct nexthop *nh, *last_nh, *nexthop; DPLANE_CTX_VALID(ctx); if (ctx->u.rinfo.backup_ng.nexthop) { nexthops_free(ctx->u.rinfo.backup_ng.nexthop); ctx->u.rinfo.backup_ng.nexthop = NULL; } last_nh = NULL; /* Be careful to preserve the order of the backup list */ for (nh = nhg->nexthop; nh; nh = nh->next) { nexthop = nexthop_dup(nh, NULL); if (last_nh) NEXTHOP_APPEND(last_nh, nexthop); else ctx->u.rinfo.backup_ng.nexthop = nexthop; last_nh = nexthop; } } uint32_t dplane_ctx_get_nhg_id(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.zd_nhg_id; } const struct nexthop_group *dplane_ctx_get_ng( const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.rinfo.zd_ng); } const struct nexthop_group * dplane_ctx_get_backup_ng(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.rinfo.backup_ng); } const struct nexthop_group * dplane_ctx_get_old_ng(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.rinfo.zd_old_ng); } const struct nexthop_group * dplane_ctx_get_old_backup_ng(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.rinfo.old_backup_ng); } const struct zebra_dplane_info *dplane_ctx_get_ns( const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->zd_ns_info); } /* Accessors for nexthop information */ uint32_t dplane_ctx_get_nhe_id(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.nhe.id; } uint32_t dplane_ctx_get_old_nhe_id(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.nhe.old_id; } afi_t dplane_ctx_get_nhe_afi(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.nhe.afi; } vrf_id_t dplane_ctx_get_nhe_vrf_id(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.nhe.vrf_id; } int dplane_ctx_get_nhe_type(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.nhe.type; } const struct nexthop_group * dplane_ctx_get_nhe_ng(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.rinfo.nhe.ng); } const struct nh_grp * dplane_ctx_get_nhe_nh_grp(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.nhe.nh_grp; } uint8_t dplane_ctx_get_nhe_nh_grp_count(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rinfo.nhe.nh_grp_count; } /* Accessors for LSP information */ mpls_label_t dplane_ctx_get_in_label(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.lsp.ile.in_label; } void dplane_ctx_set_in_label(struct zebra_dplane_ctx *ctx, mpls_label_t label) { DPLANE_CTX_VALID(ctx); ctx->u.lsp.ile.in_label = label; } uint8_t dplane_ctx_get_addr_family(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.lsp.addr_family; } void dplane_ctx_set_addr_family(struct zebra_dplane_ctx *ctx, uint8_t family) { DPLANE_CTX_VALID(ctx); ctx->u.lsp.addr_family = family; } uint32_t dplane_ctx_get_lsp_flags(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.lsp.flags; } void dplane_ctx_set_lsp_flags(struct zebra_dplane_ctx *ctx, uint32_t flags) { DPLANE_CTX_VALID(ctx); ctx->u.lsp.flags = flags; } const struct nhlfe_list_head *dplane_ctx_get_nhlfe_list( const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.lsp.nhlfe_list); } const struct nhlfe_list_head *dplane_ctx_get_backup_nhlfe_list( const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.lsp.backup_nhlfe_list); } zebra_nhlfe_t *dplane_ctx_add_nhlfe(struct zebra_dplane_ctx *ctx, enum lsp_types_t lsp_type, enum nexthop_types_t nh_type, const union g_addr *gate, ifindex_t ifindex, uint8_t num_labels, mpls_label_t *out_labels) { zebra_nhlfe_t *nhlfe; DPLANE_CTX_VALID(ctx); nhlfe = zebra_mpls_lsp_add_nhlfe(&(ctx->u.lsp), lsp_type, nh_type, gate, ifindex, num_labels, out_labels); return nhlfe; } zebra_nhlfe_t *dplane_ctx_add_backup_nhlfe(struct zebra_dplane_ctx *ctx, enum lsp_types_t lsp_type, enum nexthop_types_t nh_type, const union g_addr *gate, ifindex_t ifindex, uint8_t num_labels, mpls_label_t *out_labels) { zebra_nhlfe_t *nhlfe; DPLANE_CTX_VALID(ctx); nhlfe = zebra_mpls_lsp_add_backup_nhlfe(&(ctx->u.lsp), lsp_type, nh_type, gate, ifindex, num_labels, out_labels); return nhlfe; } const zebra_nhlfe_t * dplane_ctx_get_best_nhlfe(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.lsp.best_nhlfe; } const zebra_nhlfe_t * dplane_ctx_set_best_nhlfe(struct zebra_dplane_ctx *ctx, zebra_nhlfe_t *nhlfe) { DPLANE_CTX_VALID(ctx); ctx->u.lsp.best_nhlfe = nhlfe; return ctx->u.lsp.best_nhlfe; } uint32_t dplane_ctx_get_lsp_num_ecmp(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.lsp.num_ecmp; } mpls_label_t dplane_ctx_get_pw_local_label(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.pw.local_label; } mpls_label_t dplane_ctx_get_pw_remote_label(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.pw.remote_label; } int dplane_ctx_get_pw_type(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.pw.type; } int dplane_ctx_get_pw_af(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.pw.af; } uint32_t dplane_ctx_get_pw_flags(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.pw.flags; } int dplane_ctx_get_pw_status(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.pw.status; } void dplane_ctx_set_pw_status(struct zebra_dplane_ctx *ctx, int status) { DPLANE_CTX_VALID(ctx); ctx->u.pw.status = status; } const union g_addr *dplane_ctx_get_pw_dest( const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.pw.dest); } const union pw_protocol_fields *dplane_ctx_get_pw_proto( const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.pw.fields); } const struct nexthop_group * dplane_ctx_get_pw_nhg(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.pw.nhg); } /* Accessors for interface information */ uint32_t dplane_ctx_get_intf_metric(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.intf.metric; } /* Is interface addr p2p? */ bool dplane_ctx_intf_is_connected(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return (ctx->u.intf.flags & DPLANE_INTF_CONNECTED); } bool dplane_ctx_intf_is_secondary(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return (ctx->u.intf.flags & DPLANE_INTF_SECONDARY); } bool dplane_ctx_intf_is_broadcast(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return (ctx->u.intf.flags & DPLANE_INTF_BROADCAST); } const struct prefix *dplane_ctx_get_intf_addr( const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.intf.prefix); } bool dplane_ctx_intf_has_dest(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return (ctx->u.intf.flags & DPLANE_INTF_HAS_DEST); } const struct prefix *dplane_ctx_get_intf_dest( const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); if (ctx->u.intf.flags & DPLANE_INTF_HAS_DEST) return &(ctx->u.intf.dest_prefix); else return NULL; } bool dplane_ctx_intf_has_label(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return (ctx->u.intf.flags & DPLANE_INTF_HAS_LABEL); } const char *dplane_ctx_get_intf_label(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.intf.label; } /* Accessors for MAC information */ vlanid_t dplane_ctx_mac_get_vlan(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.macinfo.vid; } bool dplane_ctx_mac_is_sticky(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.macinfo.is_sticky; } uint32_t dplane_ctx_mac_get_nhg_id(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.macinfo.nhg_id; } uint32_t dplane_ctx_mac_get_update_flags(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.macinfo.update_flags; } const struct ethaddr *dplane_ctx_mac_get_addr( const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.macinfo.mac); } const struct in_addr *dplane_ctx_mac_get_vtep_ip( const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.macinfo.vtep_ip); } ifindex_t dplane_ctx_mac_get_br_ifindex(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.macinfo.br_ifindex; } /* Accessors for neighbor information */ const struct ipaddr *dplane_ctx_neigh_get_ipaddr( const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.neigh.ip_addr); } const struct ethaddr *dplane_ctx_neigh_get_mac( const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.neigh.mac); } uint32_t dplane_ctx_neigh_get_flags(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.neigh.flags; } uint16_t dplane_ctx_neigh_get_state(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.neigh.state; } uint32_t dplane_ctx_neigh_get_update_flags(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.neigh.update_flags; } /* Accessors for PBR rule information */ int dplane_ctx_rule_get_sock(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rule.sock; } const char *dplane_ctx_rule_get_ifname(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rule.new.ifname; } int dplane_ctx_rule_get_unique(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rule.unique; } int dplane_ctx_rule_get_seq(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rule.seq; } uint32_t dplane_ctx_rule_get_priority(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rule.new.priority; } uint32_t dplane_ctx_rule_get_old_priority(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rule.old.priority; } uint32_t dplane_ctx_rule_get_table(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rule.new.table; } uint32_t dplane_ctx_rule_get_old_table(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rule.old.table; } uint32_t dplane_ctx_rule_get_filter_bm(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rule.new.filter_bm; } uint32_t dplane_ctx_rule_get_old_filter_bm(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rule.old.filter_bm; } uint32_t dplane_ctx_rule_get_fwmark(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rule.new.fwmark; } uint32_t dplane_ctx_rule_get_old_fwmark(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rule.old.fwmark; } uint8_t dplane_ctx_rule_get_dsfield(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rule.new.dsfield; } uint8_t dplane_ctx_rule_get_old_dsfield(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return ctx->u.rule.old.dsfield; } const struct prefix * dplane_ctx_rule_get_src_ip(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.rule.new.src_ip); } const struct prefix * dplane_ctx_rule_get_old_src_ip(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.rule.old.src_ip); } const struct prefix * dplane_ctx_rule_get_dst_ip(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.rule.new.dst_ip); } const struct prefix * dplane_ctx_rule_get_old_dst_ip(const struct zebra_dplane_ctx *ctx) { DPLANE_CTX_VALID(ctx); return &(ctx->u.rule.old.dst_ip); } /* * End of dplane context accessors */ /* * Retrieve the limit on the number of pending, unprocessed updates. */ uint32_t dplane_get_in_queue_limit(void) { return atomic_load_explicit(&zdplane_info.dg_max_queued_updates, memory_order_relaxed); } /* * Configure limit on the number of pending, queued updates. */ void dplane_set_in_queue_limit(uint32_t limit, bool set) { /* Reset to default on 'unset' */ if (!set) limit = DPLANE_DEFAULT_MAX_QUEUED; atomic_store_explicit(&zdplane_info.dg_max_queued_updates, limit, memory_order_relaxed); } /* * Retrieve the current queue depth of incoming, unprocessed updates */ uint32_t dplane_get_in_queue_len(void) { return atomic_load_explicit(&zdplane_info.dg_routes_queued, memory_order_seq_cst); } /* * Common dataplane context init with zebra namespace info. */ static int dplane_ctx_ns_init(struct zebra_dplane_ctx *ctx, struct zebra_ns *zns, bool is_update) { dplane_info_from_zns(&(ctx->zd_ns_info), zns); #if defined(HAVE_NETLINK) /* Increment message counter after copying to context struct - may need * two messages in some 'update' cases. */ if (is_update) zns->netlink_dplane.seq += 2; else zns->netlink_dplane.seq++; #endif /* HAVE_NETLINK */ return AOK; } /* * Initialize a context block for a route update from zebra data structs. */ int dplane_ctx_route_init(struct zebra_dplane_ctx *ctx, enum dplane_op_e op, struct route_node *rn, struct route_entry *re) { int ret = EINVAL; const struct route_table *table = NULL; const struct rib_table_info *info; const struct prefix *p, *src_p; struct zebra_ns *zns; struct zebra_vrf *zvrf; struct nexthop *nexthop; zebra_l3vni_t *zl3vni; if (!ctx || !rn || !re) goto done; ctx->zd_op = op; ctx->zd_status = ZEBRA_DPLANE_REQUEST_SUCCESS; ctx->u.rinfo.zd_type = re->type; ctx->u.rinfo.zd_old_type = re->type; /* Prefixes: dest, and optional source */ srcdest_rnode_prefixes(rn, &p, &src_p); prefix_copy(&(ctx->u.rinfo.zd_dest), p); if (src_p) prefix_copy(&(ctx->u.rinfo.zd_src), src_p); else memset(&(ctx->u.rinfo.zd_src), 0, sizeof(ctx->u.rinfo.zd_src)); ctx->zd_table_id = re->table; ctx->u.rinfo.zd_metric = re->metric; ctx->u.rinfo.zd_old_metric = re->metric; ctx->zd_vrf_id = re->vrf_id; ctx->u.rinfo.zd_mtu = re->mtu; ctx->u.rinfo.zd_nexthop_mtu = re->nexthop_mtu; ctx->u.rinfo.zd_instance = re->instance; ctx->u.rinfo.zd_tag = re->tag; ctx->u.rinfo.zd_old_tag = re->tag; ctx->u.rinfo.zd_distance = re->distance; table = srcdest_rnode_table(rn); info = table->info; ctx->u.rinfo.zd_afi = info->afi; ctx->u.rinfo.zd_safi = info->safi; /* Copy nexthops; recursive info is included too */ copy_nexthops(&(ctx->u.rinfo.zd_ng.nexthop), re->nhe->nhg.nexthop, NULL); ctx->u.rinfo.zd_nhg_id = re->nhe->id; /* Copy backup nexthop info, if present */ if (re->nhe->backup_info && re->nhe->backup_info->nhe) { copy_nexthops(&(ctx->u.rinfo.backup_ng.nexthop), re->nhe->backup_info->nhe->nhg.nexthop, NULL); } /* * Ensure that the dplane nexthops' flags are clear and copy * encapsulation information. */ for (ALL_NEXTHOPS(ctx->u.rinfo.zd_ng, nexthop)) { UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB); /* Check for available encapsulations. */ if (!CHECK_FLAG(re->flags, ZEBRA_FLAG_EVPN_ROUTE)) continue; zl3vni = zl3vni_from_vrf(nexthop->vrf_id); if (zl3vni && is_l3vni_oper_up(zl3vni)) { nexthop->nh_encap_type = NET_VXLAN; nexthop->nh_encap.vni = zl3vni->vni; } } /* Don't need some info when capturing a system notification */ if (op == DPLANE_OP_SYS_ROUTE_ADD || op == DPLANE_OP_SYS_ROUTE_DELETE) { ret = AOK; goto done; } /* Extract ns info - can't use pointers to 'core' structs */ zvrf = vrf_info_lookup(re->vrf_id); zns = zvrf->zns; dplane_ctx_ns_init(ctx, zns, (op == DPLANE_OP_ROUTE_UPDATE)); #ifdef HAVE_NETLINK { struct nhg_hash_entry *nhe = zebra_nhg_resolve(re->nhe); ctx->u.rinfo.nhe.id = nhe->id; ctx->u.rinfo.nhe.old_id = 0; /* * Check if the nhe is installed/queued before doing anything * with this route. * * If its a delete we only use the prefix anyway, so this only * matters for INSTALL/UPDATE. */ if (zebra_nhg_kernel_nexthops_enabled() && (((op == DPLANE_OP_ROUTE_INSTALL) || (op == DPLANE_OP_ROUTE_UPDATE)) && !CHECK_FLAG(nhe->flags, NEXTHOP_GROUP_INSTALLED) && !CHECK_FLAG(nhe->flags, NEXTHOP_GROUP_QUEUED))) { ret = ENOENT; goto done; } } #endif /* HAVE_NETLINK */ /* Trying out the sequence number idea, so we can try to detect * when a result is stale. */ re->dplane_sequence = zebra_router_get_next_sequence(); ctx->zd_seq = re->dplane_sequence; ret = AOK; done: return ret; } /** * dplane_ctx_nexthop_init() - Initialize a context block for a nexthop update * * @ctx: Dataplane context to init * @op: Operation being performed * @nhe: Nexthop group hash entry * * Return: Result status */ int dplane_ctx_nexthop_init(struct zebra_dplane_ctx *ctx, enum dplane_op_e op, struct nhg_hash_entry *nhe) { struct zebra_vrf *zvrf = NULL; struct zebra_ns *zns = NULL; int ret = EINVAL; if (!ctx || !nhe) goto done; ctx->zd_op = op; ctx->zd_status = ZEBRA_DPLANE_REQUEST_SUCCESS; /* Copy over nhe info */ ctx->u.rinfo.nhe.id = nhe->id; ctx->u.rinfo.nhe.afi = nhe->afi; ctx->u.rinfo.nhe.vrf_id = nhe->vrf_id; ctx->u.rinfo.nhe.type = nhe->type; nexthop_group_copy(&(ctx->u.rinfo.nhe.ng), &(nhe->nhg)); /* If this is a group, convert it to a grp array of ids */ if (!zebra_nhg_depends_is_empty(nhe) && !CHECK_FLAG(nhe->flags, NEXTHOP_GROUP_RECURSIVE)) ctx->u.rinfo.nhe.nh_grp_count = zebra_nhg_nhe2grp( ctx->u.rinfo.nhe.nh_grp, nhe, MULTIPATH_NUM); zvrf = vrf_info_lookup(nhe->vrf_id); /* * Fallback to default namespace if the vrf got ripped out from under * us. */ zns = zvrf ? zvrf->zns : zebra_ns_lookup(NS_DEFAULT); /* * TODO: Might not need to mark this as an update, since * it probably won't require two messages */ dplane_ctx_ns_init(ctx, zns, (op == DPLANE_OP_NH_UPDATE)); ctx->zd_is_update = (op == DPLANE_OP_NH_UPDATE); ret = AOK; done: return ret; } /* * Capture information for an LSP update in a dplane context. */ int dplane_ctx_lsp_init(struct zebra_dplane_ctx *ctx, enum dplane_op_e op, zebra_lsp_t *lsp) { int ret = AOK; zebra_nhlfe_t *nhlfe, *new_nhlfe; ctx->zd_op = op; ctx->zd_status = ZEBRA_DPLANE_REQUEST_SUCCESS; /* Capture namespace info */ dplane_ctx_ns_init(ctx, zebra_ns_lookup(NS_DEFAULT), (op == DPLANE_OP_LSP_UPDATE)); ctx->zd_is_update = (op == DPLANE_OP_LSP_UPDATE); memset(&ctx->u.lsp, 0, sizeof(ctx->u.lsp)); nhlfe_list_init(&(ctx->u.lsp.nhlfe_list)); nhlfe_list_init(&(ctx->u.lsp.backup_nhlfe_list)); /* This may be called to create/init a dplane context, not necessarily * to copy an lsp object. */ if (lsp == NULL) { ret = AOK; goto done; } if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) zlog_debug("init dplane ctx %s: in-label %u ecmp# %d", dplane_op2str(op), lsp->ile.in_label, lsp->num_ecmp); ctx->u.lsp.ile = lsp->ile; ctx->u.lsp.addr_family = lsp->addr_family; ctx->u.lsp.num_ecmp = lsp->num_ecmp; ctx->u.lsp.flags = lsp->flags; /* Copy source LSP's nhlfes, and capture 'best' nhlfe */ frr_each(nhlfe_list, &lsp->nhlfe_list, nhlfe) { /* Not sure if this is meaningful... */ if (nhlfe->nexthop == NULL) continue; new_nhlfe = zebra_mpls_lsp_add_nh(&(ctx->u.lsp), nhlfe->type, nhlfe->nexthop); if (new_nhlfe == NULL || new_nhlfe->nexthop == NULL) { ret = ENOMEM; break; } /* Need to copy flags and backup info too */ new_nhlfe->flags = nhlfe->flags; new_nhlfe->nexthop->flags = nhlfe->nexthop->flags; if (CHECK_FLAG(new_nhlfe->nexthop->flags, NEXTHOP_FLAG_HAS_BACKUP)) { new_nhlfe->nexthop->backup_num = nhlfe->nexthop->backup_num; memcpy(new_nhlfe->nexthop->backup_idx, nhlfe->nexthop->backup_idx, new_nhlfe->nexthop->backup_num); } if (nhlfe == lsp->best_nhlfe) ctx->u.lsp.best_nhlfe = new_nhlfe; } if (ret != AOK) goto done; /* Capture backup nhlfes/nexthops */ frr_each(nhlfe_list, &lsp->backup_nhlfe_list, nhlfe) { /* Not sure if this is meaningful... */ if (nhlfe->nexthop == NULL) continue; new_nhlfe = zebra_mpls_lsp_add_backup_nh(&(ctx->u.lsp), nhlfe->type, nhlfe->nexthop); if (new_nhlfe == NULL || new_nhlfe->nexthop == NULL) { ret = ENOMEM; break; } /* Need to copy flags too */ new_nhlfe->flags = nhlfe->flags; new_nhlfe->nexthop->flags = nhlfe->nexthop->flags; } /* On error the ctx will be cleaned-up, so we don't need to * deal with any allocated nhlfe or nexthop structs here. */ done: return ret; } /* * Capture information for an LSP update in a dplane context. */ static int dplane_ctx_pw_init(struct zebra_dplane_ctx *ctx, enum dplane_op_e op, struct zebra_pw *pw) { struct prefix p; afi_t afi; struct route_table *table; struct route_node *rn; struct route_entry *re; const struct nexthop_group *nhg; if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) zlog_debug("init dplane ctx %s: pw '%s', loc %u, rem %u", dplane_op2str(op), pw->ifname, pw->local_label, pw->remote_label); ctx->zd_op = op; ctx->zd_status = ZEBRA_DPLANE_REQUEST_SUCCESS; /* Capture namespace info: no netlink support as of 12/18, * but just in case... */ dplane_ctx_ns_init(ctx, zebra_ns_lookup(NS_DEFAULT), false); memset(&ctx->u.pw, 0, sizeof(ctx->u.pw)); /* This name appears to be c-string, so we use string copy. */ strlcpy(ctx->zd_ifname, pw->ifname, sizeof(ctx->zd_ifname)); ctx->zd_vrf_id = pw->vrf_id; ctx->zd_ifindex = pw->ifindex; ctx->u.pw.type = pw->type; ctx->u.pw.af = pw->af; ctx->u.pw.local_label = pw->local_label; ctx->u.pw.remote_label = pw->remote_label; ctx->u.pw.flags = pw->flags; ctx->u.pw.dest = pw->nexthop; ctx->u.pw.fields = pw->data; /* Capture nexthop info for the pw destination. We need to look * up and use zebra datastructs, but we're running in the zebra * pthread here so that should be ok. */ memcpy(&p.u, &pw->nexthop, sizeof(pw->nexthop)); p.family = pw->af; p.prefixlen = ((pw->af == AF_INET) ? IPV4_MAX_PREFIXLEN : IPV6_MAX_PREFIXLEN); afi = (pw->af == AF_INET) ? AFI_IP : AFI_IP6; table = zebra_vrf_table(afi, SAFI_UNICAST, pw->vrf_id); if (table) { rn = route_node_match(table, &p); if (rn) { RNODE_FOREACH_RE(rn, re) { if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) break; } if (re) { nhg = rib_get_fib_nhg(re); if (nhg && nhg->nexthop) copy_nexthops(&(ctx->u.pw.nhg.nexthop), nhg->nexthop, NULL); /* Include any installed backup nexthops */ nhg = rib_get_fib_backup_nhg(re); if (nhg && nhg->nexthop) copy_nexthops(&(ctx->u.pw.nhg.nexthop), nhg->nexthop, NULL); } route_unlock_node(rn); } } return AOK; } /** * dplane_ctx_rule_init_single() - Initialize a dataplane representation of a * PBR rule. * * @dplane_rule: Dataplane internal representation of a rule * @rule: PBR rule */ static void dplane_ctx_rule_init_single(struct dplane_ctx_rule *dplane_rule, struct zebra_pbr_rule *rule) { dplane_rule->priority = rule->rule.priority; dplane_rule->table = rule->rule.action.table; dplane_rule->filter_bm = rule->rule.filter.filter_bm; dplane_rule->fwmark = rule->rule.filter.fwmark; dplane_rule->dsfield = rule->rule.filter.dsfield; prefix_copy(&(dplane_rule->dst_ip), &rule->rule.filter.dst_ip); prefix_copy(&(dplane_rule->src_ip), &rule->rule.filter.src_ip); strlcpy(dplane_rule->ifname, rule->ifname, INTERFACE_NAMSIZ); } /** * dplane_ctx_rule_init() - Initialize a context block for a PBR rule update. * * @ctx: Dataplane context to init * @op: Operation being performed * @new_rule: PBR rule * * Return: Result status */ static int dplane_ctx_rule_init(struct zebra_dplane_ctx *ctx, enum dplane_op_e op, struct zebra_pbr_rule *new_rule, struct zebra_pbr_rule *old_rule) { if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) { char buf1[PREFIX_STRLEN]; char buf2[PREFIX_STRLEN]; zlog_debug( "init dplane ctx %s: IF %s Prio %u Fwmark %u Src %s Dst %s Table %u", dplane_op2str(op), new_rule->ifname, new_rule->rule.priority, new_rule->rule.filter.fwmark, prefix2str(&new_rule->rule.filter.src_ip, buf1, sizeof(buf1)), prefix2str(&new_rule->rule.filter.dst_ip, buf2, sizeof(buf2)), new_rule->rule.action.table); } ctx->zd_op = op; ctx->zd_status = ZEBRA_DPLANE_REQUEST_SUCCESS; dplane_ctx_ns_init(ctx, zebra_ns_lookup(NS_DEFAULT), op == DPLANE_OP_RULE_UPDATE); ctx->zd_is_update = (op == DPLANE_OP_RULE_UPDATE); ctx->zd_vrf_id = new_rule->vrf_id; memcpy(ctx->zd_ifname, new_rule->ifname, sizeof(new_rule->ifname)); ctx->u.rule.sock = new_rule->sock; ctx->u.rule.unique = new_rule->rule.unique; ctx->u.rule.seq = new_rule->rule.seq; dplane_ctx_rule_init_single(&ctx->u.rule.new, new_rule); if (op == DPLANE_OP_RULE_UPDATE) dplane_ctx_rule_init_single(&ctx->u.rule.old, old_rule); return AOK; } /* * Enqueue a new update, * and ensure an event is active for the dataplane pthread. */ static int dplane_update_enqueue(struct zebra_dplane_ctx *ctx) { int ret = EINVAL; uint32_t high, curr; /* Enqueue for processing by the dataplane pthread */ DPLANE_LOCK(); { TAILQ_INSERT_TAIL(&zdplane_info.dg_update_ctx_q, ctx, zd_q_entries); } DPLANE_UNLOCK(); curr = atomic_fetch_add_explicit( &(zdplane_info.dg_routes_queued), 1, memory_order_seq_cst); curr++; /* We got the pre-incremented value */ /* Maybe update high-water counter also */ high = atomic_load_explicit(&zdplane_info.dg_routes_queued_max, memory_order_seq_cst); while (high < curr) { if (atomic_compare_exchange_weak_explicit( &zdplane_info.dg_routes_queued_max, &high, curr, memory_order_seq_cst, memory_order_seq_cst)) break; } /* Ensure that an event for the dataplane thread is active */ ret = dplane_provider_work_ready(); return ret; } /* * Utility that prepares a route update and enqueues it for processing */ static enum zebra_dplane_result dplane_route_update_internal(struct route_node *rn, struct route_entry *re, struct route_entry *old_re, enum dplane_op_e op) { enum zebra_dplane_result result = ZEBRA_DPLANE_REQUEST_FAILURE; int ret = EINVAL; struct zebra_dplane_ctx *ctx = NULL; /* Obtain context block */ ctx = dplane_ctx_alloc(); /* Init context with info from zebra data structs */ ret = dplane_ctx_route_init(ctx, op, rn, re); if (ret == AOK) { /* Capture some extra info for update case * where there's a different 'old' route. */ if ((op == DPLANE_OP_ROUTE_UPDATE) && old_re && (old_re != re)) { ctx->zd_is_update = true; old_re->dplane_sequence = zebra_router_get_next_sequence(); ctx->zd_old_seq = old_re->dplane_sequence; ctx->u.rinfo.zd_old_tag = old_re->tag; ctx->u.rinfo.zd_old_type = old_re->type; ctx->u.rinfo.zd_old_instance = old_re->instance; ctx->u.rinfo.zd_old_distance = old_re->distance; ctx->u.rinfo.zd_old_metric = old_re->metric; ctx->u.rinfo.nhe.old_id = old_re->nhe->id; #ifndef HAVE_NETLINK /* For bsd, capture previous re's nexthops too, sigh. * We'll need these to do per-nexthop deletes. */ copy_nexthops(&(ctx->u.rinfo.zd_old_ng.nexthop), old_re->nhe->nhg.nexthop, NULL); if (zebra_nhg_get_backup_nhg(old_re->nhe) != NULL) { struct nexthop_group *nhg; struct nexthop **nh; nhg = zebra_nhg_get_backup_nhg(old_re->nhe); nh = &(ctx->u.rinfo.old_backup_ng.nexthop); if (nhg->nexthop) copy_nexthops(nh, nhg->nexthop, NULL); } #endif /* !HAVE_NETLINK */ } /* * If the old and new context type, and nexthop group id * are the same there is no need to send down a route replace * as that we know we have sent a nexthop group replace * or an upper level protocol has sent us the exact * same route again. */ if ((dplane_ctx_get_type(ctx) == dplane_ctx_get_old_type(ctx)) && (dplane_ctx_get_nhe_id(ctx) == dplane_ctx_get_old_nhe_id(ctx)) && (dplane_ctx_get_nhe_id(ctx) >= ZEBRA_NHG_PROTO_LOWER)) { struct nexthop *nexthop; if (IS_ZEBRA_DEBUG_DPLANE) zlog_debug( "%s: Ignoring Route exactly the same", __func__); for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx), nexthop)) { if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE)) continue; if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)) SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB); } dplane_ctx_free(&ctx); return ZEBRA_DPLANE_REQUEST_SUCCESS; } /* Enqueue context for processing */ ret = dplane_update_enqueue(ctx); } /* Update counter */ atomic_fetch_add_explicit(&zdplane_info.dg_routes_in, 1, memory_order_relaxed); if (ret == AOK) result = ZEBRA_DPLANE_REQUEST_QUEUED; else { atomic_fetch_add_explicit(&zdplane_info.dg_route_errors, 1, memory_order_relaxed); if (ctx) dplane_ctx_free(&ctx); } return result; } /** * dplane_nexthop_update_internal() - Helper for enqueuing nexthop changes * * @nhe: Nexthop group hash entry where the change occured * @op: The operation to be enqued * * Return: Result of the change */ static enum zebra_dplane_result dplane_nexthop_update_internal(struct nhg_hash_entry *nhe, enum dplane_op_e op) { enum zebra_dplane_result result = ZEBRA_DPLANE_REQUEST_FAILURE; int ret = EINVAL; struct zebra_dplane_ctx *ctx = NULL; /* Obtain context block */ ctx = dplane_ctx_alloc(); if (!ctx) { ret = ENOMEM; goto done; } ret = dplane_ctx_nexthop_init(ctx, op, nhe); if (ret == AOK) ret = dplane_update_enqueue(ctx); done: /* Update counter */ atomic_fetch_add_explicit(&zdplane_info.dg_nexthops_in, 1, memory_order_relaxed); if (ret == AOK) result = ZEBRA_DPLANE_REQUEST_QUEUED; else { atomic_fetch_add_explicit(&zdplane_info.dg_nexthop_errors, 1, memory_order_relaxed); if (ctx) dplane_ctx_free(&ctx); } return result; } /* * Enqueue a route 'add' for the dataplane. */ enum zebra_dplane_result dplane_route_add(struct route_node *rn, struct route_entry *re) { enum zebra_dplane_result ret = ZEBRA_DPLANE_REQUEST_FAILURE; if (rn == NULL || re == NULL) goto done; ret = dplane_route_update_internal(rn, re, NULL, DPLANE_OP_ROUTE_INSTALL); done: return ret; } /* * Enqueue a route update for the dataplane. */ enum zebra_dplane_result dplane_route_update(struct route_node *rn, struct route_entry *re, struct route_entry *old_re) { enum zebra_dplane_result ret = ZEBRA_DPLANE_REQUEST_FAILURE; if (rn == NULL || re == NULL) goto done; ret = dplane_route_update_internal(rn, re, old_re, DPLANE_OP_ROUTE_UPDATE); done: return ret; } /* * Enqueue a route removal for the dataplane. */ enum zebra_dplane_result dplane_route_delete(struct route_node *rn, struct route_entry *re) { enum zebra_dplane_result ret = ZEBRA_DPLANE_REQUEST_FAILURE; if (rn == NULL || re == NULL) goto done; ret = dplane_route_update_internal(rn, re, NULL, DPLANE_OP_ROUTE_DELETE); done: return ret; } /* * Notify the dplane when system/connected routes change. */ enum zebra_dplane_result dplane_sys_route_add(struct route_node *rn, struct route_entry *re) { enum zebra_dplane_result ret = ZEBRA_DPLANE_REQUEST_FAILURE; /* Ignore this event unless a provider plugin has requested it. */ if (!zdplane_info.dg_sys_route_notifs) { ret = ZEBRA_DPLANE_REQUEST_SUCCESS; goto done; } if (rn == NULL || re == NULL) goto done; ret = dplane_route_update_internal(rn, re, NULL, DPLANE_OP_SYS_ROUTE_ADD); done: return ret; } /* * Notify the dplane when system/connected routes are deleted. */ enum zebra_dplane_result dplane_sys_route_del(struct route_node *rn, struct route_entry *re) { enum zebra_dplane_result ret = ZEBRA_DPLANE_REQUEST_FAILURE; /* Ignore this event unless a provider plugin has requested it. */ if (!zdplane_info.dg_sys_route_notifs) { ret = ZEBRA_DPLANE_REQUEST_SUCCESS; goto done; } if (rn == NULL || re == NULL) goto done; ret = dplane_route_update_internal(rn, re, NULL, DPLANE_OP_SYS_ROUTE_DELETE); done: return ret; } /* * Update from an async notification, to bring other fibs up-to-date. */ enum zebra_dplane_result dplane_route_notif_update(struct route_node *rn, struct route_entry *re, enum dplane_op_e op, struct zebra_dplane_ctx *ctx) { enum zebra_dplane_result result = ZEBRA_DPLANE_REQUEST_FAILURE; int ret = EINVAL; struct zebra_dplane_ctx *new_ctx = NULL; struct nexthop *nexthop; struct nexthop_group *nhg; if (rn == NULL || re == NULL) goto done; new_ctx = dplane_ctx_alloc(); if (new_ctx == NULL) goto done; /* Init context with info from zebra data structs */ dplane_ctx_route_init(new_ctx, op, rn, re); /* For add/update, need to adjust the nexthops so that we match * the notification state, which may not be the route-entry/RIB * state. */ if (op == DPLANE_OP_ROUTE_UPDATE || op == DPLANE_OP_ROUTE_INSTALL) { nexthops_free(new_ctx->u.rinfo.zd_ng.nexthop); new_ctx->u.rinfo.zd_ng.nexthop = NULL; nhg = rib_get_fib_nhg(re); if (nhg && nhg->nexthop) copy_nexthops(&(new_ctx->u.rinfo.zd_ng.nexthop), nhg->nexthop, NULL); /* Check for installed backup nexthops also */ nhg = rib_get_fib_backup_nhg(re); if (nhg && nhg->nexthop) { copy_nexthops(&(new_ctx->u.rinfo.zd_ng.nexthop), nhg->nexthop, NULL); } for (ALL_NEXTHOPS(new_ctx->u.rinfo.zd_ng, nexthop)) UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB); } /* Capture info about the source of the notification, in 'ctx' */ dplane_ctx_set_notif_provider(new_ctx, dplane_ctx_get_notif_provider(ctx)); ret = dplane_update_enqueue(new_ctx); done: if (ret == AOK) result = ZEBRA_DPLANE_REQUEST_QUEUED; else if (new_ctx) dplane_ctx_free(&new_ctx); return result; } /* * Enqueue a nexthop add for the dataplane. */ enum zebra_dplane_result dplane_nexthop_add(struct nhg_hash_entry *nhe) { enum zebra_dplane_result ret = ZEBRA_DPLANE_REQUEST_FAILURE; if (nhe) ret = dplane_nexthop_update_internal(nhe, DPLANE_OP_NH_INSTALL); return ret; } /* * Enqueue a nexthop update for the dataplane. * * Might not need this func since zebra's nexthop objects should be immutable? */ enum zebra_dplane_result dplane_nexthop_update(struct nhg_hash_entry *nhe) { enum zebra_dplane_result ret = ZEBRA_DPLANE_REQUEST_FAILURE; if (nhe) ret = dplane_nexthop_update_internal(nhe, DPLANE_OP_NH_UPDATE); return ret; } /* * Enqueue a nexthop removal for the dataplane. */ enum zebra_dplane_result dplane_nexthop_delete(struct nhg_hash_entry *nhe) { enum zebra_dplane_result ret = ZEBRA_DPLANE_REQUEST_FAILURE; if (nhe) ret = dplane_nexthop_update_internal(nhe, DPLANE_OP_NH_DELETE); return ret; } /* * Enqueue LSP add for the dataplane. */ enum zebra_dplane_result dplane_lsp_add(zebra_lsp_t *lsp) { enum zebra_dplane_result ret = lsp_update_internal(lsp, DPLANE_OP_LSP_INSTALL); return ret; } /* * Enqueue LSP update for the dataplane. */ enum zebra_dplane_result dplane_lsp_update(zebra_lsp_t *lsp) { enum zebra_dplane_result ret = lsp_update_internal(lsp, DPLANE_OP_LSP_UPDATE); return ret; } /* * Enqueue LSP delete for the dataplane. */ enum zebra_dplane_result dplane_lsp_delete(zebra_lsp_t *lsp) { enum zebra_dplane_result ret = lsp_update_internal(lsp, DPLANE_OP_LSP_DELETE); return ret; } /* Update or un-install resulting from an async notification */ enum zebra_dplane_result dplane_lsp_notif_update(zebra_lsp_t *lsp, enum dplane_op_e op, struct zebra_dplane_ctx *notif_ctx) { enum zebra_dplane_result result = ZEBRA_DPLANE_REQUEST_FAILURE; int ret = EINVAL; struct zebra_dplane_ctx *ctx = NULL; struct nhlfe_list_head *head; zebra_nhlfe_t *nhlfe, *new_nhlfe; /* Obtain context block */ ctx = dplane_ctx_alloc(); if (ctx == NULL) { ret = ENOMEM; goto done; } /* Copy info from zebra LSP */ ret = dplane_ctx_lsp_init(ctx, op, lsp); if (ret != AOK) goto done; /* Add any installed backup nhlfes */ head = &(ctx->u.lsp.backup_nhlfe_list); frr_each(nhlfe_list, head, nhlfe) { if (CHECK_FLAG(nhlfe->flags, NHLFE_FLAG_INSTALLED) && CHECK_FLAG(nhlfe->nexthop->flags, NEXTHOP_FLAG_FIB)) { new_nhlfe = zebra_mpls_lsp_add_nh(&(ctx->u.lsp), nhlfe->type, nhlfe->nexthop); /* Need to copy flags too */ new_nhlfe->flags = nhlfe->flags; new_nhlfe->nexthop->flags = nhlfe->nexthop->flags; } } /* Capture info about the source of the notification */ dplane_ctx_set_notif_provider( ctx, dplane_ctx_get_notif_provider(notif_ctx)); ret = dplane_update_enqueue(ctx); done: /* Update counter */ atomic_fetch_add_explicit(&zdplane_info.dg_lsps_in, 1, memory_order_relaxed); if (ret == AOK) result = ZEBRA_DPLANE_REQUEST_QUEUED; else { atomic_fetch_add_explicit(&zdplane_info.dg_lsp_errors, 1, memory_order_relaxed); if (ctx) dplane_ctx_free(&ctx); } return result; } /* * Enqueue pseudowire install for the dataplane. */ enum zebra_dplane_result dplane_pw_install(struct zebra_pw *pw) { return pw_update_internal(pw, DPLANE_OP_PW_INSTALL); } /* * Enqueue pseudowire un-install for the dataplane. */ enum zebra_dplane_result dplane_pw_uninstall(struct zebra_pw *pw) { return pw_update_internal(pw, DPLANE_OP_PW_UNINSTALL); } /* * Common internal LSP update utility */ static enum zebra_dplane_result lsp_update_internal(zebra_lsp_t *lsp, enum dplane_op_e op) { enum zebra_dplane_result result = ZEBRA_DPLANE_REQUEST_FAILURE; int ret = EINVAL; struct zebra_dplane_ctx *ctx = NULL; /* Obtain context block */ ctx = dplane_ctx_alloc(); ret = dplane_ctx_lsp_init(ctx, op, lsp); if (ret != AOK) goto done; ret = dplane_update_enqueue(ctx); done: /* Update counter */ atomic_fetch_add_explicit(&zdplane_info.dg_lsps_in, 1, memory_order_relaxed); if (ret == AOK) result = ZEBRA_DPLANE_REQUEST_QUEUED; else { atomic_fetch_add_explicit(&zdplane_info.dg_lsp_errors, 1, memory_order_relaxed); dplane_ctx_free(&ctx); } return result; } /* * Internal, common handler for pseudowire updates. */ static enum zebra_dplane_result pw_update_internal(struct zebra_pw *pw, enum dplane_op_e op) { enum zebra_dplane_result result = ZEBRA_DPLANE_REQUEST_FAILURE; int ret; struct zebra_dplane_ctx *ctx = NULL; ctx = dplane_ctx_alloc(); ret = dplane_ctx_pw_init(ctx, op, pw); if (ret != AOK) goto done; ret = dplane_update_enqueue(ctx); done: /* Update counter */ atomic_fetch_add_explicit(&zdplane_info.dg_pws_in, 1, memory_order_relaxed); if (ret == AOK) result = ZEBRA_DPLANE_REQUEST_QUEUED; else { atomic_fetch_add_explicit(&zdplane_info.dg_pw_errors, 1, memory_order_relaxed); dplane_ctx_free(&ctx); } return result; } /* * Enqueue interface address add for the dataplane. */ enum zebra_dplane_result dplane_intf_addr_set(const struct interface *ifp, const struct connected *ifc) { #if !defined(HAVE_NETLINK) && defined(HAVE_STRUCT_IFALIASREQ) /* Extra checks for this OS path. */ /* Don't configure PtP addresses on broadcast ifs or reverse */ if (!(ifp->flags & IFF_POINTOPOINT) != !CONNECTED_PEER(ifc)) { if (IS_ZEBRA_DEBUG_KERNEL || IS_ZEBRA_DEBUG_DPLANE) zlog_debug("Failed to set intf addr: mismatch p2p and connected"); return ZEBRA_DPLANE_REQUEST_FAILURE; } /* Ensure that no existing installed v4 route conflicts with * the new interface prefix. This check must be done in the * zebra pthread context, and any route delete (if needed) * is enqueued before the interface address programming attempt. */ if (ifc->address->family == AF_INET) { struct prefix_ipv4 *p; p = (struct prefix_ipv4 *)ifc->address; rib_lookup_and_pushup(p, ifp->vrf_id); } #endif return intf_addr_update_internal(ifp, ifc, DPLANE_OP_ADDR_INSTALL); } /* * Enqueue interface address remove/uninstall for the dataplane. */ enum zebra_dplane_result dplane_intf_addr_unset(const struct interface *ifp, const struct connected *ifc) { return intf_addr_update_internal(ifp, ifc, DPLANE_OP_ADDR_UNINSTALL); } static enum zebra_dplane_result intf_addr_update_internal( const struct interface *ifp, const struct connected *ifc, enum dplane_op_e op) { enum zebra_dplane_result result = ZEBRA_DPLANE_REQUEST_FAILURE; int ret = EINVAL; struct zebra_dplane_ctx *ctx = NULL; struct zebra_ns *zns; if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) { char addr_str[PREFIX_STRLEN]; prefix2str(ifc->address, addr_str, sizeof(addr_str)); zlog_debug("init intf ctx %s: idx %d, addr %u:%s", dplane_op2str(op), ifp->ifindex, ifp->vrf_id, addr_str); } ctx = dplane_ctx_alloc(); ctx->zd_op = op; ctx->zd_status = ZEBRA_DPLANE_REQUEST_SUCCESS; ctx->zd_vrf_id = ifp->vrf_id; zns = zebra_ns_lookup(ifp->vrf_id); dplane_ctx_ns_init(ctx, zns, false); /* Init the interface-addr-specific area */ memset(&ctx->u.intf, 0, sizeof(ctx->u.intf)); strlcpy(ctx->zd_ifname, ifp->name, sizeof(ctx->zd_ifname)); ctx->zd_ifindex = ifp->ifindex; ctx->u.intf.prefix = *(ifc->address); if (if_is_broadcast(ifp)) ctx->u.intf.flags |= DPLANE_INTF_BROADCAST; if (CONNECTED_PEER(ifc)) { ctx->u.intf.dest_prefix = *(ifc->destination); ctx->u.intf.flags |= (DPLANE_INTF_CONNECTED | DPLANE_INTF_HAS_DEST); } if (CHECK_FLAG(ifc->flags, ZEBRA_IFA_SECONDARY)) ctx->u.intf.flags |= DPLANE_INTF_SECONDARY; if (ifc->label) { size_t len; ctx->u.intf.flags |= DPLANE_INTF_HAS_LABEL; /* Use embedded buffer if it's adequate; else allocate. */ len = strlen(ifc->label); if (len < sizeof(ctx->u.intf.label_buf)) { strlcpy(ctx->u.intf.label_buf, ifc->label, sizeof(ctx->u.intf.label_buf)); ctx->u.intf.label = ctx->u.intf.label_buf; } else { ctx->u.intf.label = strdup(ifc->label); } } ret = dplane_update_enqueue(ctx); /* Increment counter */ atomic_fetch_add_explicit(&zdplane_info.dg_intf_addrs_in, 1, memory_order_relaxed); if (ret == AOK) result = ZEBRA_DPLANE_REQUEST_QUEUED; else { /* Error counter */ atomic_fetch_add_explicit(&zdplane_info.dg_intf_addr_errors, 1, memory_order_relaxed); dplane_ctx_free(&ctx); } return result; } /* * Enqueue vxlan/evpn mac add (or update). */ enum zebra_dplane_result dplane_rem_mac_add(const struct interface *ifp, const struct interface *bridge_ifp, vlanid_t vid, const struct ethaddr *mac, struct in_addr vtep_ip, bool sticky, uint32_t nhg_id, bool was_static) { enum zebra_dplane_result result; uint32_t update_flags = 0; update_flags |= DPLANE_MAC_REMOTE; if (was_static) update_flags |= DPLANE_MAC_WAS_STATIC; /* Use common helper api */ result = mac_update_common(DPLANE_OP_MAC_INSTALL, ifp, bridge_ifp, vid, mac, vtep_ip, sticky, nhg_id, update_flags); return result; } /* * Enqueue vxlan/evpn mac delete. */ enum zebra_dplane_result dplane_rem_mac_del(const struct interface *ifp, const struct interface *bridge_ifp, vlanid_t vid, const struct ethaddr *mac, struct in_addr vtep_ip) { enum zebra_dplane_result result; uint32_t update_flags = 0; update_flags |= DPLANE_MAC_REMOTE; /* Use common helper api */ result = mac_update_common(DPLANE_OP_MAC_DELETE, ifp, bridge_ifp, vid, mac, vtep_ip, false, 0, update_flags); return result; } /* * Enqueue local mac add (or update). */ enum zebra_dplane_result dplane_local_mac_add(const struct interface *ifp, const struct interface *bridge_ifp, vlanid_t vid, const struct ethaddr *mac, bool sticky, uint32_t set_static, uint32_t set_inactive) { enum zebra_dplane_result result; uint32_t update_flags = 0; struct in_addr vtep_ip; if (set_static) update_flags |= DPLANE_MAC_SET_STATIC; if (set_inactive) update_flags |= DPLANE_MAC_SET_INACTIVE; vtep_ip.s_addr = 0; /* Use common helper api */ result = mac_update_common(DPLANE_OP_MAC_INSTALL, ifp, bridge_ifp, vid, mac, vtep_ip, sticky, 0, update_flags); return result; } /* * Public api to init an empty context - either newly-allocated or * reset/cleared - for a MAC update. */ void dplane_mac_init(struct zebra_dplane_ctx *ctx, const struct interface *ifp, const struct interface *br_ifp, vlanid_t vid, const struct ethaddr *mac, struct in_addr vtep_ip, bool sticky, uint32_t nhg_id, uint32_t update_flags) { struct zebra_ns *zns; ctx->zd_status = ZEBRA_DPLANE_REQUEST_SUCCESS; ctx->zd_vrf_id = ifp->vrf_id; zns = zebra_ns_lookup(ifp->vrf_id); dplane_ctx_ns_init(ctx, zns, false); strlcpy(ctx->zd_ifname, ifp->name, sizeof(ctx->zd_ifname)); ctx->zd_ifindex = ifp->ifindex; /* Init the mac-specific data area */ memset(&ctx->u.macinfo, 0, sizeof(ctx->u.macinfo)); ctx->u.macinfo.br_ifindex = br_ifp->ifindex; ctx->u.macinfo.vtep_ip = vtep_ip; ctx->u.macinfo.mac = *mac; ctx->u.macinfo.vid = vid; ctx->u.macinfo.is_sticky = sticky; ctx->u.macinfo.nhg_id = nhg_id; ctx->u.macinfo.update_flags = update_flags; } /* * Common helper api for MAC address/vxlan updates */ static enum zebra_dplane_result mac_update_common(enum dplane_op_e op, const struct interface *ifp, const struct interface *br_ifp, vlanid_t vid, const struct ethaddr *mac, struct in_addr vtep_ip, bool sticky, uint32_t nhg_id, uint32_t update_flags) { enum zebra_dplane_result result = ZEBRA_DPLANE_REQUEST_FAILURE; int ret; struct zebra_dplane_ctx *ctx = NULL; if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) { char buf1[ETHER_ADDR_STRLEN], buf2[PREFIX_STRLEN]; zlog_debug("init mac ctx %s: mac %s, ifp %s, vtep %s", dplane_op2str(op), prefix_mac2str(mac, buf1, sizeof(buf1)), ifp->name, inet_ntop(AF_INET, &vtep_ip, buf2, sizeof(buf2))); } ctx = dplane_ctx_alloc(); ctx->zd_op = op; /* Common init for the ctx */ dplane_mac_init(ctx, ifp, br_ifp, vid, mac, vtep_ip, sticky, nhg_id, update_flags); /* Enqueue for processing on the dplane pthread */ ret = dplane_update_enqueue(ctx); /* Increment counter */ atomic_fetch_add_explicit(&zdplane_info.dg_macs_in, 1, memory_order_relaxed); if (ret == AOK) result = ZEBRA_DPLANE_REQUEST_QUEUED; else { /* Error counter */ atomic_fetch_add_explicit(&zdplane_info.dg_mac_errors, 1, memory_order_relaxed); dplane_ctx_free(&ctx); } return result; } /* * Enqueue evpn neighbor add for the dataplane. */ enum zebra_dplane_result dplane_rem_neigh_add(const struct interface *ifp, const struct ipaddr *ip, const struct ethaddr *mac, uint32_t flags, bool was_static) { enum zebra_dplane_result result = ZEBRA_DPLANE_REQUEST_FAILURE; uint32_t update_flags = 0; update_flags |= DPLANE_NEIGH_REMOTE; if (was_static) update_flags |= DPLANE_NEIGH_WAS_STATIC; result = neigh_update_internal(DPLANE_OP_NEIGH_INSTALL, ifp, mac, ip, flags, DPLANE_NUD_NOARP, update_flags); return result; } /* * Enqueue local neighbor add for the dataplane. */ enum zebra_dplane_result dplane_local_neigh_add(const struct interface *ifp, const struct ipaddr *ip, const struct ethaddr *mac, bool set_router, bool set_static, bool set_inactive) { enum zebra_dplane_result result = ZEBRA_DPLANE_REQUEST_FAILURE; uint32_t update_flags = 0; uint32_t ntf = 0; uint16_t state; if (set_static) update_flags |= DPLANE_NEIGH_SET_STATIC; if (set_inactive) { update_flags |= DPLANE_NEIGH_SET_INACTIVE; state = DPLANE_NUD_STALE; } else { state = DPLANE_NUD_REACHABLE; } if (set_router) ntf |= DPLANE_NTF_ROUTER; result = neigh_update_internal(DPLANE_OP_NEIGH_INSTALL, ifp, mac, ip, ntf, state, update_flags); return result; } /* * Enqueue evpn neighbor delete for the dataplane. */ enum zebra_dplane_result dplane_rem_neigh_delete(const struct interface *ifp, const struct ipaddr *ip) { enum zebra_dplane_result result; uint32_t update_flags = 0; update_flags |= DPLANE_NEIGH_REMOTE; result = neigh_update_internal(DPLANE_OP_NEIGH_DELETE, ifp, NULL, ip, 0, 0, update_flags); return result; } /* * Enqueue evpn VTEP add for the dataplane. */ enum zebra_dplane_result dplane_vtep_add(const struct interface *ifp, const struct in_addr *ip, vni_t vni) { enum zebra_dplane_result result; struct ethaddr mac = { {0, 0, 0, 0, 0, 0} }; struct ipaddr addr; if (IS_ZEBRA_DEBUG_VXLAN) zlog_debug("Install %s into flood list for VNI %u intf %s(%u)", inet_ntoa(*ip), vni, ifp->name, ifp->ifindex); SET_IPADDR_V4(&addr); addr.ipaddr_v4 = *ip; result = neigh_update_internal(DPLANE_OP_VTEP_ADD, ifp, &mac, &addr, 0, 0, 0); return result; } /* * Enqueue evpn VTEP add for the dataplane. */ enum zebra_dplane_result dplane_vtep_delete(const struct interface *ifp, const struct in_addr *ip, vni_t vni) { enum zebra_dplane_result result; struct ethaddr mac = { {0, 0, 0, 0, 0, 0} }; struct ipaddr addr; if (IS_ZEBRA_DEBUG_VXLAN) zlog_debug( "Uninstall %s from flood list for VNI %u intf %s(%u)", inet_ntoa(*ip), vni, ifp->name, ifp->ifindex); SET_IPADDR_V4(&addr); addr.ipaddr_v4 = *ip; result = neigh_update_internal(DPLANE_OP_VTEP_DELETE, ifp, &mac, &addr, 0, 0, 0); return result; } enum zebra_dplane_result dplane_neigh_discover(const struct interface *ifp, const struct ipaddr *ip) { enum zebra_dplane_result result; result = neigh_update_internal(DPLANE_OP_NEIGH_DISCOVER, ifp, NULL, ip, DPLANE_NTF_USE, DPLANE_NUD_INCOMPLETE, 0); return result; } /* * Common helper api for neighbor updates */ static enum zebra_dplane_result neigh_update_internal(enum dplane_op_e op, const struct interface *ifp, const struct ethaddr *mac, const struct ipaddr *ip, uint32_t flags, uint16_t state, uint32_t update_flags) { enum zebra_dplane_result result = ZEBRA_DPLANE_REQUEST_FAILURE; int ret; struct zebra_dplane_ctx *ctx = NULL; struct zebra_ns *zns; if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) { char buf1[ETHER_ADDR_STRLEN], buf2[PREFIX_STRLEN]; zlog_debug("init neigh ctx %s: ifp %s, mac %s, ip %s", dplane_op2str(op), ifp->name, prefix_mac2str(mac, buf1, sizeof(buf1)), ipaddr2str(ip, buf2, sizeof(buf2))); } ctx = dplane_ctx_alloc(); ctx->zd_op = op; ctx->zd_status = ZEBRA_DPLANE_REQUEST_SUCCESS; ctx->zd_vrf_id = ifp->vrf_id; zns = zebra_ns_lookup(ifp->vrf_id); dplane_ctx_ns_init(ctx, zns, false); strlcpy(ctx->zd_ifname, ifp->name, sizeof(ctx->zd_ifname)); ctx->zd_ifindex = ifp->ifindex; /* Init the neighbor-specific data area */ memset(&ctx->u.neigh, 0, sizeof(ctx->u.neigh)); ctx->u.neigh.ip_addr = *ip; if (mac) ctx->u.neigh.mac = *mac; ctx->u.neigh.flags = flags; ctx->u.neigh.state = state; ctx->u.neigh.update_flags = update_flags; /* Enqueue for processing on the dplane pthread */ ret = dplane_update_enqueue(ctx); /* Increment counter */ atomic_fetch_add_explicit(&zdplane_info.dg_neighs_in, 1, memory_order_relaxed); if (ret == AOK) result = ZEBRA_DPLANE_REQUEST_QUEUED; else { /* Error counter */ atomic_fetch_add_explicit(&zdplane_info.dg_neigh_errors, 1, memory_order_relaxed); dplane_ctx_free(&ctx); } return result; } /* * Common helper api for PBR rule updates */ static enum zebra_dplane_result rule_update_internal(enum dplane_op_e op, struct zebra_pbr_rule *new_rule, struct zebra_pbr_rule *old_rule) { enum zebra_dplane_result result = ZEBRA_DPLANE_REQUEST_FAILURE; struct zebra_dplane_ctx *ctx; int ret; ctx = dplane_ctx_alloc(); ret = dplane_ctx_rule_init(ctx, op, new_rule, old_rule); if (ret != AOK) goto done; ret = dplane_update_enqueue(ctx); done: atomic_fetch_add_explicit(&zdplane_info.dg_rules_in, 1, memory_order_relaxed); if (ret == AOK) result = ZEBRA_DPLANE_REQUEST_QUEUED; else { atomic_fetch_add_explicit(&zdplane_info.dg_rule_errors, 1, memory_order_relaxed); dplane_ctx_free(&ctx); } return result; } enum zebra_dplane_result dplane_pbr_rule_add(struct zebra_pbr_rule *rule) { return rule_update_internal(DPLANE_OP_RULE_ADD, rule, NULL); } enum zebra_dplane_result dplane_pbr_rule_delete(struct zebra_pbr_rule *rule) { return rule_update_internal(DPLANE_OP_RULE_DELETE, rule, NULL); } enum zebra_dplane_result dplane_pbr_rule_update(struct zebra_pbr_rule *old_rule, struct zebra_pbr_rule *new_rule) { return rule_update_internal(DPLANE_OP_RULE_UPDATE, new_rule, old_rule); } /* * Handler for 'show dplane' */ int dplane_show_helper(struct vty *vty, bool detailed) { uint64_t queued, queue_max, limit, errs, incoming, yields, other_errs; /* Using atomics because counters are being changed in different * pthread contexts. */ incoming = atomic_load_explicit(&zdplane_info.dg_routes_in, memory_order_relaxed); limit = atomic_load_explicit(&zdplane_info.dg_max_queued_updates, memory_order_relaxed); queued = atomic_load_explicit(&zdplane_info.dg_routes_queued, memory_order_relaxed); queue_max = atomic_load_explicit(&zdplane_info.dg_routes_queued_max, memory_order_relaxed); errs = atomic_load_explicit(&zdplane_info.dg_route_errors, memory_order_relaxed); yields = atomic_load_explicit(&zdplane_info.dg_update_yields, memory_order_relaxed); other_errs = atomic_load_explicit(&zdplane_info.dg_other_errors, memory_order_relaxed); vty_out(vty, "Zebra dataplane:\nRoute updates: %"PRIu64"\n", incoming); vty_out(vty, "Route update errors: %"PRIu64"\n", errs); vty_out(vty, "Other errors : %"PRIu64"\n", other_errs); vty_out(vty, "Route update queue limit: %"PRIu64"\n", limit); vty_out(vty, "Route update queue depth: %"PRIu64"\n", queued); vty_out(vty, "Route update queue max: %"PRIu64"\n", queue_max); vty_out(vty, "Dplane update yields: %"PRIu64"\n", yields); incoming = atomic_load_explicit(&zdplane_info.dg_lsps_in, memory_order_relaxed); errs = atomic_load_explicit(&zdplane_info.dg_lsp_errors, memory_order_relaxed); vty_out(vty, "LSP updates: %"PRIu64"\n", incoming); vty_out(vty, "LSP update errors: %"PRIu64"\n", errs); incoming = atomic_load_explicit(&zdplane_info.dg_pws_in, memory_order_relaxed); errs = atomic_load_explicit(&zdplane_info.dg_pw_errors, memory_order_relaxed); vty_out(vty, "PW updates: %"PRIu64"\n", incoming); vty_out(vty, "PW update errors: %"PRIu64"\n", errs); incoming = atomic_load_explicit(&zdplane_info.dg_intf_addrs_in, memory_order_relaxed); errs = atomic_load_explicit(&zdplane_info.dg_intf_addr_errors, memory_order_relaxed); vty_out(vty, "Intf addr updates: %"PRIu64"\n", incoming); vty_out(vty, "Intf addr errors: %"PRIu64"\n", errs); incoming = atomic_load_explicit(&zdplane_info.dg_macs_in, memory_order_relaxed); errs = atomic_load_explicit(&zdplane_info.dg_mac_errors, memory_order_relaxed); vty_out(vty, "EVPN MAC updates: %"PRIu64"\n", incoming); vty_out(vty, "EVPN MAC errors: %"PRIu64"\n", errs); incoming = atomic_load_explicit(&zdplane_info.dg_neighs_in, memory_order_relaxed); errs = atomic_load_explicit(&zdplane_info.dg_neigh_errors, memory_order_relaxed); vty_out(vty, "EVPN neigh updates: %"PRIu64"\n", incoming); vty_out(vty, "EVPN neigh errors: %"PRIu64"\n", errs); incoming = atomic_load_explicit(&zdplane_info.dg_rules_in, memory_order_relaxed); errs = atomic_load_explicit(&zdplane_info.dg_rule_errors, memory_order_relaxed); vty_out(vty, "Rule updates: %" PRIu64 "\n", incoming); vty_out(vty, "Rule errors: %" PRIu64 "\n", errs); return CMD_SUCCESS; } /* * Handler for 'show dplane providers' */ int dplane_show_provs_helper(struct vty *vty, bool detailed) { struct zebra_dplane_provider *prov; uint64_t in, in_max, out, out_max; vty_out(vty, "Zebra dataplane providers:\n"); DPLANE_LOCK(); prov = TAILQ_FIRST(&zdplane_info.dg_providers_q); DPLANE_UNLOCK(); /* Show counters, useful info from each registered provider */ while (prov) { in = atomic_load_explicit(&prov->dp_in_counter, memory_order_relaxed); in_max = atomic_load_explicit(&prov->dp_in_max, memory_order_relaxed); out = atomic_load_explicit(&prov->dp_out_counter, memory_order_relaxed); out_max = atomic_load_explicit(&prov->dp_out_max, memory_order_relaxed); vty_out(vty, "%s (%u): in: %" PRIu64 ", q_max: %" PRIu64 ", out: %" PRIu64 ", q_max: %" PRIu64 "\n", prov->dp_name, prov->dp_id, in, in_max, out, out_max); DPLANE_LOCK(); prov = TAILQ_NEXT(prov, dp_prov_link); DPLANE_UNLOCK(); } return CMD_SUCCESS; } /* * Helper for 'show run' etc. */ int dplane_config_write_helper(struct vty *vty) { if (zdplane_info.dg_max_queued_updates != DPLANE_DEFAULT_MAX_QUEUED) vty_out(vty, "zebra dplane limit %u\n", zdplane_info.dg_max_queued_updates); return 0; } /* * Provider registration */ int dplane_provider_register(const char *name, enum dplane_provider_prio prio, int flags, int (*start_fp)(struct zebra_dplane_provider *), int (*fp)(struct zebra_dplane_provider *), int (*fini_fp)(struct zebra_dplane_provider *, bool early), void *data, struct zebra_dplane_provider **prov_p) { int ret = 0; struct zebra_dplane_provider *p = NULL, *last; /* Validate */ if (fp == NULL) { ret = EINVAL; goto done; } if (prio <= DPLANE_PRIO_NONE || prio > DPLANE_PRIO_LAST) { ret = EINVAL; goto done; } /* Allocate and init new provider struct */ p = XCALLOC(MTYPE_DP_PROV, sizeof(struct zebra_dplane_provider)); pthread_mutex_init(&(p->dp_mutex), NULL); TAILQ_INIT(&(p->dp_ctx_in_q)); TAILQ_INIT(&(p->dp_ctx_out_q)); p->dp_flags = flags; p->dp_priority = prio; p->dp_fp = fp; p->dp_start = start_fp; p->dp_fini = fini_fp; p->dp_data = data; /* Lock - the dplane pthread may be running */ DPLANE_LOCK(); p->dp_id = ++zdplane_info.dg_provider_id; if (name) strlcpy(p->dp_name, name, DPLANE_PROVIDER_NAMELEN); else snprintf(p->dp_name, DPLANE_PROVIDER_NAMELEN, "provider-%u", p->dp_id); /* Insert into list ordered by priority */ TAILQ_FOREACH(last, &zdplane_info.dg_providers_q, dp_prov_link) { if (last->dp_priority > p->dp_priority) break; } if (last) TAILQ_INSERT_BEFORE(last, p, dp_prov_link); else TAILQ_INSERT_TAIL(&zdplane_info.dg_providers_q, p, dp_prov_link); /* And unlock */ DPLANE_UNLOCK(); if (IS_ZEBRA_DEBUG_DPLANE) zlog_debug("dplane: registered new provider '%s' (%u), prio %d", p->dp_name, p->dp_id, p->dp_priority); done: if (prov_p) *prov_p = p; return ret; } /* Accessors for provider attributes */ const char *dplane_provider_get_name(const struct zebra_dplane_provider *prov) { return prov->dp_name; } uint32_t dplane_provider_get_id(const struct zebra_dplane_provider *prov) { return prov->dp_id; } void *dplane_provider_get_data(const struct zebra_dplane_provider *prov) { return prov->dp_data; } int dplane_provider_get_work_limit(const struct zebra_dplane_provider *prov) { return zdplane_info.dg_updates_per_cycle; } /* Lock/unlock a provider's mutex - iff the provider was registered with * the THREADED flag. */ void dplane_provider_lock(struct zebra_dplane_provider *prov) { if (dplane_provider_is_threaded(prov)) DPLANE_PROV_LOCK(prov); } void dplane_provider_unlock(struct zebra_dplane_provider *prov) { if (dplane_provider_is_threaded(prov)) DPLANE_PROV_UNLOCK(prov); } /* * Dequeue and maintain associated counter */ struct zebra_dplane_ctx *dplane_provider_dequeue_in_ctx( struct zebra_dplane_provider *prov) { struct zebra_dplane_ctx *ctx = NULL; dplane_provider_lock(prov); ctx = TAILQ_FIRST(&(prov->dp_ctx_in_q)); if (ctx) { TAILQ_REMOVE(&(prov->dp_ctx_in_q), ctx, zd_q_entries); atomic_fetch_sub_explicit(&prov->dp_in_queued, 1, memory_order_relaxed); } dplane_provider_unlock(prov); return ctx; } /* * Dequeue work to a list, return count */ int dplane_provider_dequeue_in_list(struct zebra_dplane_provider *prov, struct dplane_ctx_q *listp) { int limit, ret; struct zebra_dplane_ctx *ctx; limit = zdplane_info.dg_updates_per_cycle; dplane_provider_lock(prov); for (ret = 0; ret < limit; ret++) { ctx = TAILQ_FIRST(&(prov->dp_ctx_in_q)); if (ctx) { TAILQ_REMOVE(&(prov->dp_ctx_in_q), ctx, zd_q_entries); TAILQ_INSERT_TAIL(listp, ctx, zd_q_entries); } else { break; } } if (ret > 0) atomic_fetch_sub_explicit(&prov->dp_in_queued, ret, memory_order_relaxed); dplane_provider_unlock(prov); return ret; } /* * Enqueue and maintain associated counter */ void dplane_provider_enqueue_out_ctx(struct zebra_dplane_provider *prov, struct zebra_dplane_ctx *ctx) { dplane_provider_lock(prov); TAILQ_INSERT_TAIL(&(prov->dp_ctx_out_q), ctx, zd_q_entries); dplane_provider_unlock(prov); atomic_fetch_add_explicit(&(prov->dp_out_counter), 1, memory_order_relaxed); } /* * Accessor for provider object */ bool dplane_provider_is_threaded(const struct zebra_dplane_provider *prov) { return (prov->dp_flags & DPLANE_PROV_FLAG_THREADED); } /* * Internal helper that copies information from a zebra ns object; this is * called in the zebra main pthread context as part of dplane ctx init. */ static void dplane_info_from_zns(struct zebra_dplane_info *ns_info, struct zebra_ns *zns) { ns_info->ns_id = zns->ns_id; #if defined(HAVE_NETLINK) ns_info->is_cmd = true; ns_info->nls = zns->netlink_dplane; #endif /* NETLINK */ } /* * Provider api to signal that work/events are available * for the dataplane pthread. */ int dplane_provider_work_ready(void) { /* Note that during zebra startup, we may be offered work before * the dataplane pthread (and thread-master) are ready. We want to * enqueue the work, but the event-scheduling machinery may not be * available. */ if (zdplane_info.dg_run) { thread_add_event(zdplane_info.dg_master, dplane_thread_loop, NULL, 0, &zdplane_info.dg_t_update); } return AOK; } /* * Enqueue a context directly to zebra main. */ void dplane_provider_enqueue_to_zebra(struct zebra_dplane_ctx *ctx) { struct dplane_ctx_q temp_list; /* Zebra's api takes a list, so we need to use a temporary list */ TAILQ_INIT(&temp_list); TAILQ_INSERT_TAIL(&temp_list, ctx, zd_q_entries); (zdplane_info.dg_results_cb)(&temp_list); } /* * Kernel dataplane provider */ static void kernel_dplane_log_detail(struct zebra_dplane_ctx *ctx) { char buf[PREFIX_STRLEN]; switch (dplane_ctx_get_op(ctx)) { case DPLANE_OP_ROUTE_INSTALL: case DPLANE_OP_ROUTE_UPDATE: case DPLANE_OP_ROUTE_DELETE: prefix2str(dplane_ctx_get_dest(ctx), buf, sizeof(buf)); zlog_debug("%u:%s Dplane route update ctx %p op %s", dplane_ctx_get_vrf(ctx), buf, ctx, dplane_op2str(dplane_ctx_get_op(ctx))); break; case DPLANE_OP_NH_INSTALL: case DPLANE_OP_NH_UPDATE: case DPLANE_OP_NH_DELETE: zlog_debug("ID (%u) Dplane nexthop update ctx %p op %s", dplane_ctx_get_nhe_id(ctx), ctx, dplane_op2str(dplane_ctx_get_op(ctx))); break; case DPLANE_OP_LSP_INSTALL: case DPLANE_OP_LSP_UPDATE: case DPLANE_OP_LSP_DELETE: break; case DPLANE_OP_PW_INSTALL: case DPLANE_OP_PW_UNINSTALL: zlog_debug("Dplane pw %s: op %s af %d loc: %u rem: %u", dplane_ctx_get_ifname(ctx), dplane_op2str(ctx->zd_op), dplane_ctx_get_pw_af(ctx), dplane_ctx_get_pw_local_label(ctx), dplane_ctx_get_pw_remote_label(ctx)); break; case DPLANE_OP_ADDR_INSTALL: case DPLANE_OP_ADDR_UNINSTALL: prefix2str(dplane_ctx_get_intf_addr(ctx), buf, sizeof(buf)); zlog_debug("Dplane intf %s, idx %u, addr %s", dplane_op2str(dplane_ctx_get_op(ctx)), dplane_ctx_get_ifindex(ctx), buf); break; case DPLANE_OP_MAC_INSTALL: case DPLANE_OP_MAC_DELETE: prefix_mac2str(dplane_ctx_mac_get_addr(ctx), buf, sizeof(buf)); zlog_debug("Dplane %s, mac %s, ifindex %u", dplane_op2str(dplane_ctx_get_op(ctx)), buf, dplane_ctx_get_ifindex(ctx)); break; case DPLANE_OP_NEIGH_INSTALL: case DPLANE_OP_NEIGH_UPDATE: case DPLANE_OP_NEIGH_DELETE: case DPLANE_OP_VTEP_ADD: case DPLANE_OP_VTEP_DELETE: case DPLANE_OP_NEIGH_DISCOVER: ipaddr2str(dplane_ctx_neigh_get_ipaddr(ctx), buf, sizeof(buf)); zlog_debug("Dplane %s, ip %s, ifindex %u", dplane_op2str(dplane_ctx_get_op(ctx)), buf, dplane_ctx_get_ifindex(ctx)); break; case DPLANE_OP_RULE_ADD: case DPLANE_OP_RULE_DELETE: case DPLANE_OP_RULE_UPDATE: zlog_debug("Dplane rule update op %s, if %s(%u), ctx %p", dplane_op2str(dplane_ctx_get_op(ctx)), dplane_ctx_get_ifname(ctx), dplane_ctx_get_ifindex(ctx), ctx); break; case DPLANE_OP_SYS_ROUTE_ADD: case DPLANE_OP_SYS_ROUTE_DELETE: case DPLANE_OP_ROUTE_NOTIFY: case DPLANE_OP_LSP_NOTIFY: case DPLANE_OP_NONE: break; } } static void kernel_dplane_handle_result(struct zebra_dplane_ctx *ctx) { enum zebra_dplane_result res = dplane_ctx_get_status(ctx); switch (dplane_ctx_get_op(ctx)) { case DPLANE_OP_ROUTE_INSTALL: case DPLANE_OP_ROUTE_UPDATE: case DPLANE_OP_ROUTE_DELETE: if (res != ZEBRA_DPLANE_REQUEST_SUCCESS) atomic_fetch_add_explicit(&zdplane_info.dg_route_errors, 1, memory_order_relaxed); if ((dplane_ctx_get_op(ctx) != DPLANE_OP_ROUTE_DELETE) && (res == ZEBRA_DPLANE_REQUEST_SUCCESS)) { struct nexthop *nexthop; /* Update installed nexthops to signal which have been * installed. */ for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx), nexthop)) { if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE)) continue; if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)) { SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB); } } } break; case DPLANE_OP_NH_INSTALL: case DPLANE_OP_NH_UPDATE: case DPLANE_OP_NH_DELETE: if (res != ZEBRA_DPLANE_REQUEST_SUCCESS) atomic_fetch_add_explicit( &zdplane_info.dg_nexthop_errors, 1, memory_order_relaxed); break; case DPLANE_OP_LSP_INSTALL: case DPLANE_OP_LSP_UPDATE: case DPLANE_OP_LSP_DELETE: if (res != ZEBRA_DPLANE_REQUEST_SUCCESS) atomic_fetch_add_explicit(&zdplane_info.dg_lsp_errors, 1, memory_order_relaxed); break; case DPLANE_OP_PW_INSTALL: case DPLANE_OP_PW_UNINSTALL: if (res != ZEBRA_DPLANE_REQUEST_SUCCESS) atomic_fetch_add_explicit(&zdplane_info.dg_pw_errors, 1, memory_order_relaxed); break; case DPLANE_OP_ADDR_INSTALL: case DPLANE_OP_ADDR_UNINSTALL: if (res != ZEBRA_DPLANE_REQUEST_SUCCESS) atomic_fetch_add_explicit( &zdplane_info.dg_intf_addr_errors, 1, memory_order_relaxed); break; case DPLANE_OP_MAC_INSTALL: case DPLANE_OP_MAC_DELETE: if (res != ZEBRA_DPLANE_REQUEST_SUCCESS) atomic_fetch_add_explicit(&zdplane_info.dg_mac_errors, 1, memory_order_relaxed); break; case DPLANE_OP_NEIGH_INSTALL: case DPLANE_OP_NEIGH_UPDATE: case DPLANE_OP_NEIGH_DELETE: case DPLANE_OP_VTEP_ADD: case DPLANE_OP_VTEP_DELETE: case DPLANE_OP_NEIGH_DISCOVER: if (res != ZEBRA_DPLANE_REQUEST_SUCCESS) atomic_fetch_add_explicit(&zdplane_info.dg_neigh_errors, 1, memory_order_relaxed); break; case DPLANE_OP_RULE_ADD: case DPLANE_OP_RULE_DELETE: case DPLANE_OP_RULE_UPDATE: if (res != ZEBRA_DPLANE_REQUEST_SUCCESS) atomic_fetch_add_explicit(&zdplane_info.dg_rule_errors, 1, memory_order_relaxed); break; /* Ignore 'notifications' - no-op */ case DPLANE_OP_SYS_ROUTE_ADD: case DPLANE_OP_SYS_ROUTE_DELETE: case DPLANE_OP_ROUTE_NOTIFY: case DPLANE_OP_LSP_NOTIFY: break; case DPLANE_OP_NONE: if (res != ZEBRA_DPLANE_REQUEST_SUCCESS) atomic_fetch_add_explicit(&zdplane_info.dg_other_errors, 1, memory_order_relaxed); break; } } /* * Kernel provider callback */ static int kernel_dplane_process_func(struct zebra_dplane_provider *prov) { struct zebra_dplane_ctx *ctx, *tctx; struct dplane_ctx_q work_list; int counter, limit; TAILQ_INIT(&work_list); limit = dplane_provider_get_work_limit(prov); if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) zlog_debug("dplane provider '%s': processing", dplane_provider_get_name(prov)); for (counter = 0; counter < limit; counter++) { ctx = dplane_provider_dequeue_in_ctx(prov); if (ctx == NULL) break; if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) kernel_dplane_log_detail(ctx); TAILQ_INSERT_TAIL(&work_list, ctx, zd_q_entries); } kernel_update_multi(&work_list); TAILQ_FOREACH_SAFE (ctx, &work_list, zd_q_entries, tctx) { kernel_dplane_handle_result(ctx); TAILQ_REMOVE(&work_list, ctx, zd_q_entries); dplane_provider_enqueue_out_ctx(prov, ctx); } /* Ensure that we'll run the work loop again if there's still * more work to do. */ if (counter >= limit) { if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) zlog_debug("dplane provider '%s' reached max updates %d", dplane_provider_get_name(prov), counter); atomic_fetch_add_explicit(&zdplane_info.dg_update_yields, 1, memory_order_relaxed); dplane_provider_work_ready(); } return 0; } #ifdef DPLANE_TEST_PROVIDER /* * Test dataplane provider plugin */ /* * Test provider process callback */ static int test_dplane_process_func(struct zebra_dplane_provider *prov) { struct zebra_dplane_ctx *ctx; int counter, limit; /* Just moving from 'in' queue to 'out' queue */ if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) zlog_debug("dplane provider '%s': processing", dplane_provider_get_name(prov)); limit = dplane_provider_get_work_limit(prov); for (counter = 0; counter < limit; counter++) { ctx = dplane_provider_dequeue_in_ctx(prov); if (ctx == NULL) break; if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) zlog_debug("dplane provider '%s': op %s", dplane_provider_get_name(prov), dplane_op2str(dplane_ctx_get_op(ctx))); dplane_ctx_set_status(ctx, ZEBRA_DPLANE_REQUEST_SUCCESS); dplane_provider_enqueue_out_ctx(prov, ctx); } if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) zlog_debug("dplane provider '%s': processed %d", dplane_provider_get_name(prov), counter); /* Ensure that we'll run the work loop again if there's still * more work to do. */ if (counter >= limit) dplane_provider_work_ready(); return 0; } /* * Test provider shutdown/fini callback */ static int test_dplane_shutdown_func(struct zebra_dplane_provider *prov, bool early) { if (IS_ZEBRA_DEBUG_DPLANE) zlog_debug("dplane provider '%s': %sshutdown", dplane_provider_get_name(prov), early ? "early " : ""); return 0; } #endif /* DPLANE_TEST_PROVIDER */ /* * Register default kernel provider */ static void dplane_provider_init(void) { int ret; ret = dplane_provider_register("Kernel", DPLANE_PRIO_KERNEL, DPLANE_PROV_FLAGS_DEFAULT, NULL, kernel_dplane_process_func, NULL, NULL, NULL); if (ret != AOK) zlog_err("Unable to register kernel dplane provider: %d", ret); #ifdef DPLANE_TEST_PROVIDER /* Optional test provider ... */ ret = dplane_provider_register("Test", DPLANE_PRIO_PRE_KERNEL, DPLANE_PROV_FLAGS_DEFAULT, NULL, test_dplane_process_func, test_dplane_shutdown_func, NULL /* data */, NULL); if (ret != AOK) zlog_err("Unable to register test dplane provider: %d", ret); #endif /* DPLANE_TEST_PROVIDER */ } /* Indicates zebra shutdown/exit is in progress. Some operations may be * simplified or skipped during shutdown processing. */ bool dplane_is_in_shutdown(void) { return zdplane_info.dg_is_shutdown; } /* * Early or pre-shutdown, de-init notification api. This runs pretty * early during zebra shutdown, as a signal to stop new work and prepare * for updates generated by shutdown/cleanup activity, as zebra tries to * remove everything it's responsible for. * NB: This runs in the main zebra pthread context. */ void zebra_dplane_pre_finish(void) { struct zebra_dplane_provider *prov; if (IS_ZEBRA_DEBUG_DPLANE) zlog_debug("Zebra dataplane pre-finish called"); zdplane_info.dg_is_shutdown = true; /* Notify provider(s) of pending shutdown. */ TAILQ_FOREACH(prov, &zdplane_info.dg_providers_q, dp_prov_link) { if (prov->dp_fini == NULL) continue; prov->dp_fini(prov, true /* early */); } } /* * Utility to determine whether work remains enqueued within the dplane; * used during system shutdown processing. */ static bool dplane_work_pending(void) { bool ret = false; struct zebra_dplane_ctx *ctx; struct zebra_dplane_provider *prov; /* TODO -- just checking incoming/pending work for now, must check * providers */ DPLANE_LOCK(); { ctx = TAILQ_FIRST(&zdplane_info.dg_update_ctx_q); prov = TAILQ_FIRST(&zdplane_info.dg_providers_q); } DPLANE_UNLOCK(); if (ctx != NULL) { ret = true; goto done; } while (prov) { dplane_provider_lock(prov); ctx = TAILQ_FIRST(&(prov->dp_ctx_in_q)); if (ctx == NULL) ctx = TAILQ_FIRST(&(prov->dp_ctx_out_q)); dplane_provider_unlock(prov); if (ctx != NULL) break; DPLANE_LOCK(); prov = TAILQ_NEXT(prov, dp_prov_link); DPLANE_UNLOCK(); } if (ctx != NULL) ret = true; done: return ret; } /* * Shutdown-time intermediate callback, used to determine when all pending * in-flight updates are done. If there's still work to do, reschedules itself. * If all work is done, schedules an event to the main zebra thread for * final zebra shutdown. * This runs in the dplane pthread context. */ static int dplane_check_shutdown_status(struct thread *event) { if (IS_ZEBRA_DEBUG_DPLANE) zlog_debug("Zebra dataplane shutdown status check called"); if (dplane_work_pending()) { /* Reschedule dplane check on a short timer */ thread_add_timer_msec(zdplane_info.dg_master, dplane_check_shutdown_status, NULL, 100, &zdplane_info.dg_t_shutdown_check); /* TODO - give up and stop waiting after a short time? */ } else { /* We appear to be done - schedule a final callback event * for the zebra main pthread. */ thread_add_event(zrouter.master, zebra_finalize, NULL, 0, NULL); } return 0; } /* * Shutdown, de-init api. This runs pretty late during shutdown, * after zebra has tried to free/remove/uninstall all routes during shutdown. * At this point, dplane work may still remain to be done, so we can't just * blindly terminate. If there's still work to do, we'll periodically check * and when done, we'll enqueue a task to the zebra main thread for final * termination processing. * * NB: This runs in the main zebra thread context. */ void zebra_dplane_finish(void) { if (IS_ZEBRA_DEBUG_DPLANE) zlog_debug("Zebra dataplane fini called"); thread_add_event(zdplane_info.dg_master, dplane_check_shutdown_status, NULL, 0, &zdplane_info.dg_t_shutdown_check); } /* * Main dataplane pthread event loop. The thread takes new incoming work * and offers it to the first provider. It then iterates through the * providers, taking complete work from each one and offering it * to the next in order. At each step, a limited number of updates are * processed during a cycle in order to provide some fairness. * * This loop through the providers is only run once, so that the dataplane * pthread can look for other pending work - such as i/o work on behalf of * providers. */ static int dplane_thread_loop(struct thread *event) { struct dplane_ctx_q work_list; struct dplane_ctx_q error_list; struct zebra_dplane_provider *prov; struct zebra_dplane_ctx *ctx, *tctx; int limit, counter, error_counter; uint64_t curr, high; /* Capture work limit per cycle */ limit = zdplane_info.dg_updates_per_cycle; /* Init temporary lists used to move contexts among providers */ TAILQ_INIT(&work_list); TAILQ_INIT(&error_list); error_counter = 0; /* Check for zebra shutdown */ if (!zdplane_info.dg_run) goto done; /* Dequeue some incoming work from zebra (if any) onto the temporary * working list. */ DPLANE_LOCK(); /* Locate initial registered provider */ prov = TAILQ_FIRST(&zdplane_info.dg_providers_q); /* Move new work from incoming list to temp list */ for (counter = 0; counter < limit; counter++) { ctx = TAILQ_FIRST(&zdplane_info.dg_update_ctx_q); if (ctx) { TAILQ_REMOVE(&zdplane_info.dg_update_ctx_q, ctx, zd_q_entries); ctx->zd_provider = prov->dp_id; TAILQ_INSERT_TAIL(&work_list, ctx, zd_q_entries); } else { break; } } DPLANE_UNLOCK(); atomic_fetch_sub_explicit(&zdplane_info.dg_routes_queued, counter, memory_order_relaxed); if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) zlog_debug("dplane: incoming new work counter: %d", counter); /* Iterate through the registered providers, offering new incoming * work. If the provider has outgoing work in its queue, take that * work for the next provider */ while (prov) { /* At each iteration, the temporary work list has 'counter' * items. */ if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) zlog_debug("dplane enqueues %d new work to provider '%s'", counter, dplane_provider_get_name(prov)); /* Capture current provider id in each context; check for * error status. */ TAILQ_FOREACH_SAFE(ctx, &work_list, zd_q_entries, tctx) { if (dplane_ctx_get_status(ctx) == ZEBRA_DPLANE_REQUEST_SUCCESS) { ctx->zd_provider = prov->dp_id; } else { /* * TODO -- improve error-handling: recirc * errors backwards so that providers can * 'undo' their work (if they want to) */ /* Move to error list; will be returned * zebra main. */ TAILQ_REMOVE(&work_list, ctx, zd_q_entries); TAILQ_INSERT_TAIL(&error_list, ctx, zd_q_entries); error_counter++; } } /* Enqueue new work to the provider */ dplane_provider_lock(prov); if (TAILQ_FIRST(&work_list)) TAILQ_CONCAT(&(prov->dp_ctx_in_q), &work_list, zd_q_entries); atomic_fetch_add_explicit(&prov->dp_in_counter, counter, memory_order_relaxed); atomic_fetch_add_explicit(&prov->dp_in_queued, counter, memory_order_relaxed); curr = atomic_load_explicit(&prov->dp_in_queued, memory_order_relaxed); high = atomic_load_explicit(&prov->dp_in_max, memory_order_relaxed); if (curr > high) atomic_store_explicit(&prov->dp_in_max, curr, memory_order_relaxed); dplane_provider_unlock(prov); /* Reset the temp list (though the 'concat' may have done this * already), and the counter */ TAILQ_INIT(&work_list); counter = 0; /* Call into the provider code. Note that this is * unconditional: we offer to do work even if we don't enqueue * any _new_ work. */ (*prov->dp_fp)(prov); /* Check for zebra shutdown */ if (!zdplane_info.dg_run) break; /* Dequeue completed work from the provider */ dplane_provider_lock(prov); while (counter < limit) { ctx = TAILQ_FIRST(&(prov->dp_ctx_out_q)); if (ctx) { TAILQ_REMOVE(&(prov->dp_ctx_out_q), ctx, zd_q_entries); TAILQ_INSERT_TAIL(&work_list, ctx, zd_q_entries); counter++; } else break; } dplane_provider_unlock(prov); if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) zlog_debug("dplane dequeues %d completed work from provider %s", counter, dplane_provider_get_name(prov)); /* Locate next provider */ DPLANE_LOCK(); prov = TAILQ_NEXT(prov, dp_prov_link); DPLANE_UNLOCK(); } /* After all providers have been serviced, enqueue any completed * work and any errors back to zebra so it can process the results. */ if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) zlog_debug("dplane has %d completed, %d errors, for zebra main", counter, error_counter); /* * Hand lists through the api to zebra main, * to reduce the number of lock/unlock cycles */ /* Call through to zebra main */ (zdplane_info.dg_results_cb)(&error_list); TAILQ_INIT(&error_list); /* Call through to zebra main */ (zdplane_info.dg_results_cb)(&work_list); TAILQ_INIT(&work_list); done: return 0; } /* * Final phase of shutdown, after all work enqueued to dplane has been * processed. This is called from the zebra main pthread context. */ void zebra_dplane_shutdown(void) { struct zebra_dplane_provider *dp; if (IS_ZEBRA_DEBUG_DPLANE) zlog_debug("Zebra dataplane shutdown called"); /* Stop dplane thread, if it's running */ zdplane_info.dg_run = false; if (zdplane_info.dg_t_update) thread_cancel_async(zdplane_info.dg_t_update->master, &zdplane_info.dg_t_update, NULL); frr_pthread_stop(zdplane_info.dg_pthread, NULL); /* Destroy pthread */ frr_pthread_destroy(zdplane_info.dg_pthread); zdplane_info.dg_pthread = NULL; zdplane_info.dg_master = NULL; /* Notify provider(s) of final shutdown. * Note that this call is in the main pthread, so providers must * be prepared for that. */ TAILQ_FOREACH(dp, &zdplane_info.dg_providers_q, dp_prov_link) { if (dp->dp_fini == NULL) continue; dp->dp_fini(dp, false); } /* TODO -- Clean-up provider objects */ /* TODO -- Clean queue(s), free memory */ } /* * Initialize the dataplane module during startup, internal/private version */ static void zebra_dplane_init_internal(void) { memset(&zdplane_info, 0, sizeof(zdplane_info)); pthread_mutex_init(&zdplane_info.dg_mutex, NULL); TAILQ_INIT(&zdplane_info.dg_update_ctx_q); TAILQ_INIT(&zdplane_info.dg_providers_q); zdplane_info.dg_updates_per_cycle = DPLANE_DEFAULT_NEW_WORK; zdplane_info.dg_max_queued_updates = DPLANE_DEFAULT_MAX_QUEUED; /* Register default kernel 'provider' during init */ dplane_provider_init(); } /* * Start the dataplane pthread. This step needs to be run later than the * 'init' step, in case zebra has fork-ed. */ void zebra_dplane_start(void) { struct zebra_dplane_provider *prov; struct frr_pthread_attr pattr = { .start = frr_pthread_attr_default.start, .stop = frr_pthread_attr_default.stop }; /* Start dataplane pthread */ zdplane_info.dg_pthread = frr_pthread_new(&pattr, "Zebra dplane thread", "zebra_dplane"); zdplane_info.dg_master = zdplane_info.dg_pthread->master; zdplane_info.dg_run = true; /* Enqueue an initial event for the dataplane pthread */ thread_add_event(zdplane_info.dg_master, dplane_thread_loop, NULL, 0, &zdplane_info.dg_t_update); /* Call start callbacks for registered providers */ DPLANE_LOCK(); prov = TAILQ_FIRST(&zdplane_info.dg_providers_q); DPLANE_UNLOCK(); while (prov) { if (prov->dp_start) (prov->dp_start)(prov); /* Locate next provider */ DPLANE_LOCK(); prov = TAILQ_NEXT(prov, dp_prov_link); DPLANE_UNLOCK(); } frr_pthread_run(zdplane_info.dg_pthread, NULL); } /* * Initialize the dataplane module at startup; called by zebra rib_init() */ void zebra_dplane_init(int (*results_fp)(struct dplane_ctx_q *)) { zebra_dplane_init_internal(); zdplane_info.dg_results_cb = results_fp; }