1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
# OSPF API Documentation
[TOC]
## Disclaimer
The OSPF daemon contains an API for application access to the LSA database. This API was created by Ralph Keller, originally as patch for Zebra. Unfortunately, the page containing documentation of the API is no longer online. This page is an attempt to recreate documentation for the API (with lots of help of the WayBackMachine)
## 1. Introduction
This page describes an API that allows external applications to access the link-state database (LSDB) of the OSPF daemon. The implementation is based on the OSPF code from FRRouting (forked from Quagga and formerly Zebra) routing protocol suite and is subject to the GNU General Public License. The OSPF API provides you with the following functionality:
* Retrieval of the full or partial link-state database of the OSPF daemon. This allows applications to obtain an exact copy of the LSDB including router LSAs, network LSAs and so on. Whenever a new LSA arrives at the OSPF daemon, the API module immediately informs the application by sending a message. This way, the application is always synchronized with the LSDB of the OSPF daemon.
* Origination of own opaque LSAs (of type 9, 10, or 11) which are then distributed transparently to other routers within the flooding scope and received by other applications through the OSPF API.
Opaque LSAs, which are described in RFC 2370 , allow you to distribute application-specific information within a network using the OSPF protocol. The information contained in opaque LSAs is transparent for the routing process but it can be processed by other modules such as traffic engineering (e.g., MPLS-TE).
## 2. Architecture
The following picture depicts the architecture of the Quagga/Zebra protocol suite. The OSPF daemon is extended with opaque LSA capabilities and an API for external applications. The OSPF core module executes the OSPF protocol by discovering neighbors and exchanging neighbor state. The opaque module, implemented by Masahiko Endo, provides functions to exchange opaque LSAs between routers. Opaque LSAs can be generated by several modules such as the MPLS-TE module or the API server module. These modules then invoke the opaque module to flood their data to neighbors within the flooding scope.
The client, which is an application potentially running on a different node than the OSPF daemon, links against the OSPF API client library. This client library establishes a socket connection with the API server module of the OSPF daemon and uses this connection to retrieve LSAs and originate opaque LSAs.
![image](ospf_api_architecture.png)
The OSPF API server module works like any other internal opaque module (such as the MPLS-TE module), but listens to connections from external applications that want to communicate with the OSPF daemon. The API server module can handle multiple clients concurrently.
One of the main objectives of the implementation is to make as little changes to the existing Zebra code as possible.
## 3. Installation & Configuration
Download FRRouting and unpack
Configure your frr version (note that --enable-opaque-lsa also enables the ospfapi server and ospfclient).
```
% update-autotools
% sh ./configure --enable-opaque-lsa
% make
```
This should also compile the client library and sample application in ospfclient.
Make sure that you have enabled opaque LSAs in your configuration. Add the ospf opaque-lsa statement to your ospfd.conf:
```
! -*- ospf -*-
!
! OSPFd sample configuration file
!
!
hostname xxxxx
password xxxxx
router ospf
router-id 10.0.0.1
network 10.0.0.1/24 area 1
neighbor 10.0.0.2
network 10.0.1.2/24 area 1
neighbor 10.0.1.1
ospf opaque-lsa <============ add this statement!
```
## 4. Usage
In the following we describe how you can use the sample application to originate opaque LSAs. The sample application first registers with the OSPF daemon the opaque type it wants to inject and then waits until the OSPF daemon is ready to accept opaque LSAs of that type. Then the client application originates an opaque LSA, waits 10 seconds and then updates the opaque LSA with new opaque data. After another 20 seconds, the client application deletes the opaque LSA from the LSDB. If the clients terminates unexpectedly, the OSPF API module will remove all the opaque LSAs that the application registered. Since the opaque LSAs are flooded to other routers, we will see the opaque LSAs in all routers according to the flooding scope of the opaque LSA.
We have a very simple demo setup, just two routers connected with an ATM point-to-point link. Start the modified OSPF daemons on two adjacent routers. First run on msr2:
```
> msr2:/home/keller/ospfapi/zebra/ospfd# ./ospfd -f /usr/local/etc/ospfd.conf
```
And on the neighboring router msr3:
```
> msr3:/home/keller/ospfapi/zebra/ospfd# ./ospfd -f /usr/local/etc/ospfd.conf
```
Now the two routers form adjacency and start exchanging their databases. Looking at the OSPF daemon of msr2 (or msr3), you see this:
```
ospfd> show ip ospf database
OSPF Router with ID (10.0.0.1)
Router Link States (Area 0.0.0.1)
Link ID ADV Router Age Seq# CkSum Link count
10.0.0.1 10.0.0.1 55 0x80000003 0xc62f 2
10.0.0.2 10.0.0.2 55 0x80000003 0xe3e4 3
Net Link States (Area 0.0.0.1)
Link ID ADV Router Age Seq# CkSum
10.0.0.2 10.0.0.2 60 0x80000001 0x5fcb
```
Now we start the sample main application that originates an opaque LSA.
```
> cd ospfapi/apiclient
> ./main msr2 10 250 20 0.0.0.0 0.0.0.1
```
This originates an opaque LSA of type 10 (area local), with opaque type 250 (experimental), opaque id of 20 (chosen arbitrarily), interface address 0.0.0.0 (which is used only for opaque LSAs type 9), and area 0.0.0.1
Again looking at the OSPF database you see:
```
ospfd> show ip ospf database
OSPF Router with ID (10.0.0.1)
Router Link States (Area 0.0.0.1)
Link ID ADV Router Age Seq# CkSum Link count
10.0.0.1 10.0.0.1 437 0x80000003 0xc62f 2
10.0.0.2 10.0.0.2 437 0x80000003 0xe3e4 3
Net Link States (Area 0.0.0.1)
Link ID ADV Router Age Seq# CkSum
10.0.0.2 10.0.0.2 442 0x80000001 0x5fcb
Area-Local Opaque-LSA (Area 0.0.0.1)
Opaque-Type/Id ADV Router Age Seq# CkSum
250.0.0.20 10.0.0.1 0 0x80000001 0x58a6 <=== opaque LSA
```
You can take a closer look at this opaque LSA:
```
ospfd> show ip ospf database opaque-area
OSPF Router with ID (10.0.0.1)
Area-Local Opaque-LSA (Area 0.0.0.1)
LS age: 4
Options: 66
LS Type: Area-Local Opaque-LSA
Link State ID: 250.0.0.20 (Area-Local Opaque-Type/ID)
Advertising Router: 10.0.0.1
LS Seq Number: 80000001
Checksum: 0x58a6
Length: 24
Opaque-Type 250 (Private/Experimental)
Opaque-ID 0x14
Opaque-Info: 4 octets of data
Added using OSPF API: 4 octets of opaque data
Opaque data: 1 0 0 0 <==== counter is 1
```
Note that the main application updates the opaque LSA after 10 seconds, then it looks as follows:
```
ospfd> show ip ospf database opaque-area
OSPF Router with ID (10.0.0.1)
Area-Local Opaque-LSA (Area 0.0.0.1)
LS age: 1
Options: 66
LS Type: Area-Local Opaque-LSA
Link State ID: 250.0.0.20 (Area-Local Opaque-Type/ID)
Advertising Router: 10.0.0.1
LS Seq Number: 80000002
Checksum: 0x59a3
Length: 24
Opaque-Type 250 (Private/Experimental)
Opaque-ID 0x14
Opaque-Info: 4 octets of data
Added using OSPF API: 4 octets of opaque data
Opaque data: 2 0 0 0 <==== counter is now 2
```
Note that the payload of the opaque LSA has changed as you can see above.
Then, again after another 20 seconds, the opaque LSA is flushed from the LSDB.
#### Important note:
In order to originate an opaque LSA, there must be at least one active opaque-capable neighbor. Thus, you cannot originate opaque LSAs of no neighbors are present. If you try to originate even so no neighbor is ready, you will receive a not ready error message. The reason for this restriction is that it might be possible that some routers have an identical opaque LSA from a previous origination in their LSDB that unfortunately could not be flushed due to a crash, and now if the router comes up again and starts originating a new opaque LSA, the new opaque LSA is considered older since it has a lower sequence number and is ignored by other routers (that consider the stalled opaque LSA as more recent). However, if the originating router first synchronizes the database before originating opaque LSAs, it will detect the older opaque LSA and can flush it first.
## 5. Protocol and Message Formats
If you are developing your own client application and you don't want to make use of the client library (due to the GNU license restriction or whatever reason), you can implement your own client-side message handling. The OSPF API uses two connections between the client and the OSPF API server: One connection is used for a synchronous request /reply protocol and another connection is used for asynchronous notifications (e.g., LSA update, neighbor status change).
Each message begins with the following header:
![image](ospf_api_msghdr.png)
The message type field can take one of the following values:
Messages to OSPF deamon | Value
----------------------- | -----
MSG_REGISTER_OPAQUETYPE | 1
MSG_UNREGISTER_OPAQUETYPE | 2
MSG_REGISTER_EVENT | 3
MSG_SYNC_LSDB | 4
MSG_ORIGINATE_REQUEST | 5
MSG_DELETE_REQUEST | 6
Messages from OSPF deamon | Value
------------------------- | -----
MSG_REPLY | 10
MSG_READY_NOTIFY | 11
MSG_LSA_UPDATE_NOTIFY | 12
MSG_LSA_DELETE_NOTIFY | 13
MSG_NEW_IF | 14
MSG_DEL_IF | 15
MSG_ISM_CHANGE | 16
MSG_NSM_CHANGE | 17
The synchronous requests and replies have the following message formats:
![image](ospf_api_msgs1.png)
The origin field allows to select according to the following types of origins:
Origin | Value
------ | -----
NON_SELF_ORIGINATED | 0
SELF_ORIGINATED | 1
ANY_ORIGIN | 2
The reply message has on of the following error codes:
Error code | Value
---------- | -----
API_OK | 0
API_NOSUCHINTERFACE | -1
API_NOSUCHAREA | -2
API_NOSUCHLSA | -3
API_ILLEGALSATYPE | -4
API_ILLEGALOPAQUETYPE | -5
API_OPAQUETYPEINUSE | -6
API_NOMEMORY | -7
API_ERROR | -99
API_UNDEF | -100
The asynchronous notifications have the following message formats:
![image](ospf_api_msgs2.png)
## 6. Original Acknowledgments from Ralph Keller
I would like to thank Masahiko Endo, the author of the opaque LSA extension module, for his great support. His wonderful ASCII graphs explaining the internal workings of this code, and his invaluable input proved to be crucial in designing a useful API for accessing the link state database of the OSPF daemon. Once, he even decided to take the plane from Tokyo to Zurich so that we could actually meet and have face-to-face discussions, which was a lot of fun. Clearly, without Masahiko no API would ever be completed. I also would like to thank Daniel Bauer who wrote an opaque LSA implementation too and was willing to test the OSPF API code in one of his projects.
|