summaryrefslogtreecommitdiffstats
path: root/doc/user/ospfd.rst
blob: 3430d8a28200830b692e1b405fe4c6ff74ca4b5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
.. _ospfv2:

******
OSPFv2
******

:abbr:`OSPF (Open Shortest Path First)` version 2 is a routing protocol which
is described in :rfc:`2328`. OSPF is an :abbr:`IGP (Interior Gateway
Protocol)`. Compared with :abbr:`RIP`, :abbr:`OSPF` can provide scalable
network support and faster convergence times. OSPF is widely used in large
networks such as :abbr:`ISP (Internet Service Provider)` backbone and
enterprise networks.

.. include:: ospf_fundamentals.rst

.. _configuring-ospfd:

Configuring OSPF
================

*ospfd* accepts all :ref:`common-invocation-options`.

.. option:: -n, --instance

   Specify the instance number for this invocation of *ospfd*.

.. option:: -a, --apiserver

   Enable the OSPF API server. This is required to use ``ospfclient``.

*ospfd* must acquire interface information from *zebra* in order to function.
Therefore *zebra* must be running before invoking *ospfd*. Also, if *zebra* is
restarted then *ospfd* must be too.

Like other daemons, *ospfd* configuration is done in :abbr:`OSPF` specific
configuration file :file:`ospfd.conf` when the integrated config is not used.

.. _ospf-multi-instance:

Multi-instance Support
----------------------

OSPF supports multiple instances. Each instance is identified by a positive
nonzero integer that must be provided when adding configuration items specific
to that instance. Enabling instances is done with :file:`/etc/frr/daemons` in
the following manner:

::

   ...
   ospfd=yes
   ospfd_instances=1,5,6
   ...

The ``ospfd_instances`` variable controls which instances are started and what
their IDs are. In this example, after starting FRR you should see the following
processes:

.. code-block:: shell

   # ps -ef | grep "ospfd"
   frr      11816     1  0 17:30 ?        00:00:00 /usr/lib/frr/ospfd --daemon -A 127.0.0.1 -n 1
   frr      11822     1  0 17:30 ?        00:00:00 /usr/lib/frr/ospfd --daemon -A 127.0.0.1 -n 2
   frr      11828     1  0 17:30 ?        00:00:00 /usr/lib/frr/ospfd --daemon -A 127.0.0.1 -n 3


The instance number should be specified in the config when addressing a particular instance:

.. code-block:: frr

   router ospf 5
      ospf router-id 1.2.3.4
      area 0.0.0.0 authentication message-digest
      ...

.. _ospf-router:

Routers
-------

To start OSPF process you have to specify the OSPF router.

.. clicmd:: router ospf [{(1-65535)|vrf NAME}]


   Enable or disable the OSPF process.

   Multiple instances don't support `vrf NAME`.

.. clicmd:: ospf router-id A.B.C.D


   This sets the router-ID of the OSPF process. The router-ID may be an IP
   address of the router, but need not be - it can be any arbitrary 32bit
   number. However it MUST be unique within the entire OSPF domain to the OSPF
   speaker - bad things will happen if multiple OSPF speakers are configured
   with the same router-ID! If one is not specified then *ospfd* will obtain a
   router-ID automatically from *zebra*.

.. clicmd:: ospf abr-type TYPE


   `type` can be cisco|ibm|shortcut|standard. The "Cisco" and "IBM" types
   are equivalent.

   The OSPF standard for ABR behaviour does not allow an ABR to consider
   routes through non-backbone areas when its links to the backbone are
   down, even when there are other ABRs in attached non-backbone areas
   which still can reach the backbone - this restriction exists primarily
   to ensure routing-loops are avoided.

   With the "Cisco" or "IBM" ABR type, the default in this release of FRR, this
   restriction is lifted, allowing an ABR to consider summaries learned from
   other ABRs through non-backbone areas, and hence route via non-backbone
   areas as a last resort when, and only when, backbone links are down.

   Note that areas with fully-adjacent virtual-links are considered to be
   "transit capable" and can always be used to route backbone traffic, and
   hence are unaffected by this setting (:clicmd:`area A.B.C.D virtual-link A.B.C.D`).

   More information regarding the behaviour controlled by this command can
   be found in :rfc:`3509`, and :t:`draft-ietf-ospf-shortcut-abr-02.txt`.

   Quote: "Though the definition of the :abbr:`ABR (Area Border Router)`
   in the OSPF specification does not require a router with multiple
   attached areas to have a backbone connection, it is actually
   necessary to provide successful routing to the inter-area and
   external destinations. If this requirement is not met, all traffic
   destined for the areas not connected to such an ABR or out of the
   OSPF domain, is dropped. This document describes alternative ABR
   behaviors implemented in Cisco and IBM routers."

.. clicmd:: ospf rfc1583compatibility


   :rfc:`2328`, the successor to :rfc:`1583`, suggests according
   to section G.2 (changes) in section 16.4 a change to the path
   preference algorithm that prevents possible routing loops that were
   possible in the old version of OSPFv2. More specifically it demands
   that inter-area paths and intra-area backbone path are now of equal preference
   but still both preferred to external paths.

   This command should NOT be set normally.

.. clicmd:: log-adjacency-changes [detail]


   Configures ospfd to log changes in adjacency. With the optional
   detail argument, all changes in adjacency status are shown. Without detail,
   only changes to full or regressions are shown.

.. clicmd:: passive-interface default

   Make all interfaces that belong to this router passive by default. For the
   description of passive interface look at :clicmd:`ip ospf passive [A.B.C.D]`.
   Per-interface configuration takes precedence over the default value.

.. clicmd:: timers throttle spf (0-600000) (0-600000) (0-600000)

   This command sets the initial `delay`, the `initial-holdtime`
   and the `maximum-holdtime` between when SPF is calculated and the
   event which triggered the calculation. The times are specified in
   milliseconds and must be in the range of 0 to 600000 milliseconds.

   The `delay` specifies the minimum amount of time to delay SPF
   calculation (hence it affects how long SPF calculation is delayed after
   an event which occurs outside of the holdtime of any previous SPF
   calculation, and also serves as a minimum holdtime).

   Consecutive SPF calculations will always be separated by at least
   'hold-time' milliseconds. The hold-time is adaptive and initially is
   set to the `initial-holdtime` configured with the above command.
   Events which occur within the holdtime of the previous SPF calculation
   will cause the holdtime to be increased by `initial-holdtime`, bounded
   by the `maximum-holdtime` configured with this command. If the adaptive
   hold-time elapses without any SPF-triggering event occurring then
   the current holdtime is reset to the `initial-holdtime`. The current
   holdtime can be viewed with :clicmd:`show ip ospf`, where it is expressed as
   a multiplier of the `initial-holdtime`.

   .. code-block:: frr

      router ospf
      timers throttle spf 200 400 10000


   In this example, the `delay` is set to 200ms, the initial holdtime is set to
   400ms and the `maximum holdtime` to 10s. Hence there will always be at least
   200ms between an event which requires SPF calculation and the actual SPF
   calculation. Further consecutive SPF calculations will always be separated
   by between 400ms to 10s, the hold-time increasing by 400ms each time an
   SPF-triggering event occurs within the hold-time of the previous SPF
   calculation.

   This command supersedes the *timers spf* command in previous FRR
   releases.

.. clicmd:: max-metric router-lsa [on-startup (5-86400)|on-shutdown (5-100)]

.. clicmd:: max-metric router-lsa administrative


   This enables :rfc:`3137` support, where the OSPF process describes its
   transit links in its router-LSA as having infinite distance so that other
   routers will avoid calculating transit paths through the router while still
   being able to reach networks through the router.

   This support may be enabled administratively (and indefinitely) or
   conditionally. Conditional enabling of max-metric router-lsas can be for a
   period of seconds after startup and/or for a period of seconds prior to
   shutdown.

   Enabling this for a period after startup allows OSPF to converge fully first
   without affecting any existing routes used by other routers, while still
   allowing any connected stub links and/or redistributed routes to be
   reachable. Enabling this for a period of time in advance of shutdown allows
   the router to gracefully excuse itself from the OSPF domain.

   Enabling this feature administratively allows for administrative
   intervention for whatever reason, for an indefinite period of time.  Note
   that if the configuration is written to file, this administrative form of
   the stub-router command will also be written to file. If *ospfd* is
   restarted later, the command will then take effect until manually
   deconfigured.

   Configured state of this feature as well as current status, such as the
   number of second remaining till on-startup or on-shutdown ends, can be
   viewed with the :clicmd:`show ip ospf` command.

.. clicmd:: auto-cost reference-bandwidth (1-4294967)


   This sets the reference
   bandwidth for cost calculations, where this bandwidth is considered
   equivalent to an OSPF cost of 1, specified in Mbits/s. The default is
   100Mbit/s (i.e. a link of bandwidth 100Mbit/s or higher will have a
   cost of 1. Cost of lower bandwidth links will be scaled with reference
   to this cost).

   This configuration setting MUST be consistent across all routers within the
   OSPF domain.

.. clicmd:: network A.B.C.D/M area A.B.C.D

.. clicmd:: network A.B.C.D/M area (0-4294967295)



   This command specifies the OSPF enabled interface(s). If the interface has
   an address from range 192.168.1.0/24 then the command below enables ospf
   on this interface so router can provide network information to the other
   ospf routers via this interface.

   .. code-block:: frr

      router ospf
      network 192.168.1.0/24 area 0.0.0.0

   Prefix length in interface must be equal or bigger (i.e. smaller network) than
   prefix length in network statement. For example statement above doesn't enable
   ospf on interface with address 192.168.1.1/23, but it does on interface with
   address 192.168.1.129/25.

   Note that the behavior when there is a peer address
   defined on an interface changed after release 0.99.7.
   Currently, if a peer prefix has been configured,
   then we test whether the prefix in the network command contains
   the destination prefix. Otherwise, we test whether the network command prefix
   contains the local address prefix of the interface.

   It is also possible to enable OSPF on a per interface/subnet basis
   using the interface command (:clicmd:`ip ospf area AREA [ADDR]`).
   However, mixing both network commands (:clicmd:`network`) and interface
   commands (:clicmd:`ip ospf`) on the same router is not supported.

.. clicmd:: proactive-arp


   This command enables or disables sending ARP requests to update neighbor
   table entries. It speeds up convergence for /32 networks on a P2P
   connection.

   This feature is enabled by default.

.. clicmd:: clear ip ospf [(1-65535)] process

   This command can be used to clear the ospf process data structures. This
   will clear the ospf neighborship as well and it will get re-established.
   This will clear the LSDB too. This will be helpful when there is a change
   in router-id and if user wants the router-id change to take effect, user can
   use this cli instead of restarting the ospfd daemon.

.. clicmd:: clear ip ospf [(1-65535)] neighbor

   This command can be used to clear the ospf neighbor data structures. This
   will clear the ospf neighborship and it will get re-established. This
   command can be used when the neighbor state get stuck at some state and
   this can be used to recover it from that state.

.. clicmd:: maximum-paths (1-64)

   Use this command to control the maximum number of equal cost paths to reach
   a specific destination. The upper limit may differ if you change the value
   of MULTIPATH_NUM during compilation. The default is MULTIPATH_NUM (64).

.. clicmd:: write-multiplier (1-100)

   Use this command to tune the amount of work done in the packet read and
   write threads before relinquishing control. The parameter is the number
   of packets to process before returning. The defult value of this parameter
   is 20.

.. clicmd:: socket buffer <send | recv | all> (1-4000000000)

   This command controls the ospf instance's socket buffer sizes. The
   'no' form resets one or both values to the default.
   
.. clicmd:: no socket-per-interface

   Ordinarily, ospfd uses a socket per interface for sending
   packets. This command disables those per-interface sockets, and
   causes ospfd to use a single socket per ospf instance for sending
   and receiving packets.

.. _ospf-area:

Areas
-----

.. clicmd:: area A.B.C.D range A.B.C.D/M [advertise [cost (0-16777215)]]

.. clicmd:: area (0-4294967295) range A.B.C.D/M [advertise [cost (0-16777215)]]



   Summarize intra area paths from specified area into one Type-3 summary-LSA
   announced to other areas. This command can be used only in ABR and ONLY
   router-LSAs (Type-1) and network-LSAs (Type-2) (i.e. LSAs with scope area) can
   be summarized. Type-5 AS-external-LSAs can't be summarized - their scope is AS.

   .. code-block:: frr

      router ospf
       network 192.168.1.0/24 area 0.0.0.0
       network 10.0.0.0/8 area 0.0.0.10
       area 0.0.0.10 range 10.0.0.0/8


   With configuration above one Type-3 Summary-LSA with routing info 10.0.0.0/8 is
   announced into backbone area if area 0.0.0.10 contains at least one intra-area
   network (i.e. described with router or network LSA) from this range.

.. clicmd:: area A.B.C.D range A.B.C.D/M not-advertise

.. clicmd:: area (0-4294967295) range A.B.C.D/M not-advertise


   Instead of summarizing intra area paths filter them - i.e. intra area paths from this
   range are not advertised into other areas.
   This command makes sense in ABR only.

.. clicmd:: area A.B.C.D range A.B.C.D/M {substitute A.B.C.D/M|cost (0-16777215)}

.. clicmd:: area (0-4294967295) range A.B.C.D/M {substitute A.B.C.D/M|cost (0-16777215)}


   Substitute summarized prefix with another prefix.

   .. code-block:: frr

      router ospf
       network 192.168.1.0/24 area 0.0.0.0
       network 10.0.0.0/8 area 0.0.0.10
       area 0.0.0.10 range 10.0.0.0/8 substitute 11.0.0.0/8


   One Type-3 summary-LSA with routing info 11.0.0.0/8 is announced into backbone area if
   area 0.0.0.10 contains at least one intra-area network (i.e. described with router-LSA or
   network-LSA) from range 10.0.0.0/8.

   By default, the metric of the summary route is calculated as the highest
   metric among the summarized routes. The `cost` option, however, can be used
   to set an explicit metric.

   This command makes sense in ABR only.

.. clicmd:: area A.B.C.D virtual-link A.B.C.D

.. clicmd:: area (0-4294967295) virtual-link A.B.C.D



.. clicmd:: area A.B.C.D shortcut

.. clicmd:: area (0-4294967295) shortcut



   Configure the area as Shortcut capable. See :rfc:`3509`. This requires
   that the 'abr-type' be set to 'shortcut'.

.. clicmd:: area A.B.C.D stub

.. clicmd:: area (0-4294967295) stub



   Configure the area to be a stub area. That is, an area where no router
   originates routes external to OSPF and hence an area where all external
   routes are via the ABR(s). Hence, ABRs for such an area do not need
   to pass AS-External LSAs (type-5s) or ASBR-Summary LSAs (type-4) into the
   area. They need only pass Network-Summary (type-3) LSAs into such an area,
   along with a default-route summary.

.. clicmd:: area A.B.C.D stub no-summary

.. clicmd:: area (0-4294967295) stub no-summary



    Prevents an *ospfd* ABR from injecting inter-area
    summaries into the specified stub area.

.. clicmd:: area A.B.C.D nssa

.. clicmd:: area (0-4294967295) nssa

    Configure the area to be a NSSA (Not-So-Stubby Area). This is an area that
    allows OSPF to import external routes into a stub area via a new LSA type
    (type 7). An NSSA autonomous system boundary router (ASBR) will generate this
    type of LSA. The area border router (ABR) translates the LSA type 7 into LSA
    type 5, which is propagated into the OSPF domain. NSSA areas are defined in
    RFC 3101.

.. clicmd:: area A.B.C.D nssa suppress-fa

.. clicmd:: area (0-4294967295) nssa suppress-fa

    Configure the router to set the forwarding address to 0.0.0.0 in all LSA type 5
    translated from LSA type 7. The router needs to be elected the translator of the
    area for this command to take effect. This feature causes routers that are
    configured not to advertise forwarding addresses into the backbone to direct
    forwarded traffic to the NSSA ABR translator.

.. clicmd:: area A.B.C.D nssa default-information-originate [metric-type (1-2)] [metric (0-16777214)]

.. clicmd:: area (0-4294967295) nssa default-information-originate [metric-type (1-2)] [metric (0-16777214)]

   NSSA ABRs and ASBRs can be configured with the `default-information-originate`
   option to originate a Type-7 default route into the NSSA area. In the case
   of NSSA ASBRs, the origination of the default route is conditioned to the
   existence of a default route in the RIB that wasn't learned via the OSPF
   protocol.

.. clicmd:: area A.B.C.D nssa range A.B.C.D/M [<not-advertise|cost (0-16777215)>]

.. clicmd:: area (0-4294967295) nssa range A.B.C.D/M [<not-advertise|cost (0-16777215)>]

    Summarize a group of external subnets into a single Type-7 LSA, which is
    then translated to a Type-5 LSA and avertised to the backbone.
    This command can only be used at the area boundary (NSSA ABR router).

    By default, the metric of the summary route is calculated as the highest
    metric among the summarized routes. The `cost` option, however, can be used
    to set an explicit metric.

    The `not-advertise` option, when present, prevents the summary route from
    being advertised, effectively filtering the summarized routes.

.. clicmd:: area A.B.C.D default-cost (0-16777215)


   Set the cost of default-summary LSAs announced to stubby areas.

.. clicmd:: area A.B.C.D export-list NAME

.. clicmd:: area (0-4294967295) export-list NAME



   Filter Type-3 summary-LSAs announced to other areas originated from intra-
   area paths from specified area.

   .. code-block:: frr

      router ospf
       network 192.168.1.0/24 area 0.0.0.0
       network 10.0.0.0/8 area 0.0.0.10
       area 0.0.0.10 export-list foo
      !
      access-list foo permit 10.10.0.0/16
      access-list foo deny any

   With example above any intra-area paths from area 0.0.0.10 and from range
   10.10.0.0/16 (for example 10.10.1.0/24 and 10.10.2.128/30) are announced into
   other areas as Type-3 summary-LSA's, but any others (for example 10.11.0.0/16
   or 10.128.30.16/30) aren't.

   This command is only relevant if the router is an ABR for the specified
   area.

.. clicmd:: area A.B.C.D import-list NAME

.. clicmd:: area (0-4294967295) import-list NAME



   Same as export-list, but it applies to paths announced into specified area
   as Type-3 summary-LSAs.

.. clicmd:: area A.B.C.D filter-list prefix NAME in

.. clicmd:: area A.B.C.D filter-list prefix NAME out

.. clicmd:: area (0-4294967295) filter-list prefix NAME in

.. clicmd:: area (0-4294967295) filter-list prefix NAME out





   Filtering Type-3 summary-LSAs to/from area using prefix lists. This command
   makes sense in ABR only.

.. clicmd:: area A.B.C.D authentication

.. clicmd:: area (0-4294967295) authentication



   Specify that simple password authentication should be used for the given
   area.

.. clicmd:: area A.B.C.D authentication message-digest

.. clicmd:: area (0-4294967295) authentication message-digest

   Specify that OSPF packets must be authenticated with MD5 HMACs within the
   given area. Keying material must also be configured on a per-interface basis
   (:clicmd:`ip ospf message-digest-key`).

   MD5 authentication may also be configured on a per-interface basis
   (:clicmd:`ip ospf authentication message-digest`). Such per-interface
   settings will override any per-area authentication setting.

.. _ospf-interface:

Interfaces
----------

.. clicmd:: ip ospf area AREA [ADDR]


   Enable OSPF on the interface, optionally restricted to just the IP address
   given by `ADDR`, putting it in the `AREA` area. If you have a lot of
   interfaces, and/or a lot of subnets, then enabling OSPF via this command
   instead of (:clicmd:`network A.B.C.D/M area A.B.C.D`) may result in a
   slight performance improvement.

   Notice that, mixing both network commands (:clicmd:`network`) and interface
   commands (:clicmd:`ip ospf`) on the same router is not supported.
   If (:clicmd:`ip ospf`) is present, (:clicmd:`network`) commands will fail.

.. clicmd:: ip ospf authentication-key AUTH_KEY


   Set OSPF authentication key to a simple password. After setting `AUTH_KEY`,
   all OSPF packets are authenticated. `AUTH_KEY` has length up to 8 chars.

   Simple text password authentication is insecure and deprecated in favour of
   MD5 HMAC authentication.

.. clicmd:: ip ospf authentication message-digest

   Specify that MD5 HMAC authentication must be used on this interface. MD5
   keying material must also be configured. Overrides any authentication
   enabled on a per-area basis
   (:clicmd:`area A.B.C.D authentication message-digest`)

   Note that OSPF MD5 authentication requires that time never go backwards
   (correct time is NOT important, only that it never goes backwards), even
   across resets, if ospfd is to be able to promptly reestablish adjacencies
   with its neighbours after restarts/reboots. The host should have system time
   be set at boot from an external or non-volatile source (e.g. battery backed
   clock, NTP, etc.) or else the system clock should be periodically saved to
   non-volatile storage and restored at boot if MD5 authentication is to be
   expected to work reliably.

.. clicmd:: ip ospf message-digest-key KEYID md5 KEY


   Set OSPF authentication key to a cryptographic password. The cryptographic
   algorithm is MD5.

   KEYID identifies secret key used to create the message digest. This ID is
   part of the protocol and must be consistent across routers on a link.

   KEY is the actual message digest key, of up to 16 chars (larger strings will
   be truncated), and is associated with the given KEYID.

.. clicmd:: ip ospf cost (1-65535)


   Set link cost for the specified interface. The cost value is set to
   router-LSA's metric field and used for SPF calculation.

.. clicmd:: ip ospf dead-interval (1-65535)

.. clicmd:: ip ospf dead-interval minimal hello-multiplier (2-20)


   Set number of seconds for RouterDeadInterval timer value used for Wait Timer
   and Inactivity Timer. This value must be the same for all routers attached
   to a common network. The default value is 40 seconds.

   If 'minimal' is specified instead, then the dead-interval is set to 1 second
   and one must specify a hello-multiplier. The hello-multiplier specifies how
   many Hellos to send per second, from 2 (every 500ms) to 20 (every 50ms).
   Thus one can have 1s convergence time for OSPF. If this form is specified,
   then the hello-interval advertised in Hello packets is set to 0 and the
   hello-interval on received Hello packets is not checked, thus the
   hello-multiplier need NOT be the same across multiple routers on a common
   link.

.. clicmd:: ip ospf hello-interval (1-65535)


   Set number of seconds for HelloInterval timer value. Setting this value,
   Hello packet will be sent every timer value seconds on the specified interface.
   This value must be the same for all routers attached to a common network.
   The default value is 10 seconds.

   This command has no effect if
   :clicmd:`ip ospf dead-interval minimal hello-multiplier (2-20)` is also
   specified for the interface.

.. clicmd:: ip ospf graceful-restart hello-delay (1-1800)

   Set the length of time during which Grace-LSAs are sent at 1-second intervals
   while coming back up after an unplanned outage. During this time, no hello
   packets are sent.

   A higher hello delay will increase the chance that all neighbors are notified
   about the ongoing graceful restart before receiving a hello packet (which is
   crucial for the graceful restart to succeed). The hello delay shouldn't be set
   too high, however, otherwise the adjacencies might time out. As a best practice,
   it's recommended to set the hello delay and hello interval with the same values.
   The default value is 10 seconds.

.. clicmd:: ip ospf network (broadcast|non-broadcast|point-to-multipoint [delay-reflood]|point-to-point [dmvpn])

   When configuring a point-to-point network on an interface and the interface
   has a /32 address associated with then OSPF will treat the interface
   as being `unnumbered`.  If you are doing this you *must* set the
   net.ipv4.conf.<interface name>.rp_filter value to 0.  In order for
   the ospf multicast packets to be delivered by the kernel.

   When used in a DMVPN network at a spoke, this OSPF will be configured in
   point-to-point, but the HUB will be a point-to-multipoint. To make this
   topology work, specify the optional 'dmvpn' parameter at the spoke.

   When the network is configured as point-to-multipoint and `delay-reflood`
   is specified, LSAs received on the interface from neighbors on the
   interface will not be flooded back out on the interface immediately.
   Rather, they will be added to the neighbor's link state retransmission
   list and only sent to the neighbor if the neighbor doesn't acknowledge
   the LSA prior to the link state retransmission timer expiring.

   Set explicitly network type for specified interface.

.. clicmd:: ip ospf priority (0-255)


   Set RouterPriority integer value. The router with the highest priority will
   be more eligible to become Designated Router. Setting the value to 0, makes
   the router ineligible to become Designated Router. The default value is 1.

.. clicmd:: ip ospf retransmit-interval (1-65535)


   Set number of seconds for RxmtInterval timer value. This value is used when
   retransmitting Database Description and Link State Request packets. The
   default value is 5 seconds.

.. clicmd:: ip ospf transmit-delay (1-65535) [A.B.C.D]


   Set number of seconds for InfTransDelay value. LSAs' age should be
   incremented by this value when transmitting. The default value is 1 second.

.. clicmd:: ip ospf passive [A.B.C.D]

   Do not speak OSPF on the interface, but do advertise the interface as a stub
   link in the router-:abbr:`LSA (Link State Advertisement)` for this router.
   This allows one to advertise addresses on such connected interfaces without
   having to originate AS-External/Type-5 LSAs (which have global flooding
   scope) - as would occur if connected addresses were redistributed into
   OSPF (:ref:`redistribute-routes-to-ospf`). This is the only way to
   advertise non-OSPF links into stub areas.

.. clicmd:: ip ospf area (A.B.C.D|(0-4294967295))


   Enable ospf on an interface and set associated area.

OSPF route-map
==============

Usage of *ospfd*'s route-map support.

.. clicmd:: set metric [+|-](0-4294967295)

   Set a metric for matched route when sending announcement. Use plus (+) sign
   to add a metric value to an existing metric. Use minus (-) sign to
   substract a metric value from an existing metric.

.. _redistribute-routes-to-ospf:

Redistribution
--------------

.. _ospf-redistribute:

.. clicmd:: redistribute <babel|bgp|connected|eigrp|isis|kernel|openfabric|ospf|rip|sharp|static|table> [metric-type (1-2)] [metric (0-16777214)] [route-map WORD]

   Redistribute routes of the specified protocol or kind into OSPF, with the
   metric type and metric set if specified, filtering the routes using the
   given route-map if specified.  Redistributed routes may also be filtered
   with distribute-lists, see
   :ref:`ospf distribute-list configuration <ospf-distribute-list>`.

   Redistributed routes are distributed as into OSPF as Type-5 External LSAs
   into links to areas that accept external routes, Type-7 External LSAs for
   NSSA areas and are not redistributed at all into Stub areas, where external
   routes are not permitted.

   Note that for connected routes, one may instead use the
   :clicmd:`ip ospf passive [A.B.C.D]` configuration.

.. clicmd:: default-information originate

.. clicmd:: default-information originate metric (0-16777214)

.. clicmd:: default-information originate metric (0-16777214) metric-type (1|2)

.. clicmd:: default-information originate metric (0-16777214) metric-type (1|2) route-map WORD

.. clicmd:: default-information originate always

.. clicmd:: default-information originate always metric (0-16777214)

.. clicmd:: default-information originate always metric (0-16777214) metric-type (1|2)

.. clicmd:: default-information originate always metric (0-16777214) metric-type (1|2) route-map WORD


   Originate an AS-External (type-5) LSA describing a default route into all
   external-routing capable areas, of the specified metric and metric type. If
   the 'always' keyword is given then the default is always advertised, even
   when there is no default present in the routing table.

.. _ospf-distribute-list:

.. clicmd:: distribute-list NAME out <kernel|connected|static|rip|isis|bgp|eigrp|nhrp|table|vnc|babel|openfabric>

   Apply the access-list filter, NAME, to redistributed routes of the given
   type before allowing the routes to be redistributed into OSPF
   (:ref:`ospf redistribution <ospf-redistribute>`).

.. clicmd:: default-metric (0-16777214)


.. clicmd:: distance (1-255)


.. clicmd:: distance ospf (intra-area|inter-area|external) (1-255)



Graceful Restart
================

.. clicmd:: graceful-restart [grace-period (1-1800)]


   Configure Graceful Restart (RFC 3623) restarting support.
   When enabled, the default grace period is 120 seconds.

   To perform a graceful shutdown, the "graceful-restart prepare ip ospf"
   EXEC-level command needs to be issued before restarting the ospfd daemon.

   When Graceful Restart is enabled and the ospfd daemon crashes or is killed
   abruptely (e.g. SIGKILL), it will attempt an unplanned Graceful Restart once
   it restarts.

.. clicmd:: graceful-restart helper enable [A.B.C.D]


   Configure Graceful Restart (RFC 3623) helper support.
   By default, helper support is disabled for all neighbours.
   This config enables/disables helper support on this router
   for all neighbours.
   To enable/disable helper support for a specific
   neighbour, the router-id (A.B.C.D) has to be specified.

.. clicmd:: graceful-restart helper strict-lsa-checking


   If 'strict-lsa-checking' is configured then the helper will
   abort the Graceful Restart when a LSA change occurs which
   affects the restarting router.
   By default 'strict-lsa-checking' is enabled"

.. clicmd:: graceful-restart helper supported-grace-time


   Supports as HELPER for configured grace period.

.. clicmd:: graceful-restart helper planned-only


   It helps to support as HELPER only for planned
   restarts. By default, it supports both planned and
   unplanned outages.


.. clicmd:: graceful-restart prepare ip ospf


   Initiate a graceful restart for all OSPF instances configured with the
   "graceful-restart" command. The ospfd daemon should be restarted during
   the instance-specific grace period, otherwise the graceful restart will fail.

   This is an EXEC-level command.


.. _showing-ospf-information:

Showing Information
===================

.. _show-ip-ospf:

.. clicmd:: show ip ospf [vrf <NAME|all>] [json]

   Show information on a variety of general OSPF and area state and
   configuration information.

.. clicmd:: show ip ospf interface [INTERFACE] [json]

   Show state and configuration of OSPF the specified interface, or all
   interfaces if no interface is given.

.. clicmd:: show ip ospf neighbor [json]

.. clicmd:: show ip ospf [vrf <NAME|all>] neighbor INTERFACE [json]

.. clicmd:: show ip ospf neighbor detail [json]

.. clicmd:: show ip ospf [vrf <NAME|all>] neighbor A.B.C.D [detail] [json]

.. clicmd:: show ip ospf [vrf <NAME|all>] neighbor INTERFACE detail [json]

   Display lsa information of LSDB.
   Json o/p of this command covers base route information
   i.e all LSAs except opaque lsa info.

.. clicmd:: show ip ospf [vrf <NAME|all>] database [self-originate] [json]

   Show the OSPF database summary.

.. clicmd:: show ip ospf [vrf <NAME|all>] database max-age [json]

   Show all MaxAge LSAs present in the OSPF link-state database.

.. clicmd:: show ip ospf [vrf <NAME|all>] database detail [LINK-STATE-ID] [adv-router A.B.C.D] [json]

.. clicmd:: show ip ospf [vrf <NAME|all>] database detail [LINK-STATE-ID] [self-originate] [json]

.. clicmd:: show ip ospf [vrf <NAME|all>] database (asbr-summary|external|network|router|summary|nssa-external|opaque-link|opaque-area|opaque-as) [LINK-STATE-ID] [adv-router A.B.C.D] [json]

.. clicmd:: show ip ospf [vrf <NAME|all>] database (asbr-summary|external|network|router|summary|nssa-external|opaque-link|opaque-area|opaque-as) [LINK-STATE-ID] [self-originate] [json]

   Show detailed information about the OSPF link-state database.

.. clicmd:: show ip ospf route [json]

   Show the OSPF routing table, as determined by the most recent SPF
   calculation.

.. clicmd:: show ip ospf [vrf <NAME|all>] border-routers [json]

   Show the list of ABR and ASBR border routers summary learnt via
   OSPFv2 Type-3 (Summary LSA) and Type-4 (Summary ASBR LSA).
   User can get that information as JSON format when ``json`` keyword
   at the end of cli is presented.

.. clicmd:: show ip ospf graceful-restart helper [detail] [json]

   Displays the Grcaeful Restart Helper details including helper
   config changes.

.. _opaque-lsa:

Opaque LSA
==========

.. clicmd:: ospf opaque-lsa

.. clicmd:: capability opaque



   *ospfd* supports Opaque LSA (:rfc:`2370`) as partial support for
   MPLS Traffic Engineering LSAs. The opaque-lsa capability must be
   enabled in the configuration. An alternate command could be
   "mpls-te on" (:ref:`ospf-traffic-engineering`). Note that FRR
   offers only partial support for some of the routing protocol
   extensions that are used with MPLS-TE; it does not support a
   complete RSVP-TE solution.

.. clicmd:: show ip ospf [vrf <NAME|all>] database (opaque-link|opaque-area|opaque-external)

.. clicmd:: show ip ospf [vrf <NAME|all>] database (opaque-link|opaque-area|opaque-external) LINK-STATE-ID

.. clicmd:: show ip ospf [vrf <NAME|all>] database (opaque-link|opaque-area|opaque-external) LINK-STATE-ID adv-router ADV-ROUTER

.. clicmd:: show ip ospf [vrf <NAME|all>] database (opaque-link|opaque-area|opaque-external) adv-router ADV-ROUTER

.. clicmd:: show ip ospf [vrf <NAME|all>] database (opaque-link|opaque-area|opaque-external) LINK-STATE-ID self-originate

.. clicmd:: show ip ospf [vrf <NAME|all>] database (opaque-link|opaque-area|opaque-external) self-originate

   Show Opaque LSA from the database.

.. clicmd:: show ip ospf (1-65535) reachable-routers

.. clicmd:: show ip ospf [vrf <NAME|all>] reachable-routers

   Show routing table of reachable routers.

.. _ospf-traffic-engineering:

Traffic Engineering
===================

.. note::

   At this time, FRR offers partial support for some of the routing
   protocol extensions that can be used with MPLS-TE. FRR does not
   support a complete RSVP-TE solution currently.

.. clicmd:: mpls-te on


   Enable Traffic Engineering LSA flooding.

.. clicmd:: mpls-te router-address <A.B.C.D>

   Configure stable IP address for MPLS-TE. This IP address is then advertise
   in Opaque LSA Type-10 TLV=1 (TE) option 1 (Router-Address).

.. clicmd:: mpls-te inter-as area <area-id>|as


   Enable :rfc:`5392` support - Inter-AS TE v2 - to flood Traffic Engineering
   parameters of Inter-AS link.  2 modes are supported: AREA and AS; LSA are
   flood in AREA <area-id> with Opaque Type-10, respectively in AS with Opaque
   Type-11. In all case, Opaque-LSA TLV=6.

.. clicmd:: mpls-te export

   Export Traffic Engineering Data Base to other daemons through the ZAPI
   Opaque Link State messages.

.. clicmd:: show ip ospf mpls-te interface

.. clicmd:: show ip ospf mpls-te interface INTERFACE

   Show MPLS Traffic Engineering parameters for all or specified interface.

.. clicmd:: show ip ospf mpls-te router

   Show Traffic Engineering router parameters.

.. clicmd:: show ip ospf mpls-te database [verbose|json]

.. clicmd:: show ip ospf mpls-te database vertex [self-originate|adv-router ADV-ROUTER] [verbose|json]

.. clicmd:: show ip ospf mpls-te database edge [A.B.C.D] [verbose|json]

.. clicmd:: show ip ospf mpls-te database subnet [A.B.C.D/M] [verbose|json]

   Show Traffic Engineering Database

.. _router-information:

Router Information
==================

.. clicmd:: router-info [as | area]


   Enable Router Information (:rfc:`4970`) LSA advertisement with AS scope
   (default) or Area scope flooding when area is specified. Old syntax
   `router-info area <A.B.C.D>` is always supported but mark as deprecated
   as the area ID is no more necessary. Indeed, router information support
   multi-area and detect automatically the areas.

.. clicmd:: pce address <A.B.C.D>


.. clicmd:: pce domain as (0-65535)


.. clicmd:: pce neighbor as (0-65535)


.. clicmd:: pce flag BITPATTERN


.. clicmd:: pce scope BITPATTERN


   The commands are conform to :rfc:`5088` and allow OSPF router announce Path
   Computation Element (PCE) capabilities through the Router Information (RI)
   LSA. Router Information must be enable prior to this. The command set/unset
   respectively the PCE IP address, Autonomous System (AS) numbers of
   controlled domains, neighbor ASs, flag and scope. For flag and scope, please
   refer to :rfc`5088` for the BITPATTERN recognition. Multiple 'pce neighbor'
   command could be specified in order to specify all PCE neighbours.

.. clicmd:: show ip ospf router-info

   Show Router Capabilities flag.

.. clicmd:: show ip ospf router-info pce

   Show Router Capabilities PCE parameters.

Segment Routing
===============

This is an EXPERIMENTAL support of Segment Routing as per `RFC 8665` for MPLS
dataplane.

.. clicmd:: segment-routing on

   Enable Segment Routing. Even if this also activate routing information
   support, it is preferable to also activate routing information, and set
   accordingly the Area or AS flooding.

.. clicmd:: segment-routing global-block (16-1048575) (16-1048575) [local-block (16-1048575) (16-1048575)]

   Set the Segment Routing Global Block i.e. the label range used by MPLS to
   store label in the MPLS FIB for Prefix SID. Optionally also set the Local
   Block, i.e. the label range used for Adjacency SID. The negative version
   of the command always unsets both ranges.

.. clicmd:: segment-routing node-msd (1-16)

   Fix the Maximum Stack Depth supported by the router. The value depend of the
   MPLS dataplane. E.g. for Linux kernel, since version 4.13 it is 32.

.. clicmd:: segment-routing prefix A.B.C.D/M [index (0-65535)|no-php-flag|explicit-null]

   prefix with /32 corresponding to a loopback interface are currently
   supported. The 'no-php-flag' means NO Penultimate Hop Popping that allows SR
   node to request to its neighbor to not pop the label. The 'explicit-null' means that
   neighbor nodes must swap the incoming label by the MPLS Explicit Null label
   before delivering the packet.

.. clicmd:: show ip ospf database segment-routing <adv-router ADVROUTER|self-originate> [json]

   Show Segment Routing Data Base, all SR nodes, specific advertised router or
   self router. Optional JSON output can be obtained by appending 'json' to the
   end of the command.

External Route Summarisation
============================
This feature summarises originated external LSAs(Type-5 and Type-7).
Summary Route will be originated on-behalf of all matched external LSAs.

.. clicmd:: summary-address A.B.C.D/M [tag (1-4294967295)]

   This command enable/disables summarisation for the configured address
   range. Tag is the optional parameter. If tag configured Summary route
   will be originated with the configured tag.

.. clicmd:: summary-address A.B.C.D/M no-advertise

   This command to ensure not advertise the summary lsa for the matched
   external LSAs.

.. clicmd:: aggregation timer (5-1800)

   Configure aggregation delay timer interval. Summarisation starts only after
   this delay timer expiry. By default, delay interval is 5 seconds.


   The no form of the command resets the aggregation delay interval to default
   value.

.. clicmd:: show ip ospf [vrf <NAME|all>] summary-address [detail] [json]

   Show configuration for display all configured summary routes with
   matching external LSA information.

TI-LFA
======

Experimental support for Topology Independent LFA (Loop-Free Alternate), see
for example 'draft-bashandy-rtgwg-segment-routing-ti-lfa-05'. Note that
TI-LFA requires a proper Segment Routing configuration.

.. clicmd:: fast-reroute ti-lfa [node-protection]

   Configured on the router level. Activates TI-LFA for all interfaces.

   Note that so far only P2P interfaces are supported.

.. _debugging-ospf:

Debugging OSPF
==============

.. clicmd:: debug ospf [(1-65535)] bfd

   Enable or disable debugging for BFD events. This will show BFD integration
   library messages and OSPF BFD integration messages that are mostly state
   transitions and validation problems.

.. clicmd:: debug ospf [(1-65535)] client-api

   Show debug information for the OSPF opaque data client API.

.. clicmd:: debug ospf [(1-65535)] default-information

   Show debug information of default information

.. clicmd:: debug ospf [(1-65535)] packet (hello|dd|ls-request|ls-update|ls-ack|all) (send|recv) [detail]


   Dump Packet for debugging

.. clicmd:: debug ospf [(1-65535)] ism [status|events|timers]



   Show debug information of Interface State Machine

.. clicmd:: debug ospf [(1-65535)] nsm [status|events|timers]



   Show debug information of Network State Machine

.. clicmd:: debug ospf [(1-65535)] event


   Show debug information of OSPF event

.. clicmd:: debug ospf [(1-65535)] nssa


   Show debug information about Not So Stub Area

.. clicmd:: debug ospf [(1-65535)] ldp-sync

   Show debug information about LDP-Sync

.. clicmd:: debug ospf [(1-65535)] lsa [aggregate|flooding|generate|install|refresh]



   Show debug detail of Link State messages

.. clicmd:: debug ospf [(1-65535)] sr

   Show debug information about Segment Routing

.. clicmd:: debug ospf [(1-65535)] te


   Show debug information about Traffic Engineering LSA

.. clicmd:: debug ospf [(1-65535)] ti-lfa

   Show debug information about SR TI-LFA

.. clicmd:: debug ospf [(1-65535)] zebra [interface|redistribute]



   Show debug information of ZEBRA API

.. clicmd:: debug ospf [(1-65535)] graceful-restart


   Enable/disable debug information for OSPF Graceful Restart Helper

.. clicmd:: show debugging ospf



Sample Configuration
====================

A simple example, with MD5 authentication enabled:

.. code-block:: frr

   !
   interface bge0
    ip ospf authentication message-digest
    ip ospf message-digest-key 1 md5 ABCDEFGHIJK
   !
   router ospf
    network 192.168.0.0/16 area 0.0.0.1
    area 0.0.0.1 authentication message-digest


An :abbr:`ABR` router, with MD5 authentication and performing summarisation
of networks between the areas:

.. code-block:: frr

   !
   password ABCDEF
   log file /var/log/frr/ospfd.log
   service advanced-vty
   !
   interface eth0
    ip ospf authentication message-digest
    ip ospf message-digest-key 1 md5 ABCDEFGHIJK
   !
   interface ppp0
    ip ospf passive
   !
   interface br0
    ip ospf authentication message-digest
    ip ospf message-digest-key 2 md5 XYZ12345
   !
   router ospf
    ospf router-id 192.168.0.1
    redistribute connected
    network 192.168.0.0/24 area 0.0.0.0
    network 10.0.0.0/16 area 0.0.0.0
    network 192.168.1.0/24 area 0.0.0.1
    area 0.0.0.0 authentication message-digest
    area 0.0.0.0 range 10.0.0.0/16
    area 0.0.0.0 range 192.168.0.0/24
    area 0.0.0.1 authentication message-digest
    area 0.0.0.1 range 10.2.0.0/16
   !


A Traffic Engineering configuration, with Inter-ASv2 support.

First, the :file:`zebra.conf` part:

.. code-block:: frr

   interface eth0
    ip address 198.168.1.1/24
    link-params
     enable
     admin-grp 0xa1
     metric 100
     max-bw 1.25e+07
     max-rsv-bw 1.25e+06
     unrsv-bw 0 1.25e+06
     unrsv-bw 1 1.25e+06
     unrsv-bw 2 1.25e+06
     unrsv-bw 3 1.25e+06
     unrsv-bw 4 1.25e+06
     unrsv-bw 5 1.25e+06
     unrsv-bw 6 1.25e+06
     unrsv-bw 7 1.25e+06
   !
   interface eth1
    ip address 192.168.2.1/24
    link-params
     enable
     metric 10
     max-bw 1.25e+07
     max-rsv-bw 1.25e+06
     unrsv-bw 0 1.25e+06
     unrsv-bw 1 1.25e+06
     unrsv-bw 2 1.25e+06
     unrsv-bw 3 1.25e+06
     unrsv-bw 4 1.25e+06
     unrsv-bw 5 1.25e+06
     unrsv-bw 6 1.25e+06
     unrsv-bw 7 1.25e+06
     neighbor 192.168.2.2 as 65000
      hostname HOSTNAME
      password PASSWORD
      log file /var/log/zebra.log
      !
      interface eth0
       ip address 198.168.1.1/24
       link-params
        enable
        admin-grp 0xa1
        metric 100
        max-bw 1.25e+07
        max-rsv-bw 1.25e+06
        unrsv-bw 0 1.25e+06
        unrsv-bw 1 1.25e+06
        unrsv-bw 2 1.25e+06
        unrsv-bw 3 1.25e+06
        unrsv-bw 4 1.25e+06
        unrsv-bw 5 1.25e+06
        unrsv-bw 6 1.25e+06
        unrsv-bw 7 1.25e+06
      !
      interface eth1
       ip address 192.168.2.1/24
       link-params
        enable
        metric 10
        max-bw 1.25e+07
        max-rsv-bw 1.25e+06
        unrsv-bw 0 1.25e+06
        unrsv-bw 1 1.25e+06
        unrsv-bw 2 1.25e+06
        unrsv-bw 3 1.25e+06
        unrsv-bw 4 1.25e+06
        unrsv-bw 5 1.25e+06
        unrsv-bw 6 1.25e+06
        unrsv-bw 7 1.25e+06
        neighbor 192.168.2.2 as 65000

Then the :file:`ospfd.conf` itself:

.. code-block:: frr

   hostname HOSTNAME
   password PASSWORD
   log file /var/log/ospfd.log
   !
   !
   interface eth0
    ip ospf hello-interval 60
    ip ospf dead-interval 240
   !
   interface eth1
    ip ospf hello-interval 60
    ip ospf dead-interval 240
   !
   !
   router ospf
    ospf router-id 192.168.1.1
    network 192.168.0.0/16 area 1
    ospf opaque-lsa
    mpls-te
    mpls-te router-address 192.168.1.1
    mpls-te inter-as area 1
   !
   line vty

A router information example with PCE advertisement:

.. code-block:: frr

   !
   router ospf
    ospf router-id 192.168.1.1
    network 192.168.0.0/16 area 1
    capability opaque
    mpls-te
    mpls-te router-address 192.168.1.1
    router-info area 0.0.0.1
    pce address 192.168.1.1
    pce flag 0x80
    pce domain as 65400
    pce neighbor as 65500
    pce neighbor as 65200
    pce scope 0x80
   !