/* Zebra VTY functions * Copyright (C) 2002 Kunihiro Ishiguro * * This file is part of GNU Zebra. * * GNU Zebra is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * GNU Zebra is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; see the file COPYING; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include "memory.h" #include "zebra_memory.h" #include "if.h" #include "prefix.h" #include "command.h" #include "table.h" #include "rib.h" #include "nexthop.h" #include "vrf.h" #include "linklist.h" #include "mpls.h" #include "routemap.h" #include "srcdest_table.h" #include "vxlan.h" #include "zebra/zebra_router.h" #include "zebra/zserv.h" #include "zebra/zebra_vrf.h" #include "zebra/zebra_mpls.h" #include "zebra/zebra_rnh.h" #include "zebra/redistribute.h" #include "zebra/zebra_routemap.h" #include "lib/json.h" #include "zebra/zebra_vxlan.h" #ifndef VTYSH_EXTRACT_PL #include "zebra/zebra_vty_clippy.c" #endif #include "zebra/zserv.h" #include "zebra/router-id.h" #include "zebra/ipforward.h" #include "zebra/zebra_vxlan_private.h" #include "zebra/zebra_pbr.h" extern int allow_delete; static int do_show_ip_route(struct vty *vty, const char *vrf_name, afi_t afi, safi_t safi, bool use_fib, bool use_json, route_tag_t tag, const struct prefix *longer_prefix_p, bool supernets_only, int type, unsigned short ospf_instance_id); static void vty_show_ip_route_detail(struct vty *vty, struct route_node *rn, int mcast); static void vty_show_ip_route_summary(struct vty *vty, struct route_table *table); static void vty_show_ip_route_summary_prefix(struct vty *vty, struct route_table *table); DEFUN (ip_multicast_mode, ip_multicast_mode_cmd, "ip multicast rpf-lookup-mode ", IP_STR "Multicast options\n" "RPF lookup behavior\n" "Lookup in unicast RIB only\n" "Lookup in multicast RIB only\n" "Try multicast RIB first, fall back to unicast RIB\n" "Lookup both, use entry with lower distance\n" "Lookup both, use entry with longer prefix\n") { char *mode = argv[3]->text; if (strmatch(mode, "urib-only")) multicast_mode_ipv4_set(MCAST_URIB_ONLY); else if (strmatch(mode, "mrib-only")) multicast_mode_ipv4_set(MCAST_MRIB_ONLY); else if (strmatch(mode, "mrib-then-urib")) multicast_mode_ipv4_set(MCAST_MIX_MRIB_FIRST); else if (strmatch(mode, "lower-distance")) multicast_mode_ipv4_set(MCAST_MIX_DISTANCE); else if (strmatch(mode, "longer-prefix")) multicast_mode_ipv4_set(MCAST_MIX_PFXLEN); else { vty_out(vty, "Invalid mode specified\n"); return CMD_WARNING_CONFIG_FAILED; } return CMD_SUCCESS; } DEFUN (no_ip_multicast_mode, no_ip_multicast_mode_cmd, "no ip multicast rpf-lookup-mode []", NO_STR IP_STR "Multicast options\n" "RPF lookup behavior\n" "Lookup in unicast RIB only\n" "Lookup in multicast RIB only\n" "Try multicast RIB first, fall back to unicast RIB\n" "Lookup both, use entry with lower distance\n" "Lookup both, use entry with longer prefix\n") { multicast_mode_ipv4_set(MCAST_NO_CONFIG); return CMD_SUCCESS; } DEFUN (show_ip_rpf, show_ip_rpf_cmd, "show ip rpf [json]", SHOW_STR IP_STR "Display RPF information for multicast source\n" JSON_STR) { bool uj = use_json(argc, argv); return do_show_ip_route(vty, VRF_DEFAULT_NAME, AFI_IP, SAFI_MULTICAST, false, uj, 0, NULL, false, 0, 0); } DEFUN (show_ip_rpf_addr, show_ip_rpf_addr_cmd, "show ip rpf A.B.C.D", SHOW_STR IP_STR "Display RPF information for multicast source\n" "IP multicast source address (e.g. 10.0.0.0)\n") { int idx_ipv4 = 3; struct in_addr addr; struct route_node *rn; struct route_entry *re; int ret; ret = inet_aton(argv[idx_ipv4]->arg, &addr); if (ret == 0) { vty_out(vty, "%% Malformed address\n"); return CMD_WARNING; } re = rib_match_ipv4_multicast(VRF_DEFAULT, addr, &rn); if (re) vty_show_ip_route_detail(vty, rn, 1); else vty_out(vty, "%% No match for RPF lookup\n"); return CMD_SUCCESS; } static char re_status_output_char(struct route_entry *re, struct nexthop *nhop) { if (CHECK_FLAG(re->status, ROUTE_ENTRY_INSTALLED)) { if (!CHECK_FLAG(nhop->flags, NEXTHOP_FLAG_DUPLICATE) && !CHECK_FLAG(nhop->flags, NEXTHOP_FLAG_RECURSIVE)) return '*'; else return ' '; } if (CHECK_FLAG(re->status, ROUTE_ENTRY_FAILED)) { if (CHECK_FLAG(re->status, ROUTE_ENTRY_QUEUED)) return 'q'; return 'r'; } if (CHECK_FLAG(re->status, ROUTE_ENTRY_QUEUED)) return 'q'; return ' '; } /* New RIB. Detailed information for IPv4 route. */ static void vty_show_ip_route_detail(struct vty *vty, struct route_node *rn, int mcast) { struct route_entry *re; struct nexthop *nexthop; char buf[SRCDEST2STR_BUFFER]; struct zebra_vrf *zvrf; RNODE_FOREACH_RE (rn, re) { const char *mcast_info = ""; if (mcast) { rib_table_info_t *info = srcdest_rnode_table_info(rn); mcast_info = (info->safi == SAFI_MULTICAST) ? " using Multicast RIB" : " using Unicast RIB"; } vty_out(vty, "Routing entry for %s%s\n", srcdest_rnode2str(rn, buf, sizeof(buf)), mcast_info); vty_out(vty, " Known via \"%s", zebra_route_string(re->type)); if (re->instance) vty_out(vty, "[%d]", re->instance); vty_out(vty, "\""); vty_out(vty, ", distance %u, metric %u", re->distance, re->metric); if (re->tag) { vty_out(vty, ", tag %u", re->tag); #if defined(SUPPORT_REALMS) if (re->tag > 0 && re->tag <= 255) vty_out(vty, "(realm)"); #endif } if (re->mtu) vty_out(vty, ", mtu %u", re->mtu); if (re->vrf_id != VRF_DEFAULT) { zvrf = vrf_info_lookup(re->vrf_id); vty_out(vty, ", vrf %s", zvrf_name(zvrf)); } if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) vty_out(vty, ", best"); vty_out(vty, "\n"); time_t uptime; struct tm *tm; uptime = time(NULL); uptime -= re->uptime; tm = gmtime(&uptime); vty_out(vty, " Last update "); if (uptime < ONE_DAY_SECOND) vty_out(vty, "%02d:%02d:%02d", tm->tm_hour, tm->tm_min, tm->tm_sec); else if (uptime < ONE_WEEK_SECOND) vty_out(vty, "%dd%02dh%02dm", tm->tm_yday, tm->tm_hour, tm->tm_min); else vty_out(vty, "%02dw%dd%02dh", tm->tm_yday / 7, tm->tm_yday - ((tm->tm_yday / 7) * 7), tm->tm_hour); vty_out(vty, " ago\n"); for (ALL_NEXTHOPS(re->ng, nexthop)) { char addrstr[32]; vty_out(vty, " %c%s", re_status_output_char(re, nexthop), nexthop->rparent ? " " : ""); switch (nexthop->type) { case NEXTHOP_TYPE_IPV4: case NEXTHOP_TYPE_IPV4_IFINDEX: vty_out(vty, " %s", inet_ntoa(nexthop->gate.ipv4)); if (nexthop->ifindex) vty_out(vty, ", via %s", ifindex2ifname( nexthop->ifindex, nexthop->vrf_id)); break; case NEXTHOP_TYPE_IPV6: case NEXTHOP_TYPE_IPV6_IFINDEX: vty_out(vty, " %s", inet_ntop(AF_INET6, &nexthop->gate.ipv6, buf, sizeof buf)); if (nexthop->ifindex) vty_out(vty, ", via %s", ifindex2ifname( nexthop->ifindex, nexthop->vrf_id)); break; case NEXTHOP_TYPE_IFINDEX: vty_out(vty, " directly connected, %s", ifindex2ifname(nexthop->ifindex, nexthop->vrf_id)); break; case NEXTHOP_TYPE_BLACKHOLE: vty_out(vty, " unreachable"); switch (nexthop->bh_type) { case BLACKHOLE_REJECT: vty_out(vty, " (ICMP unreachable)"); break; case BLACKHOLE_ADMINPROHIB: vty_out(vty, " (ICMP admin-prohibited)"); break; case BLACKHOLE_NULL: vty_out(vty, " (blackhole)"); break; case BLACKHOLE_UNSPEC: break; } break; default: break; } if ((re->vrf_id != nexthop->vrf_id) && (nexthop->type != NEXTHOP_TYPE_BLACKHOLE)) { struct vrf *vrf = vrf_lookup_by_id(nexthop->vrf_id); if (vrf) vty_out(vty, "(vrf %s)", vrf->name); else vty_out(vty, "(vrf UNKNOWN)"); } if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_DUPLICATE)) vty_out(vty, " (duplicate nexthop removed)"); if (!CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)) vty_out(vty, " inactive"); if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK)) vty_out(vty, " onlink"); if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE)) vty_out(vty, " (recursive)"); switch (nexthop->type) { case NEXTHOP_TYPE_IPV4: case NEXTHOP_TYPE_IPV4_IFINDEX: if (nexthop->src.ipv4.s_addr) { if (inet_ntop(AF_INET, &nexthop->src.ipv4, addrstr, sizeof addrstr)) vty_out(vty, ", src %s", addrstr); } break; case NEXTHOP_TYPE_IPV6: case NEXTHOP_TYPE_IPV6_IFINDEX: if (!IPV6_ADDR_SAME(&nexthop->src.ipv6, &in6addr_any)) { if (inet_ntop(AF_INET6, &nexthop->src.ipv6, addrstr, sizeof addrstr)) vty_out(vty, ", src %s", addrstr); } break; default: break; } if (re->nexthop_mtu) vty_out(vty, ", mtu %u", re->nexthop_mtu); /* Label information */ if (nexthop->nh_label && nexthop->nh_label->num_labels) { vty_out(vty, ", label %s", mpls_label2str( nexthop->nh_label->num_labels, nexthop->nh_label->label, buf, sizeof buf, 1)); } vty_out(vty, "\n"); } vty_out(vty, "\n"); } } static void vty_show_ip_route(struct vty *vty, struct route_node *rn, struct route_entry *re, json_object *json) { struct nexthop *nexthop; int len = 0; char buf[SRCDEST2STR_BUFFER]; json_object *json_nexthops = NULL; json_object *json_nexthop = NULL; json_object *json_route = NULL; json_object *json_labels = NULL; time_t uptime; struct tm *tm; uptime = time(NULL); uptime -= re->uptime; tm = gmtime(&uptime); if (json) { json_route = json_object_new_object(); json_nexthops = json_object_new_array(); json_object_string_add(json_route, "prefix", srcdest_rnode2str(rn, buf, sizeof buf)); json_object_string_add(json_route, "protocol", zebra_route_string(re->type)); if (re->instance) json_object_int_add(json_route, "instance", re->instance); if (re->vrf_id) json_object_int_add(json_route, "vrfId", re->vrf_id); if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) json_object_boolean_true_add(json_route, "selected"); json_object_int_add(json_route, "distance", re->distance); json_object_int_add(json_route, "metric", re->metric); if (CHECK_FLAG(re->status, ROUTE_ENTRY_INSTALLED)) json_object_boolean_true_add(json_route, "installed"); if (CHECK_FLAG(re->status, ROUTE_ENTRY_FAILED)) json_object_boolean_true_add(json_route, "failed"); if (CHECK_FLAG(re->status, ROUTE_ENTRY_QUEUED)) json_object_boolean_true_add(json_route, "queued"); if (re->type != ZEBRA_ROUTE_CONNECT) { json_object_int_add(json_route, "distance", re->distance); json_object_int_add(json_route, "metric", re->metric); } if (re->tag) json_object_int_add(json_route, "tag", re->tag); json_object_int_add(json_route, "internalStatus", re->status); json_object_int_add(json_route, "internalFlags", re->flags); if (uptime < ONE_DAY_SECOND) sprintf(buf, "%02d:%02d:%02d", tm->tm_hour, tm->tm_min, tm->tm_sec); else if (uptime < ONE_WEEK_SECOND) sprintf(buf, "%dd%02dh%02dm", tm->tm_yday, tm->tm_hour, tm->tm_min); else sprintf(buf, "%02dw%dd%02dh", tm->tm_yday / 7, tm->tm_yday - ((tm->tm_yday / 7) * 7), tm->tm_hour); json_object_string_add(json_route, "uptime", buf); for (ALL_NEXTHOPS(re->ng, nexthop)) { json_nexthop = json_object_new_object(); json_object_int_add(json_nexthop, "flags", nexthop->flags); if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_DUPLICATE)) json_object_boolean_true_add(json_nexthop, "duplicate"); if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB)) json_object_boolean_true_add(json_nexthop, "fib"); switch (nexthop->type) { case NEXTHOP_TYPE_IPV4: case NEXTHOP_TYPE_IPV4_IFINDEX: json_object_string_add( json_nexthop, "ip", inet_ntoa(nexthop->gate.ipv4)); json_object_string_add(json_nexthop, "afi", "ipv4"); if (nexthop->ifindex) { json_object_int_add(json_nexthop, "interfaceIndex", nexthop->ifindex); json_object_string_add( json_nexthop, "interfaceName", ifindex2ifname( nexthop->ifindex, nexthop->vrf_id)); } break; case NEXTHOP_TYPE_IPV6: case NEXTHOP_TYPE_IPV6_IFINDEX: json_object_string_add( json_nexthop, "ip", inet_ntop(AF_INET6, &nexthop->gate.ipv6, buf, sizeof buf)); json_object_string_add(json_nexthop, "afi", "ipv6"); if (nexthop->ifindex) { json_object_int_add(json_nexthop, "interfaceIndex", nexthop->ifindex); json_object_string_add( json_nexthop, "interfaceName", ifindex2ifname( nexthop->ifindex, nexthop->vrf_id)); } break; case NEXTHOP_TYPE_IFINDEX: json_object_boolean_true_add( json_nexthop, "directlyConnected"); json_object_int_add(json_nexthop, "interfaceIndex", nexthop->ifindex); json_object_string_add( json_nexthop, "interfaceName", ifindex2ifname(nexthop->ifindex, nexthop->vrf_id)); break; case NEXTHOP_TYPE_BLACKHOLE: json_object_boolean_true_add(json_nexthop, "unreachable"); switch (nexthop->bh_type) { case BLACKHOLE_REJECT: json_object_boolean_true_add( json_nexthop, "reject"); break; case BLACKHOLE_ADMINPROHIB: json_object_boolean_true_add( json_nexthop, "admin-prohibited"); break; case BLACKHOLE_NULL: json_object_boolean_true_add( json_nexthop, "blackhole"); break; case BLACKHOLE_UNSPEC: break; } break; default: break; } if ((nexthop->vrf_id != re->vrf_id) && (nexthop->type != NEXTHOP_TYPE_BLACKHOLE)) { struct vrf *vrf = vrf_lookup_by_id(nexthop->vrf_id); json_object_string_add(json_nexthop, "vrf", vrf->name); } if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_DUPLICATE)) json_object_boolean_true_add(json_nexthop, "duplicate"); if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)) json_object_boolean_true_add(json_nexthop, "active"); if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK)) json_object_boolean_true_add(json_nexthop, "onLink"); if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE)) json_object_boolean_true_add(json_nexthop, "recursive"); switch (nexthop->type) { case NEXTHOP_TYPE_IPV4: case NEXTHOP_TYPE_IPV4_IFINDEX: if (nexthop->src.ipv4.s_addr) { if (inet_ntop(AF_INET, &nexthop->src.ipv4, buf, sizeof buf)) json_object_string_add( json_nexthop, "source", buf); } break; case NEXTHOP_TYPE_IPV6: case NEXTHOP_TYPE_IPV6_IFINDEX: if (!IPV6_ADDR_SAME(&nexthop->src.ipv6, &in6addr_any)) { if (inet_ntop(AF_INET6, &nexthop->src.ipv6, buf, sizeof buf)) json_object_string_add( json_nexthop, "source", buf); } break; default: break; } if (nexthop->nh_label && nexthop->nh_label->num_labels) { json_labels = json_object_new_array(); for (int label_index = 0; label_index < nexthop->nh_label->num_labels; label_index++) json_object_array_add( json_labels, json_object_new_int( nexthop->nh_label->label [label_index])); json_object_object_add(json_nexthop, "labels", json_labels); } json_object_array_add(json_nexthops, json_nexthop); } json_object_object_add(json_route, "nexthops", json_nexthops); json_object_array_add(json, json_route); return; } /* Nexthop information. */ for (ALL_NEXTHOPS(re->ng, nexthop)) { if (nexthop == re->ng.nexthop) { /* Prefix information. */ len = vty_out(vty, "%c", zebra_route_char(re->type)); if (re->instance) len += vty_out(vty, "[%d]", re->instance); len += vty_out( vty, "%c%c %s", CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED) ? '>' : ' ', re_status_output_char(re, nexthop), srcdest_rnode2str(rn, buf, sizeof buf)); /* Distance and metric display. */ if (((re->type == ZEBRA_ROUTE_CONNECT) && (re->distance || re->metric)) || (re->type != ZEBRA_ROUTE_CONNECT)) len += vty_out(vty, " [%u/%u]", re->distance, re->metric); } else { vty_out(vty, " %c%*c", re_status_output_char(re, nexthop), len - 3 + (2 * nexthop_level(nexthop)), ' '); } switch (nexthop->type) { case NEXTHOP_TYPE_IPV4: case NEXTHOP_TYPE_IPV4_IFINDEX: vty_out(vty, " via %s", inet_ntoa(nexthop->gate.ipv4)); if (nexthop->ifindex) vty_out(vty, ", %s", ifindex2ifname(nexthop->ifindex, nexthop->vrf_id)); break; case NEXTHOP_TYPE_IPV6: case NEXTHOP_TYPE_IPV6_IFINDEX: vty_out(vty, " via %s", inet_ntop(AF_INET6, &nexthop->gate.ipv6, buf, sizeof buf)); if (nexthop->ifindex) vty_out(vty, ", %s", ifindex2ifname(nexthop->ifindex, nexthop->vrf_id)); break; case NEXTHOP_TYPE_IFINDEX: vty_out(vty, " is directly connected, %s", ifindex2ifname(nexthop->ifindex, nexthop->vrf_id)); break; case NEXTHOP_TYPE_BLACKHOLE: vty_out(vty, " unreachable"); switch (nexthop->bh_type) { case BLACKHOLE_REJECT: vty_out(vty, " (ICMP unreachable)"); break; case BLACKHOLE_ADMINPROHIB: vty_out(vty, " (ICMP admin-prohibited)"); break; case BLACKHOLE_NULL: vty_out(vty, " (blackhole)"); break; case BLACKHOLE_UNSPEC: break; } break; default: break; } if ((nexthop->vrf_id != re->vrf_id) && (nexthop->type != NEXTHOP_TYPE_BLACKHOLE)) { struct vrf *vrf = vrf_lookup_by_id(nexthop->vrf_id); if (vrf) vty_out(vty, "(vrf %s)", vrf->name); else vty_out(vty, "(vrf UNKNOWN)"); } if (!CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)) vty_out(vty, " inactive"); if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK)) vty_out(vty, " onlink"); if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE)) vty_out(vty, " (recursive)"); switch (nexthop->type) { case NEXTHOP_TYPE_IPV4: case NEXTHOP_TYPE_IPV4_IFINDEX: if (nexthop->src.ipv4.s_addr) { if (inet_ntop(AF_INET, &nexthop->src.ipv4, buf, sizeof buf)) vty_out(vty, ", src %s", buf); } break; case NEXTHOP_TYPE_IPV6: case NEXTHOP_TYPE_IPV6_IFINDEX: if (!IPV6_ADDR_SAME(&nexthop->src.ipv6, &in6addr_any)) { if (inet_ntop(AF_INET6, &nexthop->src.ipv6, buf, sizeof buf)) vty_out(vty, ", src %s", buf); } break; default: break; } /* Label information */ if (nexthop->nh_label && nexthop->nh_label->num_labels) { vty_out(vty, ", label %s", mpls_label2str(nexthop->nh_label->num_labels, nexthop->nh_label->label, buf, sizeof buf, 1)); } if (uptime < ONE_DAY_SECOND) vty_out(vty, ", %02d:%02d:%02d", tm->tm_hour, tm->tm_min, tm->tm_sec); else if (uptime < ONE_WEEK_SECOND) vty_out(vty, ", %dd%02dh%02dm", tm->tm_yday, tm->tm_hour, tm->tm_min); else vty_out(vty, ", %02dw%dd%02dh", tm->tm_yday / 7, tm->tm_yday - ((tm->tm_yday / 7) * 7), tm->tm_hour); vty_out(vty, "\n"); } } static void vty_show_ip_route_detail_json(struct vty *vty, struct route_node *rn) { json_object *json = NULL; json_object *json_prefix = NULL; struct route_entry *re; char buf[BUFSIZ]; json = json_object_new_object(); json_prefix = json_object_new_array(); RNODE_FOREACH_RE (rn, re) { vty_show_ip_route(vty, rn, re, json_prefix); } prefix2str(&rn->p, buf, sizeof(buf)); json_object_object_add(json, buf, json_prefix); vty_out(vty, "%s\n", json_object_to_json_string_ext( json, JSON_C_TO_STRING_PRETTY)); json_object_free(json); } static void do_show_route_helper(struct vty *vty, struct zebra_vrf *zvrf, struct route_table *table, afi_t afi, bool use_fib, route_tag_t tag, const struct prefix *longer_prefix_p, bool supernets_only, int type, unsigned short ospf_instance_id, bool use_json) { struct route_node *rn; struct route_entry *re; int first = 1; rib_dest_t *dest; json_object *json = NULL; json_object *json_prefix = NULL; uint32_t addr; char buf[BUFSIZ]; if (use_json) json = json_object_new_object(); /* Show all routes. */ for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) { dest = rib_dest_from_rnode(rn); RNODE_FOREACH_RE (rn, re) { if (use_fib && re != dest->selected_fib) continue; if (tag && re->tag != tag) continue; if (longer_prefix_p && !prefix_match(longer_prefix_p, &rn->p)) continue; /* This can only be true when the afi is IPv4 */ if (supernets_only) { addr = ntohl(rn->p.u.prefix4.s_addr); if (IN_CLASSC(addr) && rn->p.prefixlen >= 24) continue; if (IN_CLASSB(addr) && rn->p.prefixlen >= 16) continue; if (IN_CLASSA(addr) && rn->p.prefixlen >= 8) continue; } if (type && re->type != type) continue; if (ospf_instance_id && (re->type != ZEBRA_ROUTE_OSPF || re->instance != ospf_instance_id)) continue; if (use_json) { if (!json_prefix) json_prefix = json_object_new_array(); } else { if (first) { if (afi == AFI_IP) vty_out(vty, SHOW_ROUTE_V4_HEADER); else vty_out(vty, SHOW_ROUTE_V6_HEADER); if (zvrf_id(zvrf) != VRF_DEFAULT) vty_out(vty, "\nVRF %s:\n", zvrf_name(zvrf)); first = 0; } } vty_show_ip_route(vty, rn, re, json_prefix); } if (json_prefix) { prefix2str(&rn->p, buf, sizeof(buf)); json_object_object_add(json, buf, json_prefix); json_prefix = NULL; } } if (use_json) { vty_out(vty, "%s\n", json_object_to_json_string_ext(json, JSON_C_TO_STRING_PRETTY)); json_object_free(json); } } static int do_show_ip_route(struct vty *vty, const char *vrf_name, afi_t afi, safi_t safi, bool use_fib, bool use_json, route_tag_t tag, const struct prefix *longer_prefix_p, bool supernets_only, int type, unsigned short ospf_instance_id) { struct route_table *table; struct zebra_vrf *zvrf = NULL; if (!(zvrf = zebra_vrf_lookup_by_name(vrf_name))) { if (use_json) vty_out(vty, "{}\n"); else vty_out(vty, "vrf %s not defined\n", vrf_name); return CMD_SUCCESS; } if (zvrf_id(zvrf) == VRF_UNKNOWN) { if (use_json) vty_out(vty, "{}\n"); else vty_out(vty, "vrf %s inactive\n", vrf_name); return CMD_SUCCESS; } table = zebra_vrf_table(afi, safi, zvrf_id(zvrf)); if (!table) { if (use_json) vty_out(vty, "{}\n"); return CMD_SUCCESS; } do_show_route_helper(vty, zvrf, table, afi, use_fib, tag, longer_prefix_p, supernets_only, type, ospf_instance_id, use_json); return CMD_SUCCESS; } DEFPY (show_route_table, show_route_table_cmd, "show route table (1-4294967295)$table [json$json]", SHOW_STR IP_STR IP6_STR "IP routing table\n" "Table to display\n" "The table number to display, if available\n" JSON_STR) { afi_t afi = ipv4 ? AFI_IP : AFI_IP6; struct zebra_vrf *zvrf = zebra_vrf_lookup_by_id(VRF_DEFAULT); struct route_table *t; t = zebra_router_find_table(zvrf, table, afi, SAFI_UNICAST); if (t) do_show_route_helper(vty, zvrf, t, afi, false, 0, false, false, 0, 0, !!json); return CMD_SUCCESS; } DEFPY (show_route_table_vrf, show_route_table_vrf_cmd, "show route table (1-4294967295)$table vrf NAME$vrf_name [json$json]", SHOW_STR IP_STR IP6_STR "IP routing table\n" "Table to display\n" "The table number to display, if available\n" VRF_CMD_HELP_STR JSON_STR) { afi_t afi = ipv4 ? AFI_IP : AFI_IP6; struct zebra_vrf *zvrf; struct route_table *t; vrf_id_t vrf_id = VRF_DEFAULT; if (vrf_name) VRF_GET_ID(vrf_id, vrf_name, !!json); zvrf = zebra_vrf_lookup_by_id(vrf_id); t = zebra_router_find_table(zvrf, table, afi, SAFI_UNICAST); if (t) do_show_route_helper(vty, zvrf, t, afi, false, 0, false, false, 0, 0, !!json); return CMD_SUCCESS; } DEFPY (show_ip_nht, show_ip_nht_cmd, "show nht [vrf NAME$vrf_name|vrf all$vrf_all]", SHOW_STR IP_STR IP6_STR "IP nexthop tracking table\n" VRF_CMD_HELP_STR VRF_ALL_CMD_HELP_STR) { afi_t afi = ipv4 ? AFI_IP : AFI_IP6; vrf_id_t vrf_id = VRF_DEFAULT; if (vrf_all) { struct vrf *vrf; struct zebra_vrf *zvrf; RB_FOREACH (vrf, vrf_name_head, &vrfs_by_name) if ((zvrf = vrf->info) != NULL) { vty_out(vty, "\nVRF %s:\n", zvrf_name(zvrf)); zebra_print_rnh_table(zvrf_id(zvrf), afi, vty, RNH_NEXTHOP_TYPE); } return CMD_SUCCESS; } if (vrf_name) VRF_GET_ID(vrf_id, vrf_name, false); zebra_print_rnh_table(vrf_id, afi, vty, RNH_NEXTHOP_TYPE); return CMD_SUCCESS; } DEFPY (show_ip_import_check, show_ip_import_check_cmd, "show import-check [vrf NAME$vrf_name|vrf all$vrf_all]", SHOW_STR IP_STR IP6_STR "IP import check tracking table\n" VRF_CMD_HELP_STR VRF_ALL_CMD_HELP_STR) { afi_t afi = ipv4 ? AFI_IP : AFI_IP6; vrf_id_t vrf_id = VRF_DEFAULT; if (vrf_all) { struct vrf *vrf; struct zebra_vrf *zvrf; RB_FOREACH (vrf, vrf_name_head, &vrfs_by_name) if ((zvrf = vrf->info) != NULL) { vty_out(vty, "\nVRF %s:\n", zvrf_name(zvrf)); zebra_print_rnh_table(zvrf_id(zvrf), afi, vty, RNH_IMPORT_CHECK_TYPE); } return CMD_SUCCESS; } if (vrf_name) VRF_GET_ID(vrf_id, vrf_name, false); zebra_print_rnh_table(vrf_id, afi, vty, RNH_IMPORT_CHECK_TYPE); return CMD_SUCCESS; } DEFUN (ip_nht_default_route, ip_nht_default_route_cmd, "ip nht resolve-via-default", IP_STR "Filter Next Hop tracking route resolution\n" "Resolve via default route\n") { ZEBRA_DECLVAR_CONTEXT(vrf, zvrf); if (!zvrf) return CMD_WARNING; if (zebra_rnh_ip_default_route) return CMD_SUCCESS; zebra_rnh_ip_default_route = 1; zebra_evaluate_rnh(zvrf, AFI_IP, 1, RNH_NEXTHOP_TYPE, NULL); return CMD_SUCCESS; } DEFUN (no_ip_nht_default_route, no_ip_nht_default_route_cmd, "no ip nht resolve-via-default", NO_STR IP_STR "Filter Next Hop tracking route resolution\n" "Resolve via default route\n") { ZEBRA_DECLVAR_CONTEXT(vrf, zvrf); if (!zvrf) return CMD_WARNING; if (!zebra_rnh_ip_default_route) return CMD_SUCCESS; zebra_rnh_ip_default_route = 0; zebra_evaluate_rnh(zvrf, AFI_IP, 1, RNH_NEXTHOP_TYPE, NULL); return CMD_SUCCESS; } DEFUN (ipv6_nht_default_route, ipv6_nht_default_route_cmd, "ipv6 nht resolve-via-default", IP6_STR "Filter Next Hop tracking route resolution\n" "Resolve via default route\n") { ZEBRA_DECLVAR_CONTEXT(vrf, zvrf); if (!zvrf) return CMD_WARNING; if (zebra_rnh_ipv6_default_route) return CMD_SUCCESS; zebra_rnh_ipv6_default_route = 1; zebra_evaluate_rnh(zvrf, AFI_IP6, 1, RNH_NEXTHOP_TYPE, NULL); return CMD_SUCCESS; } DEFUN (no_ipv6_nht_default_route, no_ipv6_nht_default_route_cmd, "no ipv6 nht resolve-via-default", NO_STR IP6_STR "Filter Next Hop tracking route resolution\n" "Resolve via default route\n") { ZEBRA_DECLVAR_CONTEXT(vrf, zvrf); if (!zvrf) return CMD_WARNING; if (!zebra_rnh_ipv6_default_route) return CMD_SUCCESS; zebra_rnh_ipv6_default_route = 0; zebra_evaluate_rnh(zvrf, AFI_IP6, 1, RNH_NEXTHOP_TYPE, NULL); return CMD_SUCCESS; } DEFPY (show_route, show_route_cmd, "show\ <\ ip$ipv4 [vrf ]\ [{\ tag (1-4294967295)\ |A.B.C.D/M$prefix longer-prefixes\ |supernets-only$supernets_only\ }]\ [<\ " FRR_IP_REDIST_STR_ZEBRA "$type_str\ |ospf$type_str (1-65535)$ospf_instance_id\ >]\ |ipv6$ipv6 [vrf ]\ [{\ tag (1-4294967295)\ |X:X::X:X/M$prefix longer-prefixes\ }]\ [" FRR_IP6_REDIST_STR_ZEBRA "$type_str]\ >\ [json$json]", SHOW_STR IP_STR "IP forwarding table\n" "IP routing table\n" VRF_FULL_CMD_HELP_STR "Show only routes with tag\n" "Tag value\n" "IP prefix /, e.g., 35.0.0.0/8\n" "Show route matching the specified Network/Mask pair only\n" "Show supernet entries only\n" FRR_IP_REDIST_HELP_STR_ZEBRA "Open Shortest Path First (OSPFv2)\n" "Instance ID\n" IPV6_STR "IP forwarding table\n" "IP routing table\n" VRF_FULL_CMD_HELP_STR "Show only routes with tag\n" "Tag value\n" "IPv6 prefix\n" "Show route matching the specified Network/Mask pair only\n" FRR_IP6_REDIST_HELP_STR_ZEBRA JSON_STR) { afi_t afi = ipv4 ? AFI_IP : AFI_IP6; struct vrf *vrf; int type = 0; if (type_str) { type = proto_redistnum(afi, type_str); if (type < 0) { vty_out(vty, "Unknown route type\n"); return CMD_WARNING; } } if (vrf_all) { RB_FOREACH (vrf, vrf_name_head, &vrfs_by_name) { struct zebra_vrf *zvrf; struct route_table *table; if ((zvrf = vrf->info) == NULL || (table = zvrf->table[afi][SAFI_UNICAST]) == NULL) continue; do_show_ip_route( vty, zvrf_name(zvrf), afi, SAFI_UNICAST, !!fib, !!json, tag, prefix_str ? prefix : NULL, !!supernets_only, type, ospf_instance_id); } } else { vrf_id_t vrf_id = VRF_DEFAULT; if (vrf_name) VRF_GET_ID(vrf_id, vrf_name, !!json); vrf = vrf_lookup_by_id(vrf_id); do_show_ip_route(vty, vrf->name, afi, SAFI_UNICAST, !!fib, !!json, tag, prefix_str ? prefix : NULL, !!supernets_only, type, ospf_instance_id); } return CMD_SUCCESS; } DEFPY (show_route_detail, show_route_detail_cmd, "show\ <\ ip$ipv4 route [vrf ]\ <\ A.B.C.D$address\ |A.B.C.D/M$prefix\ >\ |ipv6$ipv6 route [vrf ]\ <\ X:X::X:X$address\ |X:X::X:X/M$prefix\ >\ >\ [json$json]", SHOW_STR IP_STR "IP routing table\n" VRF_FULL_CMD_HELP_STR "Network in the IP routing table to display\n" "IP prefix /, e.g., 35.0.0.0/8\n" IP6_STR "IP routing table\n" VRF_FULL_CMD_HELP_STR "IPv6 Address\n" "IPv6 prefix\n" JSON_STR) { afi_t afi = ipv4 ? AFI_IP : AFI_IP6; struct route_table *table; struct prefix p; struct route_node *rn; if (address_str) prefix_str = address_str; if (str2prefix(prefix_str, &p) < 0) { vty_out(vty, "%% Malformed address\n"); return CMD_WARNING; } if (vrf_all) { struct vrf *vrf; struct zebra_vrf *zvrf; RB_FOREACH (vrf, vrf_name_head, &vrfs_by_name) { if ((zvrf = vrf->info) == NULL || (table = zvrf->table[afi][SAFI_UNICAST]) == NULL) continue; rn = route_node_match(table, &p); if (!rn) continue; if (!address_str && rn->p.prefixlen != p.prefixlen) { route_unlock_node(rn); continue; } if (json) vty_show_ip_route_detail_json(vty, rn); else vty_show_ip_route_detail(vty, rn, 0); route_unlock_node(rn); } } else { vrf_id_t vrf_id = VRF_DEFAULT; if (vrf_name) VRF_GET_ID(vrf_id, vrf_name, false); table = zebra_vrf_table(afi, SAFI_UNICAST, vrf_id); if (!table) return CMD_SUCCESS; rn = route_node_match(table, &p); if (!rn) { vty_out(vty, "%% Network not in table\n"); return CMD_WARNING; } if (!address_str && rn->p.prefixlen != p.prefixlen) { vty_out(vty, "%% Network not in table\n"); route_unlock_node(rn); return CMD_WARNING; } if (json) vty_show_ip_route_detail_json(vty, rn); else vty_show_ip_route_detail(vty, rn, 0); route_unlock_node(rn); } return CMD_SUCCESS; } DEFPY (show_route_summary, show_route_summary_cmd, "show\ <\ ip$ipv4 route [vrf ]\ summary [prefix$prefix]\ |ipv6$ipv6 route [vrf ]\ summary [prefix$prefix]\ >", SHOW_STR IP_STR "IP routing table\n" VRF_FULL_CMD_HELP_STR "Summary of all routes\n" "Prefix routes\n" IP6_STR "IP routing table\n" VRF_FULL_CMD_HELP_STR "Summary of all routes\n" "Prefix routes\n") { afi_t afi = ipv4 ? AFI_IP : AFI_IP6; struct route_table *table; if (vrf_all) { struct vrf *vrf; struct zebra_vrf *zvrf; RB_FOREACH (vrf, vrf_name_head, &vrfs_by_name) { if ((zvrf = vrf->info) == NULL || (table = zvrf->table[afi][SAFI_UNICAST]) == NULL) continue; if (prefix) vty_show_ip_route_summary_prefix(vty, table); else vty_show_ip_route_summary(vty, table); } } else { vrf_id_t vrf_id = VRF_DEFAULT; if (vrf_name) VRF_GET_ID(vrf_id, vrf_name, false); table = zebra_vrf_table(afi, SAFI_UNICAST, vrf_id); if (!table) return CMD_SUCCESS; if (prefix) vty_show_ip_route_summary_prefix(vty, table); else vty_show_ip_route_summary(vty, table); } return CMD_SUCCESS; } static void vty_show_ip_route_summary(struct vty *vty, struct route_table *table) { struct route_node *rn; struct route_entry *re; #define ZEBRA_ROUTE_IBGP ZEBRA_ROUTE_MAX #define ZEBRA_ROUTE_TOTAL (ZEBRA_ROUTE_IBGP + 1) uint32_t rib_cnt[ZEBRA_ROUTE_TOTAL + 1]; uint32_t fib_cnt[ZEBRA_ROUTE_TOTAL + 1]; uint32_t i; uint32_t is_ibgp; memset(&rib_cnt, 0, sizeof(rib_cnt)); memset(&fib_cnt, 0, sizeof(fib_cnt)); for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) RNODE_FOREACH_RE (rn, re) { is_ibgp = (re->type == ZEBRA_ROUTE_BGP && CHECK_FLAG(re->flags, ZEBRA_FLAG_IBGP)); rib_cnt[ZEBRA_ROUTE_TOTAL]++; if (is_ibgp) rib_cnt[ZEBRA_ROUTE_IBGP]++; else rib_cnt[re->type]++; if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) { fib_cnt[ZEBRA_ROUTE_TOTAL]++; if (is_ibgp) fib_cnt[ZEBRA_ROUTE_IBGP]++; else fib_cnt[re->type]++; } } vty_out(vty, "%-20s %-20s %s (vrf %s)\n", "Route Source", "Routes", "FIB", zvrf_name(((rib_table_info_t *)route_table_get_info(table))->zvrf)); for (i = 0; i < ZEBRA_ROUTE_MAX; i++) { if ((rib_cnt[i] > 0) || (i == ZEBRA_ROUTE_BGP && rib_cnt[ZEBRA_ROUTE_IBGP] > 0)) { if (i == ZEBRA_ROUTE_BGP) { vty_out(vty, "%-20s %-20d %-20d \n", "ebgp", rib_cnt[ZEBRA_ROUTE_BGP], fib_cnt[ZEBRA_ROUTE_BGP]); vty_out(vty, "%-20s %-20d %-20d \n", "ibgp", rib_cnt[ZEBRA_ROUTE_IBGP], fib_cnt[ZEBRA_ROUTE_IBGP]); } else vty_out(vty, "%-20s %-20d %-20d \n", zebra_route_string(i), rib_cnt[i], fib_cnt[i]); } } vty_out(vty, "------\n"); vty_out(vty, "%-20s %-20d %-20d \n", "Totals", rib_cnt[ZEBRA_ROUTE_TOTAL], fib_cnt[ZEBRA_ROUTE_TOTAL]); vty_out(vty, "\n"); } /* * Implementation of the ip route summary prefix command. * * This command prints the primary prefixes that have been installed by various * protocols on the box. * */ static void vty_show_ip_route_summary_prefix(struct vty *vty, struct route_table *table) { struct route_node *rn; struct route_entry *re; struct nexthop *nexthop; #define ZEBRA_ROUTE_IBGP ZEBRA_ROUTE_MAX #define ZEBRA_ROUTE_TOTAL (ZEBRA_ROUTE_IBGP + 1) uint32_t rib_cnt[ZEBRA_ROUTE_TOTAL + 1]; uint32_t fib_cnt[ZEBRA_ROUTE_TOTAL + 1]; uint32_t i; int cnt; memset(&rib_cnt, 0, sizeof(rib_cnt)); memset(&fib_cnt, 0, sizeof(fib_cnt)); for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) RNODE_FOREACH_RE (rn, re) { /* * In case of ECMP, count only once. */ cnt = 0; if (CHECK_FLAG(re->status, ROUTE_ENTRY_INSTALLED)) { fib_cnt[ZEBRA_ROUTE_TOTAL]++; fib_cnt[re->type]++; } for (nexthop = re->ng.nexthop; (!cnt && nexthop); nexthop = nexthop->next) { cnt++; rib_cnt[ZEBRA_ROUTE_TOTAL]++; rib_cnt[re->type]++; if (re->type == ZEBRA_ROUTE_BGP && CHECK_FLAG(re->flags, ZEBRA_FLAG_IBGP)) { rib_cnt[ZEBRA_ROUTE_IBGP]++; if (CHECK_FLAG(re->status, ROUTE_ENTRY_INSTALLED)) fib_cnt[ZEBRA_ROUTE_IBGP]++; } } } vty_out(vty, "%-20s %-20s %s (vrf %s)\n", "Route Source", "Prefix Routes", "FIB", zvrf_name(((rib_table_info_t *)route_table_get_info(table))->zvrf)); for (i = 0; i < ZEBRA_ROUTE_MAX; i++) { if (rib_cnt[i] > 0) { if (i == ZEBRA_ROUTE_BGP) { vty_out(vty, "%-20s %-20d %-20d \n", "ebgp", rib_cnt[ZEBRA_ROUTE_BGP] - rib_cnt[ZEBRA_ROUTE_IBGP], fib_cnt[ZEBRA_ROUTE_BGP] - fib_cnt[ZEBRA_ROUTE_IBGP]); vty_out(vty, "%-20s %-20d %-20d \n", "ibgp", rib_cnt[ZEBRA_ROUTE_IBGP], fib_cnt[ZEBRA_ROUTE_IBGP]); } else vty_out(vty, "%-20s %-20d %-20d \n", zebra_route_string(i), rib_cnt[i], fib_cnt[i]); } } vty_out(vty, "------\n"); vty_out(vty, "%-20s %-20d %-20d \n", "Totals", rib_cnt[ZEBRA_ROUTE_TOTAL], fib_cnt[ZEBRA_ROUTE_TOTAL]); vty_out(vty, "\n"); } /* * Show IPv6 mroute command.Used to dump * the Multicast routing table. */ DEFUN (show_ipv6_mroute, show_ipv6_mroute_cmd, "show ipv6 mroute [vrf NAME]", SHOW_STR IP_STR "IPv6 Multicast routing table\n" VRF_CMD_HELP_STR) { struct route_table *table; struct route_node *rn; struct route_entry *re; int first = 1; vrf_id_t vrf_id = VRF_DEFAULT; if (argc == 5) VRF_GET_ID(vrf_id, argv[4]->arg, false); table = zebra_vrf_table(AFI_IP6, SAFI_MULTICAST, vrf_id); if (!table) return CMD_SUCCESS; /* Show all IPv6 route. */ for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) RNODE_FOREACH_RE (rn, re) { if (first) { vty_out(vty, SHOW_ROUTE_V6_HEADER); first = 0; } vty_show_ip_route(vty, rn, re, NULL); } return CMD_SUCCESS; } DEFUN (show_ipv6_mroute_vrf_all, show_ipv6_mroute_vrf_all_cmd, "show ipv6 mroute vrf all", SHOW_STR IP_STR "IPv6 Multicast routing table\n" VRF_ALL_CMD_HELP_STR) { struct route_table *table; struct route_node *rn; struct route_entry *re; struct vrf *vrf; struct zebra_vrf *zvrf; int first = 1; RB_FOREACH (vrf, vrf_name_head, &vrfs_by_name) { if ((zvrf = vrf->info) == NULL || (table = zvrf->table[AFI_IP6][SAFI_MULTICAST]) == NULL) continue; /* Show all IPv6 route. */ for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) RNODE_FOREACH_RE (rn, re) { if (first) { vty_out(vty, SHOW_ROUTE_V6_HEADER); first = 0; } vty_show_ip_route(vty, rn, re, NULL); } } return CMD_SUCCESS; } DEFUN (allow_external_route_update, allow_external_route_update_cmd, "allow-external-route-update", "Allow FRR routes to be overwritten by external processes\n") { allow_delete = 1; return CMD_SUCCESS; } DEFUN (no_allow_external_route_update, no_allow_external_route_update_cmd, "no allow-external-route-update", NO_STR "Allow FRR routes to be overwritten by external processes\n") { allow_delete = 0; return CMD_SUCCESS; } /* show vrf */ DEFUN (show_vrf, show_vrf_cmd, "show vrf", SHOW_STR "VRF\n") { struct vrf *vrf; struct zebra_vrf *zvrf; if (vrf_is_backend_netns()) vty_out(vty, "netns-based vrfs\n"); RB_FOREACH (vrf, vrf_name_head, &vrfs_by_name) { if (!(zvrf = vrf->info)) continue; if (zvrf_id(zvrf) == VRF_DEFAULT) continue; vty_out(vty, "vrf %s ", zvrf_name(zvrf)); if (zvrf_id(zvrf) == VRF_UNKNOWN || !zvrf_is_active(zvrf)) vty_out(vty, "inactive"); else if (zvrf_ns_name(zvrf)) vty_out(vty, "id %u netns %s", zvrf_id(zvrf), zvrf_ns_name(zvrf)); else vty_out(vty, "id %u table %u", zvrf_id(zvrf), zvrf->table_id); if (vrf_is_user_cfged(vrf)) vty_out(vty, " (configured)"); vty_out(vty, "\n"); } return CMD_SUCCESS; } DEFUN_HIDDEN (default_vrf_vni_mapping, default_vrf_vni_mapping_cmd, "vni " CMD_VNI_RANGE "[prefix-routes-only]", "VNI corresponding to the DEFAULT VRF\n" "VNI-ID\n" "Prefix routes only \n") { int ret = 0; char err[ERR_STR_SZ]; struct zebra_vrf *zvrf = NULL; vni_t vni = strtoul(argv[1]->arg, NULL, 10); int filter = 0; zvrf = vrf_info_lookup(VRF_DEFAULT); if (!zvrf) return CMD_WARNING; if (argc == 3) filter = 1; ret = zebra_vxlan_process_vrf_vni_cmd(zvrf, vni, err, ERR_STR_SZ, filter, 1); if (ret != 0) { vty_out(vty, "%s\n", err); return CMD_WARNING; } return CMD_SUCCESS; } DEFUN_HIDDEN (no_default_vrf_vni_mapping, no_default_vrf_vni_mapping_cmd, "no vni " CMD_VNI_RANGE, NO_STR "VNI corresponding to DEFAULT VRF\n" "VNI-ID") { int ret = 0; char err[ERR_STR_SZ]; vni_t vni = strtoul(argv[2]->arg, NULL, 10); struct zebra_vrf *zvrf = NULL; zvrf = vrf_info_lookup(VRF_DEFAULT); if (!zvrf) return CMD_WARNING; ret = zebra_vxlan_process_vrf_vni_cmd(zvrf, vni, err, ERR_STR_SZ, 0, 0); if (ret != 0) { vty_out(vty, "%s\n", err); return CMD_WARNING; } return CMD_SUCCESS; } DEFUN (vrf_vni_mapping, vrf_vni_mapping_cmd, "vni " CMD_VNI_RANGE "[prefix-routes-only]", "VNI corresponding to tenant VRF\n" "VNI-ID\n" "prefix-routes-only\n") { int ret = 0; int filter = 0; ZEBRA_DECLVAR_CONTEXT(vrf, zvrf); vni_t vni = strtoul(argv[1]->arg, NULL, 10); char err[ERR_STR_SZ]; assert(vrf); assert(zvrf); if (argc == 3) filter = 1; /* Mark as having FRR configuration */ vrf_set_user_cfged(vrf); ret = zebra_vxlan_process_vrf_vni_cmd(zvrf, vni, err, ERR_STR_SZ, filter, 1); if (ret != 0) { vty_out(vty, "%s\n", err); return CMD_WARNING; } return CMD_SUCCESS; } DEFUN (no_vrf_vni_mapping, no_vrf_vni_mapping_cmd, "no vni " CMD_VNI_RANGE "[prefix-routes-only]", NO_STR "VNI corresponding to tenant VRF\n" "VNI-ID\n" "prefix-routes-only\n") { int ret = 0; int filter = 0; char err[ERR_STR_SZ]; vni_t vni = strtoul(argv[2]->arg, NULL, 10); ZEBRA_DECLVAR_CONTEXT(vrf, zvrf); assert(vrf); assert(zvrf); if (argc == 4) filter = 1; ret = zebra_vxlan_process_vrf_vni_cmd(zvrf, vni, err, ERR_STR_SZ, filter, 0); if (ret != 0) { vty_out(vty, "%s\n", err); return CMD_WARNING; } /* If no other FRR config for this VRF, mark accordingly. */ if (!zebra_vrf_has_config(zvrf)) vrf_reset_user_cfged(vrf); return CMD_SUCCESS; } /* show vrf */ DEFUN (show_vrf_vni, show_vrf_vni_cmd, "show vrf vni [json]", SHOW_STR "VRF\n" "VNI\n" JSON_STR) { struct vrf *vrf; struct zebra_vrf *zvrf; json_object *json = NULL; json_object *json_vrfs = NULL; bool uj = use_json(argc, argv); if (uj) { json = json_object_new_object(); json_vrfs = json_object_new_array(); } if (!uj) vty_out(vty, "%-37s %-10s %-20s %-20s %-5s %-18s\n", "VRF", "VNI", "VxLAN IF", "L3-SVI", "State", "Rmac"); RB_FOREACH (vrf, vrf_name_head, &vrfs_by_name) { zvrf = vrf->info; if (!zvrf) continue; zebra_vxlan_print_vrf_vni(vty, zvrf, json_vrfs); } if (uj) { json_object_object_add(json, "vrfs", json_vrfs); vty_out(vty, "%s\n", json_object_to_json_string_ext( json, JSON_C_TO_STRING_PRETTY)); json_object_free(json); } return CMD_SUCCESS; } DEFUN (show_evpn_global, show_evpn_global_cmd, "show evpn [json]", SHOW_STR "EVPN\n" JSON_STR) { bool uj = use_json(argc, argv); zebra_vxlan_print_evpn(vty, uj); return CMD_SUCCESS; } DEFUN (show_evpn_vni, show_evpn_vni_cmd, "show evpn vni [json]", SHOW_STR "EVPN\n" "VxLAN Network Identifier\n" JSON_STR) { struct zebra_vrf *zvrf; bool uj = use_json(argc, argv); zvrf = vrf_info_lookup(VRF_DEFAULT); zebra_vxlan_print_vnis(vty, zvrf, uj); return CMD_SUCCESS; } DEFUN (show_evpn_vni_detail, show_evpn_vni_detail_cmd, "show evpn vni detail [json]", SHOW_STR "EVPN\n" "VxLAN Network Identifier\n" "Detailed Information On Each VNI\n" JSON_STR) { struct zebra_vrf *zvrf; bool uj = use_json(argc, argv); zvrf = vrf_info_lookup(VRF_DEFAULT); zebra_vxlan_print_vnis_detail(vty, zvrf, uj); return CMD_SUCCESS; } DEFUN (show_evpn_vni_vni, show_evpn_vni_vni_cmd, "show evpn vni " CMD_VNI_RANGE "[json]", SHOW_STR "EVPN\n" "VxLAN Network Identifier\n" "VNI number\n" JSON_STR) { struct zebra_vrf *zvrf; vni_t vni; bool uj = use_json(argc, argv); vni = strtoul(argv[3]->arg, NULL, 10); zvrf = vrf_info_lookup(VRF_DEFAULT); zebra_vxlan_print_vni(vty, zvrf, vni, uj); return CMD_SUCCESS; } DEFUN (show_evpn_rmac_vni_mac, show_evpn_rmac_vni_mac_cmd, "show evpn rmac vni " CMD_VNI_RANGE " mac WORD [json]", SHOW_STR "EVPN\n" "RMAC\n" "L3 VNI\n" "VNI number\n" "MAC\n" "mac-address (e.g. 0a:0a:0a:0a:0a:0a)\n" JSON_STR) { vni_t l3vni = 0; struct ethaddr mac; bool uj = use_json(argc, argv); l3vni = strtoul(argv[4]->arg, NULL, 10); if (!prefix_str2mac(argv[6]->arg, &mac)) { vty_out(vty, "%% Malformed MAC address\n"); return CMD_WARNING; } zebra_vxlan_print_specific_rmac_l3vni(vty, l3vni, &mac, uj); return CMD_SUCCESS; } DEFUN (show_evpn_rmac_vni, show_evpn_rmac_vni_cmd, "show evpn rmac vni " CMD_VNI_RANGE "[json]", SHOW_STR "EVPN\n" "RMAC\n" "L3 VNI\n" "VNI number\n" JSON_STR) { vni_t l3vni = 0; bool uj = use_json(argc, argv); l3vni = strtoul(argv[4]->arg, NULL, 10); zebra_vxlan_print_rmacs_l3vni(vty, l3vni, uj); return CMD_SUCCESS; } DEFUN (show_evpn_rmac_vni_all, show_evpn_rmac_vni_all_cmd, "show evpn rmac vni all [json]", SHOW_STR "EVPN\n" "RMAC addresses\n" "L3 VNI\n" "All VNIs\n" JSON_STR) { bool uj = use_json(argc, argv); zebra_vxlan_print_rmacs_all_l3vni(vty, uj); return CMD_SUCCESS; } DEFUN (show_evpn_nh_vni_ip, show_evpn_nh_vni_ip_cmd, "show evpn next-hops vni " CMD_VNI_RANGE " ip WORD [json]", SHOW_STR "EVPN\n" "Remote Vteps\n" "L3 VNI\n" "VNI number\n" "Ip address\n" "Host address (ipv4 or ipv6)\n" JSON_STR) { vni_t l3vni; struct ipaddr ip; bool uj = use_json(argc, argv); l3vni = strtoul(argv[4]->arg, NULL, 10); if (str2ipaddr(argv[6]->arg, &ip) != 0) { if (!uj) vty_out(vty, "%% Malformed Neighbor address\n"); return CMD_WARNING; } zebra_vxlan_print_specific_nh_l3vni(vty, l3vni, &ip, uj); return CMD_SUCCESS; } DEFUN (show_evpn_nh_vni, show_evpn_nh_vni_cmd, "show evpn next-hops vni " CMD_VNI_RANGE "[json]", SHOW_STR "EVPN\n" "Remote Vteps\n" "L3 VNI\n" "VNI number\n" JSON_STR) { vni_t l3vni; bool uj = use_json(argc, argv); l3vni = strtoul(argv[4]->arg, NULL, 10); zebra_vxlan_print_nh_l3vni(vty, l3vni, uj); return CMD_SUCCESS; } DEFUN (show_evpn_nh_vni_all, show_evpn_nh_vni_all_cmd, "show evpn next-hops vni all [json]", SHOW_STR "EVPN\n" "Remote VTEPs\n" "L3 VNI\n" "All VNIs\n" JSON_STR) { bool uj = use_json(argc, argv); zebra_vxlan_print_nh_all_l3vni(vty, uj); return CMD_SUCCESS; } DEFUN (show_evpn_mac_vni, show_evpn_mac_vni_cmd, "show evpn mac vni " CMD_VNI_RANGE "[json]", SHOW_STR "EVPN\n" "MAC addresses\n" "VxLAN Network Identifier\n" "VNI number\n" JSON_STR) { struct zebra_vrf *zvrf; vni_t vni; bool uj = use_json(argc, argv); vni = strtoul(argv[4]->arg, NULL, 10); zvrf = vrf_info_lookup(VRF_DEFAULT); zebra_vxlan_print_macs_vni(vty, zvrf, vni, uj); return CMD_SUCCESS; } DEFUN (show_evpn_mac_vni_all, show_evpn_mac_vni_all_cmd, "show evpn mac vni all [json]", SHOW_STR "EVPN\n" "MAC addresses\n" "VxLAN Network Identifier\n" "All VNIs\n" JSON_STR) { struct zebra_vrf *zvrf; bool uj = use_json(argc, argv); zvrf = vrf_info_lookup(VRF_DEFAULT); zebra_vxlan_print_macs_all_vni(vty, zvrf, false, uj); return CMD_SUCCESS; } DEFUN (show_evpn_mac_vni_all_detail, show_evpn_mac_vni_all_detail_cmd, "show evpn mac vni all detail [json]", SHOW_STR "EVPN\n" "MAC addresses\n" "VxLAN Network Identifier\n" "All VNIs\n" "Detailed Information On Each VNI MAC\n" JSON_STR) { struct zebra_vrf *zvrf; bool uj = use_json(argc, argv); zvrf = vrf_info_lookup(VRF_DEFAULT); zebra_vxlan_print_macs_all_vni_detail(vty, zvrf, false, uj); return CMD_SUCCESS; } DEFUN (show_evpn_mac_vni_all_vtep, show_evpn_mac_vni_all_vtep_cmd, "show evpn mac vni all vtep A.B.C.D [json]", SHOW_STR "EVPN\n" "MAC addresses\n" "VxLAN Network Identifier\n" "All VNIs\n" "Remote VTEP\n" "Remote VTEP IP address\n" JSON_STR) { struct zebra_vrf *zvrf; struct in_addr vtep_ip; bool uj = use_json(argc, argv); if (!inet_aton(argv[6]->arg, &vtep_ip)) { if (!uj) vty_out(vty, "%% Malformed VTEP IP address\n"); return CMD_WARNING; } zvrf = vrf_info_lookup(VRF_DEFAULT); zebra_vxlan_print_macs_all_vni_vtep(vty, zvrf, vtep_ip, uj); return CMD_SUCCESS; } DEFUN (show_evpn_mac_vni_mac, show_evpn_mac_vni_mac_cmd, "show evpn mac vni " CMD_VNI_RANGE " mac WORD [json]", SHOW_STR "EVPN\n" "MAC addresses\n" "VxLAN Network Identifier\n" "VNI number\n" "MAC\n" "MAC address (e.g., 00:e0:ec:20:12:62)\n" JSON_STR) { struct zebra_vrf *zvrf; vni_t vni; struct ethaddr mac; bool uj = use_json(argc, argv); vni = strtoul(argv[4]->arg, NULL, 10); if (!prefix_str2mac(argv[6]->arg, &mac)) { vty_out(vty, "%% Malformed MAC address"); return CMD_WARNING; } zvrf = vrf_info_lookup(VRF_DEFAULT); zebra_vxlan_print_specific_mac_vni(vty, zvrf, vni, &mac, uj); return CMD_SUCCESS; } DEFUN (show_evpn_mac_vni_vtep, show_evpn_mac_vni_vtep_cmd, "show evpn mac vni " CMD_VNI_RANGE " vtep A.B.C.D" "[json]", SHOW_STR "EVPN\n" "MAC addresses\n" "VxLAN Network Identifier\n" "VNI number\n" "Remote VTEP\n" "Remote VTEP IP address\n" JSON_STR) { struct zebra_vrf *zvrf; vni_t vni; struct in_addr vtep_ip; bool uj = use_json(argc, argv); vni = strtoul(argv[4]->arg, NULL, 10); if (!inet_aton(argv[6]->arg, &vtep_ip)) { if (!uj) vty_out(vty, "%% Malformed VTEP IP address\n"); return CMD_WARNING; } zvrf = vrf_info_lookup(VRF_DEFAULT); zebra_vxlan_print_macs_vni_vtep(vty, zvrf, vni, vtep_ip, uj); return CMD_SUCCESS; } DEFPY (show_evpn_mac_vni_all_dad, show_evpn_mac_vni_all_dad_cmd, "show evpn mac vni all duplicate [json]", SHOW_STR "EVPN\n" "MAC addresses\n" "VxLAN Network Identifier\n" "All VNIs\n" "Duplicate address list\n" JSON_STR) { struct zebra_vrf *zvrf; bool uj = use_json(argc, argv); zvrf = vrf_info_lookup(VRF_DEFAULT); zebra_vxlan_print_macs_all_vni(vty, zvrf, true, uj); return CMD_SUCCESS; } DEFPY (show_evpn_mac_vni_dad, show_evpn_mac_vni_dad_cmd, "show evpn mac vni " CMD_VNI_RANGE " duplicate" "[json]", SHOW_STR "EVPN\n" "MAC addresses\n" "VxLAN Network Identifier\n" "VNI number\n" "Duplicate address list\n" JSON_STR) { struct zebra_vrf *zvrf; vni_t vni; bool uj = use_json(argc, argv); vni = strtoul(argv[4]->arg, NULL, 10); zvrf = vrf_info_lookup(VRF_DEFAULT); zebra_vxlan_print_macs_vni_dad(vty, zvrf, vni, uj); return CMD_SUCCESS; } DEFPY (show_evpn_neigh_vni_dad, show_evpn_neigh_vni_dad_cmd, "show evpn arp-cache vni " CMD_VNI_RANGE "duplicate" "[json]", SHOW_STR "EVPN\n" "ARP and ND cache\n" "VxLAN Network Identifier\n" "VNI number\n" "Duplicate address list\n" JSON_STR) { struct zebra_vrf *zvrf; vni_t vni; bool uj = use_json(argc, argv); vni = strtoul(argv[4]->arg, NULL, 10); zvrf = vrf_info_lookup(VRF_DEFAULT); zebra_vxlan_print_neigh_vni_dad(vty, zvrf, vni, uj); return CMD_SUCCESS; } DEFPY (show_evpn_neigh_vni_all_dad, show_evpn_neigh_vni_all_dad_cmd, "show evpn arp-cache vni all duplicate [json]", SHOW_STR "EVPN\n" "ARP and ND cache\n" "VxLAN Network Identifier\n" "All VNIs\n" "Duplicate address list\n" JSON_STR) { struct zebra_vrf *zvrf; bool uj = use_json(argc, argv); zvrf = vrf_info_lookup(VRF_DEFAULT); zebra_vxlan_print_neigh_all_vni(vty, zvrf, true, uj); return CMD_SUCCESS; } DEFUN (show_evpn_neigh_vni, show_evpn_neigh_vni_cmd, "show evpn arp-cache vni " CMD_VNI_RANGE "[json]", SHOW_STR "EVPN\n" "ARP and ND cache\n" "VxLAN Network Identifier\n" "VNI number\n" JSON_STR) { struct zebra_vrf *zvrf; vni_t vni; bool uj = use_json(argc, argv); vni = strtoul(argv[4]->arg, NULL, 10); zvrf = vrf_info_lookup(VRF_DEFAULT); zebra_vxlan_print_neigh_vni(vty, zvrf, vni, uj); return CMD_SUCCESS; } DEFUN (show_evpn_neigh_vni_all, show_evpn_neigh_vni_all_cmd, "show evpn arp-cache vni all [json]", SHOW_STR "EVPN\n" "ARP and ND cache\n" "VxLAN Network Identifier\n" "All VNIs\n" JSON_STR) { struct zebra_vrf *zvrf; bool uj = use_json(argc, argv); zvrf = vrf_info_lookup(VRF_DEFAULT); zebra_vxlan_print_neigh_all_vni(vty, zvrf, false, uj); return CMD_SUCCESS; } DEFUN (show_evpn_neigh_vni_all_detail, show_evpn_neigh_vni_all_detail_cmd, "show evpn arp-cache vni all detail [json]", SHOW_STR "EVPN\n" "ARP and ND cache\n" "VxLAN Network Identifier\n" "All VNIs\n" "Neighbor details for all vnis in detail\n" JSON_STR) { struct zebra_vrf *zvrf; bool uj = use_json(argc, argv); zvrf = vrf_info_lookup(VRF_DEFAULT); zebra_vxlan_print_neigh_all_vni_detail(vty, zvrf, false, uj); return CMD_SUCCESS; } DEFUN (show_evpn_neigh_vni_neigh, show_evpn_neigh_vni_neigh_cmd, "show evpn arp-cache vni " CMD_VNI_RANGE " ip WORD [json]", SHOW_STR "EVPN\n" "ARP and ND cache\n" "VxLAN Network Identifier\n" "VNI number\n" "Neighbor\n" "Neighbor address (IPv4 or IPv6 address)\n" JSON_STR) { struct zebra_vrf *zvrf; vni_t vni; struct ipaddr ip; bool uj = use_json(argc, argv); vni = strtoul(argv[4]->arg, NULL, 10); if (str2ipaddr(argv[6]->arg, &ip) != 0) { if (!uj) vty_out(vty, "%% Malformed Neighbor address\n"); return CMD_WARNING; } zvrf = vrf_info_lookup(VRF_DEFAULT); zebra_vxlan_print_specific_neigh_vni(vty, zvrf, vni, &ip, uj); return CMD_SUCCESS; } DEFUN (show_evpn_neigh_vni_vtep, show_evpn_neigh_vni_vtep_cmd, "show evpn arp-cache vni " CMD_VNI_RANGE " vtep A.B.C.D [json]", SHOW_STR "EVPN\n" "ARP and ND cache\n" "VxLAN Network Identifier\n" "VNI number\n" "Remote VTEP\n" "Remote VTEP IP address\n" JSON_STR) { struct zebra_vrf *zvrf; vni_t vni; struct in_addr vtep_ip; bool uj = use_json(argc, argv); vni = strtoul(argv[4]->arg, NULL, 10); if (!inet_aton(argv[6]->arg, &vtep_ip)) { if (!uj) vty_out(vty, "%% Malformed VTEP IP address\n"); return CMD_WARNING; } zvrf = vrf_info_lookup(VRF_DEFAULT); zebra_vxlan_print_neigh_vni_vtep(vty, zvrf, vni, vtep_ip, uj); return CMD_SUCCESS; } /* policy routing contexts */ DEFUN (show_pbr_ipset, show_pbr_ipset_cmd, "show pbr ipset [WORD]", SHOW_STR "Policy-Based Routing\n" "IPset Context information\n" "IPset Name information\n") { int idx = 0; int found = 0; found = argv_find(argv, argc, "WORD", &idx); if (!found) zebra_pbr_show_ipset_list(vty, NULL); else zebra_pbr_show_ipset_list(vty, argv[idx]->arg); return CMD_SUCCESS; } /* policy routing contexts */ DEFUN (show_pbr_iptable, show_pbr_iptable_cmd, "show pbr iptable [WORD]", SHOW_STR "Policy-Based Routing\n" "IPtable Context information\n" "IPtable Name information\n") { int idx = 0; int found = 0; found = argv_find(argv, argc, "WORD", &idx); if (!found) zebra_pbr_show_iptable(vty, NULL); else zebra_pbr_show_iptable(vty, argv[idx]->arg); return CMD_SUCCESS; } DEFPY (clear_evpn_dup_addr, clear_evpn_dup_addr_cmd, "clear evpn dup-addr vni ]>", CLEAR_STR "EVPN\n" "Duplicate address \n" "VxLAN Network Identifier\n" "VNI number\n" "All VNIs\n" "MAC\n" "MAC address (e.g., 00:e0:ec:20:12:62)\n" "IP\n" "IPv4 address\n" "IPv6 address\n") { struct zebra_vrf *zvrf; vni_t vni = 0; struct ipaddr host_ip = {.ipa_type = IPADDR_NONE }; struct ethaddr mac_addr; int ret = CMD_SUCCESS; zvrf = vrf_info_lookup(VRF_DEFAULT); if (vni_val) { vni = strtoul(vni_val, NULL, 10); if (mac_val) { prefix_str2mac(mac_val, &mac_addr); ret = zebra_vxlan_clear_dup_detect_vni_mac(vty, zvrf, vni, &mac_addr); } else if (ip) { if (sockunion_family(ip) == AF_INET) { host_ip.ipa_type = IPADDR_V4; host_ip.ipaddr_v4.s_addr = sockunion2ip(ip); } else { host_ip.ipa_type = IPADDR_V6; memcpy(&host_ip.ipaddr_v6, &ip->sin6.sin6_addr, sizeof(struct in6_addr)); } ret = zebra_vxlan_clear_dup_detect_vni_ip(vty, zvrf, vni, &host_ip); } else ret = zebra_vxlan_clear_dup_detect_vni(vty, zvrf, vni); } else { ret = zebra_vxlan_clear_dup_detect_vni_all(vty, zvrf); } return ret; } /* Static ip route configuration write function. */ static int zebra_ip_config(struct vty *vty) { int write = 0; write += zebra_import_table_config(vty); return write; } DEFUN (ip_zebra_import_table_distance, ip_zebra_import_table_distance_cmd, "ip import-table (1-252) [distance (1-255)] [route-map WORD]", IP_STR "import routes from non-main kernel table\n" "kernel routing table id\n" "Distance for imported routes\n" "Default distance value\n" "route-map for filtering\n" "route-map name\n") { uint32_t table_id = 0; table_id = strtoul(argv[2]->arg, NULL, 10); int distance = ZEBRA_TABLE_DISTANCE_DEFAULT; char *rmap = strmatch(argv[argc - 2]->text, "route-map") ? XSTRDUP(MTYPE_ROUTE_MAP_NAME, argv[argc - 1]->arg) : NULL; int ret; if (argc == 7 || (argc == 5 && !rmap)) distance = strtoul(argv[4]->arg, NULL, 10); if (!is_zebra_valid_kernel_table(table_id)) { vty_out(vty, "Invalid routing table ID, %d. Must be in range 1-252\n", table_id); if (rmap) XFREE(MTYPE_ROUTE_MAP_NAME, rmap); return CMD_WARNING; } if (is_zebra_main_routing_table(table_id)) { vty_out(vty, "Invalid routing table ID, %d. Must be non-default table\n", table_id); if (rmap) XFREE(MTYPE_ROUTE_MAP_NAME, rmap); return CMD_WARNING; } ret = zebra_import_table(AFI_IP, table_id, distance, rmap, 1); if (rmap) XFREE(MTYPE_ROUTE_MAP_NAME, rmap); return ret; } DEFUN_HIDDEN (zebra_packet_process, zebra_packet_process_cmd, "zebra zapi-packets (1-10000)", ZEBRA_STR "Zapi Protocol\n" "Number of packets to process before relinquishing thread\n") { uint32_t packets = strtoul(argv[2]->arg, NULL, 10); atomic_store_explicit(&zrouter.packets_to_process, packets, memory_order_relaxed); return CMD_SUCCESS; } DEFUN_HIDDEN (no_zebra_packet_process, no_zebra_packet_process_cmd, "no zebra zapi-packets [(1-10000)]", NO_STR ZEBRA_STR "Zapi Protocol\n" "Number of packets to process before relinquishing thread\n") { atomic_store_explicit(&zrouter.packets_to_process, ZEBRA_ZAPI_PACKETS_TO_PROCESS, memory_order_relaxed); return CMD_SUCCESS; } DEFUN_HIDDEN (zebra_workqueue_timer, zebra_workqueue_timer_cmd, "zebra work-queue (0-10000)", ZEBRA_STR "Work Queue\n" "Time in milliseconds\n") { uint32_t timer = strtoul(argv[2]->arg, NULL, 10); zrouter.ribq->spec.hold = timer; return CMD_SUCCESS; } DEFUN_HIDDEN (no_zebra_workqueue_timer, no_zebra_workqueue_timer_cmd, "no zebra work-queue [(0-10000)]", NO_STR ZEBRA_STR "Work Queue\n" "Time in milliseconds\n") { zrouter.ribq->spec.hold = ZEBRA_RIB_PROCESS_HOLD_TIME; return CMD_SUCCESS; } DEFUN (no_ip_zebra_import_table, no_ip_zebra_import_table_cmd, "no ip import-table (1-252) [distance (1-255)] [route-map NAME]", NO_STR IP_STR "import routes from non-main kernel table\n" "kernel routing table id\n" "Distance for imported routes\n" "Default distance value\n" "route-map for filtering\n" "route-map name\n") { uint32_t table_id = 0; table_id = strtoul(argv[3]->arg, NULL, 10); if (!is_zebra_valid_kernel_table(table_id)) { vty_out(vty, "Invalid routing table ID. Must be in range 1-252\n"); return CMD_WARNING; } if (is_zebra_main_routing_table(table_id)) { vty_out(vty, "Invalid routing table ID, %d. Must be non-default table\n", table_id); return CMD_WARNING; } if (!is_zebra_import_table_enabled(AFI_IP, table_id)) return CMD_SUCCESS; return (zebra_import_table(AFI_IP, table_id, 0, NULL, 0)); } static int config_write_protocol(struct vty *vty) { if (allow_delete) vty_out(vty, "allow-external-route-update\n"); if (zebra_rnh_ip_default_route) vty_out(vty, "ip nht resolve-via-default\n"); if (zebra_rnh_ipv6_default_route) vty_out(vty, "ipv6 nht resolve-via-default\n"); if (zrouter.ribq->spec.hold != ZEBRA_RIB_PROCESS_HOLD_TIME) vty_out(vty, "zebra work-queue %u\n", zrouter.ribq->spec.hold); if (zrouter.packets_to_process != ZEBRA_ZAPI_PACKETS_TO_PROCESS) vty_out(vty, "zebra zapi-packets %u\n", zrouter.packets_to_process); enum multicast_mode ipv4_multicast_mode = multicast_mode_ipv4_get(); if (ipv4_multicast_mode != MCAST_NO_CONFIG) vty_out(vty, "ip multicast rpf-lookup-mode %s\n", ipv4_multicast_mode == MCAST_URIB_ONLY ? "urib-only" : ipv4_multicast_mode == MCAST_MRIB_ONLY ? "mrib-only" : ipv4_multicast_mode == MCAST_MIX_MRIB_FIRST ? "mrib-then-urib" : ipv4_multicast_mode == MCAST_MIX_DISTANCE ? "lower-distance" : "longer-prefix"); return 1; } #ifdef HAVE_NETLINK /* Display default rtm_table for all clients. */ DEFUN (show_table, show_table_cmd, "show table", SHOW_STR "default routing table to use for all clients\n") { vty_out(vty, "table %d\n", zrouter.rtm_table_default); return CMD_SUCCESS; } DEFUN (config_table, config_table_cmd, "table TABLENO", "Configure target kernel routing table\n" "TABLE integer\n") { zrouter.rtm_table_default = strtol(argv[1]->arg, (char **)0, 10); return CMD_SUCCESS; } DEFUN (no_config_table, no_config_table_cmd, "no table [TABLENO]", NO_STR "Configure target kernel routing table\n" "TABLE integer\n") { zrouter.rtm_table_default = 0; return CMD_SUCCESS; } #endif DEFUN (show_zebra, show_zebra_cmd, "show zebra", SHOW_STR ZEBRA_STR) { struct vrf *vrf; vty_out(vty, " Route Route Neighbor LSP LSP\n"); vty_out(vty, "VRF Installs Removals Updates Installs Removals\n"); RB_FOREACH (vrf, vrf_name_head, &vrfs_by_name) { struct zebra_vrf *zvrf = vrf->info; vty_out(vty, "%-25s %10" PRIu64 " %10" PRIu64 " %10" PRIu64 " %10" PRIu64 " %10" PRIu64 "\n", vrf->name, zvrf->installs, zvrf->removals, zvrf->neigh_updates, zvrf->lsp_installs, zvrf->lsp_removals); } return CMD_SUCCESS; } DEFUN (ip_forwarding, ip_forwarding_cmd, "ip forwarding", IP_STR "Turn on IP forwarding\n") { int ret; ret = ipforward(); if (ret == 0) ret = ipforward_on(); if (ret == 0) { vty_out(vty, "Can't turn on IP forwarding\n"); return CMD_WARNING_CONFIG_FAILED; } return CMD_SUCCESS; } DEFUN (no_ip_forwarding, no_ip_forwarding_cmd, "no ip forwarding", NO_STR IP_STR "Turn off IP forwarding\n") { int ret; ret = ipforward(); if (ret != 0) ret = ipforward_off(); if (ret != 0) { vty_out(vty, "Can't turn off IP forwarding\n"); return CMD_WARNING_CONFIG_FAILED; } return CMD_SUCCESS; } /* Only display ip forwarding is enabled or not. */ DEFUN (show_ip_forwarding, show_ip_forwarding_cmd, "show ip forwarding", SHOW_STR IP_STR "IP forwarding status\n") { int ret; ret = ipforward(); if (ret == 0) vty_out(vty, "IP forwarding is off\n"); else vty_out(vty, "IP forwarding is on\n"); return CMD_SUCCESS; } /* Only display ipv6 forwarding is enabled or not. */ DEFUN (show_ipv6_forwarding, show_ipv6_forwarding_cmd, "show ipv6 forwarding", SHOW_STR "IPv6 information\n" "Forwarding status\n") { int ret; ret = ipforward_ipv6(); switch (ret) { case -1: vty_out(vty, "ipv6 forwarding is unknown\n"); break; case 0: vty_out(vty, "ipv6 forwarding is %s\n", "off"); break; case 1: vty_out(vty, "ipv6 forwarding is %s\n", "on"); break; default: vty_out(vty, "ipv6 forwarding is %s\n", "off"); break; } return CMD_SUCCESS; } DEFUN (ipv6_forwarding, ipv6_forwarding_cmd, "ipv6 forwarding", IPV6_STR "Turn on IPv6 forwarding\n") { int ret; ret = ipforward_ipv6(); if (ret == 0) ret = ipforward_ipv6_on(); if (ret == 0) { vty_out(vty, "Can't turn on IPv6 forwarding\n"); return CMD_WARNING_CONFIG_FAILED; } return CMD_SUCCESS; } DEFUN (no_ipv6_forwarding, no_ipv6_forwarding_cmd, "no ipv6 forwarding", NO_STR IPV6_STR "Turn off IPv6 forwarding\n") { int ret; ret = ipforward_ipv6(); if (ret != 0) ret = ipforward_ipv6_off(); if (ret != 0) { vty_out(vty, "Can't turn off IPv6 forwarding\n"); return CMD_WARNING_CONFIG_FAILED; } return CMD_SUCCESS; } /* Display dataplane info */ DEFUN (show_dataplane, show_dataplane_cmd, "show zebra dplane [detailed]", SHOW_STR ZEBRA_STR "Zebra dataplane information\n" "Detailed output\n") { int idx = 0; bool detailed = false; if (argv_find(argv, argc, "detailed", &idx)) detailed = true; return dplane_show_helper(vty, detailed); } /* Display dataplane providers info */ DEFUN (show_dataplane_providers, show_dataplane_providers_cmd, "show zebra dplane providers [detailed]", SHOW_STR ZEBRA_STR "Zebra dataplane information\n" "Zebra dataplane provider information\n" "Detailed output\n") { int idx = 0; bool detailed = false; if (argv_find(argv, argc, "detailed", &idx)) detailed = true; return dplane_show_provs_helper(vty, detailed); } /* Configure dataplane incoming queue limit */ DEFUN (zebra_dplane_queue_limit, zebra_dplane_queue_limit_cmd, "zebra dplane limit (0-10000)", ZEBRA_STR "Zebra dataplane\n" "Limit incoming queued updates\n" "Number of queued updates\n") { uint32_t limit = 0; limit = strtoul(argv[3]->arg, NULL, 10); dplane_set_in_queue_limit(limit, true); return CMD_SUCCESS; } /* Reset dataplane queue limit to default value */ DEFUN (no_zebra_dplane_queue_limit, no_zebra_dplane_queue_limit_cmd, "no zebra dplane limit [(0-10000)]", NO_STR ZEBRA_STR "Zebra dataplane\n" "Limit incoming queued updates\n" "Number of queued updates\n") { dplane_set_in_queue_limit(0, false); return CMD_SUCCESS; } DEFUN (zebra_show_routing_tables_summary, zebra_show_routing_tables_summary_cmd, "show zebra router table summary", SHOW_STR ZEBRA_STR "The Zebra Router Information\n" "Table Information about this Zebra Router\n" "Summary Information\n") { zebra_router_show_table_summary(vty); return CMD_SUCCESS; } /* Table configuration write function. */ static int config_write_table(struct vty *vty) { if (zrouter.rtm_table_default) vty_out(vty, "table %d\n", zrouter.rtm_table_default); return 0; } /* IPForwarding configuration write function. */ static int config_write_forwarding(struct vty *vty) { /* FIXME: Find better place for that. */ router_id_write(vty); if (!ipforward()) vty_out(vty, "no ip forwarding\n"); if (!ipforward_ipv6()) vty_out(vty, "no ipv6 forwarding\n"); vty_out(vty, "!\n"); return 0; } /* IP node for static routes. */ static struct cmd_node ip_node = {IP_NODE, "", 1}; static struct cmd_node protocol_node = {PROTOCOL_NODE, "", 1}; /* table node for routing tables. */ static struct cmd_node table_node = {TABLE_NODE, "", /* This node has no interface. */ 1}; static struct cmd_node forwarding_node = {FORWARDING_NODE, "", /* This node has no interface. */ 1}; /* Route VTY. */ void zebra_vty_init(void) { /* Install configuration write function. */ install_node(&table_node, config_write_table); install_node(&forwarding_node, config_write_forwarding); install_element(VIEW_NODE, &show_ip_forwarding_cmd); install_element(CONFIG_NODE, &ip_forwarding_cmd); install_element(CONFIG_NODE, &no_ip_forwarding_cmd); install_element(ENABLE_NODE, &show_zebra_cmd); #ifdef HAVE_NETLINK install_element(VIEW_NODE, &show_table_cmd); install_element(CONFIG_NODE, &config_table_cmd); install_element(CONFIG_NODE, &no_config_table_cmd); #endif /* HAVE_NETLINK */ install_element(VIEW_NODE, &show_ipv6_forwarding_cmd); install_element(CONFIG_NODE, &ipv6_forwarding_cmd); install_element(CONFIG_NODE, &no_ipv6_forwarding_cmd); /* Route-map */ zebra_route_map_init(); install_node(&ip_node, zebra_ip_config); install_node(&protocol_node, config_write_protocol); install_element(CONFIG_NODE, &allow_external_route_update_cmd); install_element(CONFIG_NODE, &no_allow_external_route_update_cmd); install_element(CONFIG_NODE, &ip_multicast_mode_cmd); install_element(CONFIG_NODE, &no_ip_multicast_mode_cmd); install_element(CONFIG_NODE, &ip_zebra_import_table_distance_cmd); install_element(CONFIG_NODE, &no_ip_zebra_import_table_cmd); install_element(CONFIG_NODE, &zebra_workqueue_timer_cmd); install_element(CONFIG_NODE, &no_zebra_workqueue_timer_cmd); install_element(CONFIG_NODE, &zebra_packet_process_cmd); install_element(CONFIG_NODE, &no_zebra_packet_process_cmd); install_element(VIEW_NODE, &show_vrf_cmd); install_element(VIEW_NODE, &show_vrf_vni_cmd); install_element(VIEW_NODE, &show_route_cmd); install_element(VIEW_NODE, &show_route_table_cmd); if (vrf_is_backend_netns()) install_element(VIEW_NODE, &show_route_table_vrf_cmd); install_element(VIEW_NODE, &show_route_detail_cmd); install_element(VIEW_NODE, &show_route_summary_cmd); install_element(VIEW_NODE, &show_ip_nht_cmd); install_element(VIEW_NODE, &show_ip_import_check_cmd); install_element(VIEW_NODE, &show_ip_rpf_cmd); install_element(VIEW_NODE, &show_ip_rpf_addr_cmd); install_element(CONFIG_NODE, &ip_nht_default_route_cmd); install_element(CONFIG_NODE, &no_ip_nht_default_route_cmd); install_element(CONFIG_NODE, &ipv6_nht_default_route_cmd); install_element(CONFIG_NODE, &no_ipv6_nht_default_route_cmd); install_element(VRF_NODE, &ip_nht_default_route_cmd); install_element(VRF_NODE, &no_ip_nht_default_route_cmd); install_element(VRF_NODE, &ipv6_nht_default_route_cmd); install_element(VRF_NODE, &no_ipv6_nht_default_route_cmd); install_element(VIEW_NODE, &show_ipv6_mroute_cmd); /* Commands for VRF */ install_element(VIEW_NODE, &show_ipv6_mroute_vrf_all_cmd); install_element(VIEW_NODE, &show_evpn_global_cmd); install_element(VIEW_NODE, &show_evpn_vni_cmd); install_element(VIEW_NODE, &show_evpn_vni_detail_cmd); install_element(VIEW_NODE, &show_evpn_vni_vni_cmd); install_element(VIEW_NODE, &show_evpn_rmac_vni_mac_cmd); install_element(VIEW_NODE, &show_evpn_rmac_vni_cmd); install_element(VIEW_NODE, &show_evpn_rmac_vni_all_cmd); install_element(VIEW_NODE, &show_evpn_nh_vni_ip_cmd); install_element(VIEW_NODE, &show_evpn_nh_vni_cmd); install_element(VIEW_NODE, &show_evpn_nh_vni_all_cmd); install_element(VIEW_NODE, &show_evpn_mac_vni_cmd); install_element(VIEW_NODE, &show_evpn_mac_vni_all_cmd); install_element(VIEW_NODE, &show_evpn_mac_vni_all_detail_cmd); install_element(VIEW_NODE, &show_evpn_mac_vni_all_vtep_cmd); install_element(VIEW_NODE, &show_evpn_mac_vni_mac_cmd); install_element(VIEW_NODE, &show_evpn_mac_vni_vtep_cmd); install_element(VIEW_NODE, &show_evpn_mac_vni_dad_cmd); install_element(VIEW_NODE, &show_evpn_mac_vni_all_dad_cmd); install_element(VIEW_NODE, &show_evpn_neigh_vni_cmd); install_element(VIEW_NODE, &show_evpn_neigh_vni_all_cmd); install_element(VIEW_NODE, &show_evpn_neigh_vni_all_detail_cmd); install_element(VIEW_NODE, &show_evpn_neigh_vni_neigh_cmd); install_element(VIEW_NODE, &show_evpn_neigh_vni_vtep_cmd); install_element(VIEW_NODE, &show_evpn_neigh_vni_dad_cmd); install_element(VIEW_NODE, &show_evpn_neigh_vni_all_dad_cmd); install_element(ENABLE_NODE, &clear_evpn_dup_addr_cmd); install_element(VIEW_NODE, &show_pbr_ipset_cmd); install_element(VIEW_NODE, &show_pbr_iptable_cmd); install_element(CONFIG_NODE, &default_vrf_vni_mapping_cmd); install_element(CONFIG_NODE, &no_default_vrf_vni_mapping_cmd); install_element(VRF_NODE, &vrf_vni_mapping_cmd); install_element(VRF_NODE, &no_vrf_vni_mapping_cmd); install_element(VIEW_NODE, &show_dataplane_cmd); install_element(VIEW_NODE, &show_dataplane_providers_cmd); install_element(CONFIG_NODE, &zebra_dplane_queue_limit_cmd); install_element(CONFIG_NODE, &no_zebra_dplane_queue_limit_cmd); install_element(VIEW_NODE, &zebra_show_routing_tables_summary_cmd); }