/* * Copyright (C) 2016 by Open Source Routing. * * This file is part of GNU Zebra. * * GNU Zebra is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * GNU Zebra is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; see the file COPYING; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #ifdef OPEN_BSD #include #include "zebra/rt.h" #include "zebra/zebra_mpls.h" #include "zebra/debug.h" #include "zebra/zebra_errors.h" #include "privs.h" #include "prefix.h" #include "interface.h" #include "log.h" #include "lib_errors.h" extern struct zebra_privs_t zserv_privs; struct { uint32_t rtseq; int fd; int ioctl_fd; } kr_state; static int kernel_send_rtmsg_v4(int action, mpls_label_t in_label, zebra_nhlfe_t *nhlfe) { struct iovec iov[5]; struct rt_msghdr hdr; struct sockaddr_mpls sa_label_in, sa_label_out; struct sockaddr_in nexthop; int iovcnt = 0; int ret; if (IS_ZEBRA_DEBUG_KERNEL) zlog_debug("%s: 0x%x, label=%u", __func__, action, in_label); /* initialize header */ memset(&hdr, 0, sizeof(hdr)); hdr.rtm_version = RTM_VERSION; hdr.rtm_type = action; hdr.rtm_flags = RTF_UP; hdr.rtm_fmask = RTF_MPLS; hdr.rtm_seq = kr_state.rtseq++; /* overflow doesn't matter */ hdr.rtm_msglen = sizeof(hdr); hdr.rtm_hdrlen = sizeof(struct rt_msghdr); hdr.rtm_priority = 0; /* adjust iovec */ iov[iovcnt].iov_base = &hdr; iov[iovcnt++].iov_len = sizeof(hdr); /* in label */ memset(&sa_label_in, 0, sizeof(sa_label_in)); sa_label_in.smpls_len = sizeof(sa_label_in); sa_label_in.smpls_family = AF_MPLS; sa_label_in.smpls_label = htonl(in_label << MPLS_LABEL_OFFSET); /* adjust header */ hdr.rtm_flags |= RTF_MPLS | RTF_MPATH; hdr.rtm_addrs |= RTA_DST; hdr.rtm_msglen += sizeof(sa_label_in); /* adjust iovec */ iov[iovcnt].iov_base = &sa_label_in; iov[iovcnt++].iov_len = sizeof(sa_label_in); /* nexthop */ memset(&nexthop, 0, sizeof(nexthop)); nexthop.sin_len = sizeof(nexthop); nexthop.sin_family = AF_INET; nexthop.sin_addr = nhlfe->nexthop->gate.ipv4; /* adjust header */ hdr.rtm_flags |= RTF_GATEWAY; hdr.rtm_addrs |= RTA_GATEWAY; hdr.rtm_msglen += sizeof(nexthop); /* adjust iovec */ iov[iovcnt].iov_base = &nexthop; iov[iovcnt++].iov_len = sizeof(nexthop); /* If action is RTM_DELETE we have to get rid of MPLS infos */ if (action != RTM_DELETE) { memset(&sa_label_out, 0, sizeof(sa_label_out)); sa_label_out.smpls_len = sizeof(sa_label_out); sa_label_out.smpls_family = AF_MPLS; sa_label_out.smpls_label = htonl(nhlfe->nexthop->nh_label->label[0] << MPLS_LABEL_OFFSET); /* adjust header */ hdr.rtm_addrs |= RTA_SRC; hdr.rtm_flags |= RTF_MPLS; hdr.rtm_msglen += sizeof(sa_label_out); /* adjust iovec */ iov[iovcnt].iov_base = &sa_label_out; iov[iovcnt++].iov_len = sizeof(sa_label_out); if (nhlfe->nexthop->nh_label->label[0] == MPLS_LABEL_IMPLNULL) hdr.rtm_mpls = MPLS_OP_POP; else hdr.rtm_mpls = MPLS_OP_SWAP; } frr_elevate_privs(&zserv_privs) { ret = writev(kr_state.fd, iov, iovcnt); } if (ret == -1) flog_err_sys(EC_LIB_SOCKET, "%s: %s", __func__, safe_strerror(errno)); return ret; } #if !defined(ROUNDUP) #define ROUNDUP(a) \ (((a) & (sizeof(long) - 1)) ? (1 + ((a) | (sizeof(long) - 1))) : (a)) #endif static int kernel_send_rtmsg_v6(int action, mpls_label_t in_label, zebra_nhlfe_t *nhlfe) { struct iovec iov[5]; struct rt_msghdr hdr; struct sockaddr_mpls sa_label_in, sa_label_out; struct pad { struct sockaddr_in6 addr; char pad[sizeof(long)]; /* thank you IPv6 */ } nexthop; int iovcnt = 0; int ret; if (IS_ZEBRA_DEBUG_KERNEL) zlog_debug("%s: 0x%x, label=%u", __func__, action, in_label); /* initialize header */ memset(&hdr, 0, sizeof(hdr)); hdr.rtm_version = RTM_VERSION; hdr.rtm_type = action; hdr.rtm_flags = RTF_UP; hdr.rtm_fmask = RTF_MPLS; hdr.rtm_seq = kr_state.rtseq++; /* overflow doesn't matter */ hdr.rtm_msglen = sizeof(hdr); hdr.rtm_hdrlen = sizeof(struct rt_msghdr); hdr.rtm_priority = 0; /* adjust iovec */ iov[iovcnt].iov_base = &hdr; iov[iovcnt++].iov_len = sizeof(hdr); /* in label */ memset(&sa_label_in, 0, sizeof(sa_label_in)); sa_label_in.smpls_len = sizeof(sa_label_in); sa_label_in.smpls_family = AF_MPLS; sa_label_in.smpls_label = htonl(in_label << MPLS_LABEL_OFFSET); /* adjust header */ hdr.rtm_flags |= RTF_MPLS | RTF_MPATH; hdr.rtm_addrs |= RTA_DST; hdr.rtm_msglen += sizeof(sa_label_in); /* adjust iovec */ iov[iovcnt].iov_base = &sa_label_in; iov[iovcnt++].iov_len = sizeof(sa_label_in); /* nexthop */ memset(&nexthop, 0, sizeof(nexthop)); nexthop.addr.sin6_len = sizeof(struct sockaddr_in6); nexthop.addr.sin6_family = AF_INET6; nexthop.addr.sin6_addr = nhlfe->nexthop->gate.ipv6; if (IN6_IS_ADDR_LINKLOCAL(&nexthop.addr.sin6_addr)) { uint16_t tmp16; struct sockaddr_in6 *sin6 = &nexthop.addr; nexthop.addr.sin6_scope_id = nhlfe->nexthop->ifindex; memcpy(&tmp16, &sin6->sin6_addr.s6_addr[2], sizeof(tmp16)); tmp16 = htons(sin6->sin6_scope_id); memcpy(&sin6->sin6_addr.s6_addr[2], &tmp16, sizeof(tmp16)); sin6->sin6_scope_id = 0; } /* adjust header */ hdr.rtm_flags |= RTF_GATEWAY; hdr.rtm_addrs |= RTA_GATEWAY; hdr.rtm_msglen += ROUNDUP(sizeof(struct sockaddr_in6)); /* adjust iovec */ iov[iovcnt].iov_base = &nexthop; iov[iovcnt++].iov_len = ROUNDUP(sizeof(struct sockaddr_in6)); /* If action is RTM_DELETE we have to get rid of MPLS infos */ if (action != RTM_DELETE) { memset(&sa_label_out, 0, sizeof(sa_label_out)); sa_label_out.smpls_len = sizeof(sa_label_out); sa_label_out.smpls_family = AF_MPLS; sa_label_out.smpls_label = htonl(nhlfe->nexthop->nh_label->label[0] << MPLS_LABEL_OFFSET); /* adjust header */ hdr.rtm_addrs |= RTA_SRC; hdr.rtm_flags |= RTF_MPLS; hdr.rtm_msglen += sizeof(sa_label_out); /* adjust iovec */ iov[iovcnt].iov_base = &sa_label_out; iov[iovcnt++].iov_len = sizeof(sa_label_out); if (nhlfe->nexthop->nh_label->label[0] == MPLS_LABEL_IMPLNULL) hdr.rtm_mpls = MPLS_OP_POP; else hdr.rtm_mpls = MPLS_OP_SWAP; } frr_elevate_privs(&zserv_privs) { ret = writev(kr_state.fd, iov, iovcnt); } if (ret == -1) flog_err_sys(EC_LIB_SOCKET, "%s: %s", __func__, safe_strerror(errno)); return ret; } static int kernel_lsp_cmd(int action, zebra_lsp_t *lsp) { zebra_nhlfe_t *nhlfe; struct nexthop *nexthop = NULL; unsigned int nexthop_num = 0; for (nhlfe = lsp->nhlfe_list; nhlfe; nhlfe = nhlfe->next) { nexthop = nhlfe->nexthop; if (!nexthop) continue; if (nexthop_num >= multipath_num) break; if (((action == RTM_ADD || action == RTM_CHANGE) && (CHECK_FLAG(nhlfe->flags, NHLFE_FLAG_SELECTED) && CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE))) || (action == RTM_DELETE && (CHECK_FLAG(nhlfe->flags, NHLFE_FLAG_INSTALLED) && CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB)))) { if (nhlfe->nexthop->nh_label->num_labels > 1) { flog_warn(EC_ZEBRA_MAX_LABELS_PUSH, "%s: can't push %u labels at once " "(maximum is 1)", __func__, nhlfe->nexthop->nh_label->num_labels); continue; } nexthop_num++; switch (NHLFE_FAMILY(nhlfe)) { case AF_INET: kernel_send_rtmsg_v4(action, lsp->ile.in_label, nhlfe); break; case AF_INET6: kernel_send_rtmsg_v6(action, lsp->ile.in_label, nhlfe); break; default: break; } } } return (0); } enum dp_req_result kernel_add_lsp(zebra_lsp_t *lsp) { int ret; if (!lsp || !lsp->best_nhlfe) { // unexpected kernel_lsp_pass_fail(lsp, DP_INSTALL_FAILURE); return DP_REQUEST_FAILURE; } ret = kernel_lsp_cmd(RTM_ADD, lsp); kernel_lsp_pass_fail(lsp, (!ret) ? DP_INSTALL_SUCCESS : DP_INSTALL_FAILURE); return DP_REQUEST_SUCCESS; } enum dp_req_result kernel_upd_lsp(zebra_lsp_t *lsp) { int ret; if (!lsp || !lsp->best_nhlfe) { // unexpected kernel_lsp_pass_fail(lsp, DP_INSTALL_FAILURE); return DP_REQUEST_FAILURE; } ret = kernel_lsp_cmd(RTM_CHANGE, lsp); kernel_lsp_pass_fail(lsp, (!ret) ? DP_INSTALL_SUCCESS : DP_INSTALL_FAILURE); return DP_REQUEST_SUCCESS; } enum dp_req_result kernel_del_lsp(zebra_lsp_t *lsp) { int ret; if (!lsp) { // unexpected kernel_lsp_pass_fail(lsp, DP_DELETE_FAILURE); return DP_REQUEST_FAILURE; } if (!CHECK_FLAG(lsp->flags, LSP_FLAG_INSTALLED)) { kernel_lsp_pass_fail(lsp, DP_DELETE_FAILURE); return DP_REQUEST_FAILURE; } ret = kernel_lsp_cmd(RTM_DELETE, lsp); kernel_lsp_pass_fail(lsp, (!ret) ? DP_DELETE_SUCCESS : DP_DELETE_FAILURE); return DP_REQUEST_SUCCESS; } static int kmpw_install(struct zebra_pw *pw) { struct ifreq ifr; struct ifmpwreq imr; struct sockaddr_storage ss; struct sockaddr_in *sa_in = (struct sockaddr_in *)&ss; struct sockaddr_in6 *sa_in6 = (struct sockaddr_in6 *)&ss; memset(&imr, 0, sizeof(imr)); switch (pw->type) { case PW_TYPE_ETHERNET: imr.imr_type = IMR_TYPE_ETHERNET; break; case PW_TYPE_ETHERNET_TAGGED: imr.imr_type = IMR_TYPE_ETHERNET_TAGGED; break; default: zlog_debug("%s: unhandled pseudowire type (%#X)", __func__, pw->type); return -1; } if (pw->flags & F_PSEUDOWIRE_CWORD) imr.imr_flags |= IMR_FLAG_CONTROLWORD; /* pseudowire nexthop */ memset(&ss, 0, sizeof(ss)); switch (pw->af) { case AF_INET: sa_in->sin_family = AF_INET; sa_in->sin_len = sizeof(struct sockaddr_in); sa_in->sin_addr = pw->nexthop.ipv4; break; case AF_INET6: sa_in6->sin6_family = AF_INET6; sa_in6->sin6_len = sizeof(struct sockaddr_in6); sa_in6->sin6_addr = pw->nexthop.ipv6; break; default: zlog_debug("%s: unhandled pseudowire address-family (%u)", __func__, pw->af); return -1; } memcpy(&imr.imr_nexthop, (struct sockaddr *)&ss, sizeof(imr.imr_nexthop)); /* pseudowire local/remote labels */ imr.imr_lshim.shim_label = pw->local_label; imr.imr_rshim.shim_label = pw->remote_label; /* ioctl */ memset(&ifr, 0, sizeof(ifr)); strlcpy(ifr.ifr_name, pw->ifname, sizeof(ifr.ifr_name)); ifr.ifr_data = (caddr_t)&imr; if (ioctl(kr_state.ioctl_fd, SIOCSETMPWCFG, &ifr) == -1) { flog_err_sys(EC_LIB_SYSTEM_CALL, "ioctl SIOCSETMPWCFG: %s", safe_strerror(errno)); return -1; } return 0; } static int kmpw_uninstall(struct zebra_pw *pw) { struct ifreq ifr; struct ifmpwreq imr; memset(&ifr, 0, sizeof(ifr)); memset(&imr, 0, sizeof(imr)); strlcpy(ifr.ifr_name, pw->ifname, sizeof(ifr.ifr_name)); ifr.ifr_data = (caddr_t)&imr; if (ioctl(kr_state.ioctl_fd, SIOCSETMPWCFG, &ifr) == -1) { flog_err_sys(EC_LIB_SYSTEM_CALL, "ioctl SIOCSETMPWCFG: %s", safe_strerror(errno)); return -1; } return 0; } #define MAX_RTSOCK_BUF 128 * 1024 int mpls_kernel_init(void) { int rcvbuf, default_rcvbuf; socklen_t optlen; if ((kr_state.fd = socket(AF_ROUTE, SOCK_RAW, 0)) == -1) { flog_err_sys(EC_LIB_SOCKET, "%s: socket", __func__); return -1; } if ((kr_state.ioctl_fd = socket(AF_INET, SOCK_DGRAM | SOCK_NONBLOCK, 0)) == -1) { flog_err_sys(EC_LIB_SOCKET, "%s: ioctl socket", __func__); return -1; } /* grow receive buffer, don't wanna miss messages */ optlen = sizeof(default_rcvbuf); if (getsockopt(kr_state.fd, SOL_SOCKET, SO_RCVBUF, &default_rcvbuf, &optlen) == -1) flog_err_sys(EC_LIB_SOCKET, "kr_init getsockopt SOL_SOCKET SO_RCVBUF"); else for (rcvbuf = MAX_RTSOCK_BUF; rcvbuf > default_rcvbuf && setsockopt(kr_state.fd, SOL_SOCKET, SO_RCVBUF, &rcvbuf, sizeof(rcvbuf)) == -1 && errno == ENOBUFS; rcvbuf /= 2) ; /* nothing */ kr_state.rtseq = 1; /* register hook to install/uninstall pseudowires */ hook_register(pw_install, kmpw_install); hook_register(pw_uninstall, kmpw_uninstall); return 0; } #endif /* OPEN_BSD */