1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
|
// SPDX-License-Identifier: GPL-2.0-or-later
/* Thread management routine
* Copyright (C) 1998, 2000 Kunihiro Ishiguro <kunihiro@zebra.org>
*/
/* #define DEBUG */
#include <zebra.h>
#include <sys/resource.h>
#include "event.h"
#include "memory.h"
#include "frrcu.h"
#include "log.h"
#include "hash.h"
#include "command.h"
#include "sigevent.h"
#include "network.h"
#include "jhash.h"
#include "frratomic.h"
#include "frr_pthread.h"
#include "lib_errors.h"
#include "libfrr_trace.h"
#include "libfrr.h"
DEFINE_MTYPE_STATIC(LIB, THREAD, "Thread");
DEFINE_MTYPE_STATIC(LIB, EVENT_MASTER, "Thread master");
DEFINE_MTYPE_STATIC(LIB, EVENT_POLL, "Thread Poll Info");
DEFINE_MTYPE_STATIC(LIB, EVENT_STATS, "Thread stats");
DECLARE_LIST(thread_list, struct event, threaditem);
struct cancel_req {
int flags;
struct event *thread;
void *eventobj;
struct event **threadref;
};
/* Flags for task cancellation */
#define EVENT_CANCEL_FLAG_READY 0x01
static int thread_timer_cmp(const struct event *a, const struct event *b)
{
if (a->u.sands.tv_sec < b->u.sands.tv_sec)
return -1;
if (a->u.sands.tv_sec > b->u.sands.tv_sec)
return 1;
if (a->u.sands.tv_usec < b->u.sands.tv_usec)
return -1;
if (a->u.sands.tv_usec > b->u.sands.tv_usec)
return 1;
return 0;
}
DECLARE_HEAP(thread_timer_list, struct event, timeritem, thread_timer_cmp);
#if defined(__APPLE__)
#include <mach/mach.h>
#include <mach/mach_time.h>
#endif
#define AWAKEN(m) \
do { \
const unsigned char wakebyte = 0x01; \
write(m->io_pipe[1], &wakebyte, 1); \
} while (0);
/* control variable for initializer */
static pthread_once_t init_once = PTHREAD_ONCE_INIT;
pthread_key_t thread_current;
static pthread_mutex_t masters_mtx = PTHREAD_MUTEX_INITIALIZER;
static struct list *masters;
static void thread_free(struct event_master *master, struct event *thread);
#ifndef EXCLUDE_CPU_TIME
#define EXCLUDE_CPU_TIME 0
#endif
#ifndef CONSUMED_TIME_CHECK
#define CONSUMED_TIME_CHECK 0
#endif
bool cputime_enabled = !EXCLUDE_CPU_TIME;
unsigned long cputime_threshold = CONSUMED_TIME_CHECK;
unsigned long walltime_threshold = CONSUMED_TIME_CHECK;
/* CLI start ---------------------------------------------------------------- */
#include "lib/event_clippy.c"
static unsigned int cpu_record_hash_key(const struct cpu_thread_history *a)
{
int size = sizeof(a->func);
return jhash(&a->func, size, 0);
}
static bool cpu_record_hash_cmp(const struct cpu_thread_history *a,
const struct cpu_thread_history *b)
{
return a->func == b->func;
}
static void *cpu_record_hash_alloc(struct cpu_thread_history *a)
{
struct cpu_thread_history *new;
new = XCALLOC(MTYPE_EVENT_STATS, sizeof(struct cpu_thread_history));
new->func = a->func;
new->funcname = a->funcname;
return new;
}
static void cpu_record_hash_free(void *a)
{
struct cpu_thread_history *hist = a;
XFREE(MTYPE_EVENT_STATS, hist);
}
static void vty_out_cpu_thread_history(struct vty *vty,
struct cpu_thread_history *a)
{
vty_out(vty,
"%5zu %10zu.%03zu %9zu %8zu %9zu %8zu %9zu %9zu %9zu %10zu",
a->total_active, a->cpu.total / 1000, a->cpu.total % 1000,
a->total_calls, (a->cpu.total / a->total_calls), a->cpu.max,
(a->real.total / a->total_calls), a->real.max,
a->total_cpu_warn, a->total_wall_warn, a->total_starv_warn);
vty_out(vty, " %c%c%c%c%c %s\n",
a->types & (1 << EVENT_READ) ? 'R' : ' ',
a->types & (1 << EVENT_WRITE) ? 'W' : ' ',
a->types & (1 << EVENT_TIMER) ? 'T' : ' ',
a->types & (1 << EVENT_EVENT) ? 'E' : ' ',
a->types & (1 << EVENT_EXECUTE) ? 'X' : ' ', a->funcname);
}
static void cpu_record_hash_print(struct hash_bucket *bucket, void *args[])
{
struct cpu_thread_history *totals = args[0];
struct cpu_thread_history copy;
struct vty *vty = args[1];
uint8_t *filter = args[2];
struct cpu_thread_history *a = bucket->data;
copy.total_active =
atomic_load_explicit(&a->total_active, memory_order_seq_cst);
copy.total_calls =
atomic_load_explicit(&a->total_calls, memory_order_seq_cst);
copy.total_cpu_warn =
atomic_load_explicit(&a->total_cpu_warn, memory_order_seq_cst);
copy.total_wall_warn =
atomic_load_explicit(&a->total_wall_warn, memory_order_seq_cst);
copy.total_starv_warn = atomic_load_explicit(&a->total_starv_warn,
memory_order_seq_cst);
copy.cpu.total =
atomic_load_explicit(&a->cpu.total, memory_order_seq_cst);
copy.cpu.max = atomic_load_explicit(&a->cpu.max, memory_order_seq_cst);
copy.real.total =
atomic_load_explicit(&a->real.total, memory_order_seq_cst);
copy.real.max =
atomic_load_explicit(&a->real.max, memory_order_seq_cst);
copy.types = atomic_load_explicit(&a->types, memory_order_seq_cst);
copy.funcname = a->funcname;
if (!(copy.types & *filter))
return;
vty_out_cpu_thread_history(vty, ©);
totals->total_active += copy.total_active;
totals->total_calls += copy.total_calls;
totals->total_cpu_warn += copy.total_cpu_warn;
totals->total_wall_warn += copy.total_wall_warn;
totals->total_starv_warn += copy.total_starv_warn;
totals->real.total += copy.real.total;
if (totals->real.max < copy.real.max)
totals->real.max = copy.real.max;
totals->cpu.total += copy.cpu.total;
if (totals->cpu.max < copy.cpu.max)
totals->cpu.max = copy.cpu.max;
}
static void cpu_record_print(struct vty *vty, uint8_t filter)
{
struct cpu_thread_history tmp;
void *args[3] = {&tmp, vty, &filter};
struct event_master *m;
struct listnode *ln;
if (!cputime_enabled)
vty_out(vty,
"\n"
"Collecting CPU time statistics is currently disabled. Following statistics\n"
"will be zero or may display data from when collection was enabled. Use the\n"
" \"service cputime-stats\" command to start collecting data.\n"
"\nCounters and wallclock times are always maintained and should be accurate.\n");
memset(&tmp, 0, sizeof(tmp));
tmp.funcname = "TOTAL";
tmp.types = filter;
frr_with_mutex (&masters_mtx) {
for (ALL_LIST_ELEMENTS_RO(masters, ln, m)) {
const char *name = m->name ? m->name : "main";
char underline[strlen(name) + 1];
memset(underline, '-', sizeof(underline));
underline[sizeof(underline) - 1] = '\0';
vty_out(vty, "\n");
vty_out(vty, "Showing statistics for pthread %s\n",
name);
vty_out(vty, "-------------------------------%s\n",
underline);
vty_out(vty, "%30s %18s %18s\n", "",
"CPU (user+system):", "Real (wall-clock):");
vty_out(vty,
"Active Runtime(ms) Invoked Avg uSec Max uSecs");
vty_out(vty, " Avg uSec Max uSecs");
vty_out(vty,
" CPU_Warn Wall_Warn Starv_Warn Type Thread\n");
if (m->cpu_record->count)
hash_iterate(
m->cpu_record,
(void (*)(struct hash_bucket *,
void *))cpu_record_hash_print,
args);
else
vty_out(vty, "No data to display yet.\n");
vty_out(vty, "\n");
}
}
vty_out(vty, "\n");
vty_out(vty, "Total thread statistics\n");
vty_out(vty, "-------------------------\n");
vty_out(vty, "%30s %18s %18s\n", "",
"CPU (user+system):", "Real (wall-clock):");
vty_out(vty, "Active Runtime(ms) Invoked Avg uSec Max uSecs");
vty_out(vty, " Avg uSec Max uSecs CPU_Warn Wall_Warn");
vty_out(vty, " Type Thread\n");
if (tmp.total_calls > 0)
vty_out_cpu_thread_history(vty, &tmp);
}
static void cpu_record_hash_clear(struct hash_bucket *bucket, void *args[])
{
uint8_t *filter = args[0];
struct hash *cpu_record = args[1];
struct cpu_thread_history *a = bucket->data;
if (!(a->types & *filter))
return;
hash_release(cpu_record, bucket->data);
}
static void cpu_record_clear(uint8_t filter)
{
uint8_t *tmp = &filter;
struct event_master *m;
struct listnode *ln;
frr_with_mutex (&masters_mtx) {
for (ALL_LIST_ELEMENTS_RO(masters, ln, m)) {
frr_with_mutex (&m->mtx) {
void *args[2] = {tmp, m->cpu_record};
hash_iterate(
m->cpu_record,
(void (*)(struct hash_bucket *,
void *))cpu_record_hash_clear,
args);
}
}
}
}
static uint8_t parse_filter(const char *filterstr)
{
int i = 0;
int filter = 0;
while (filterstr[i] != '\0') {
switch (filterstr[i]) {
case 'r':
case 'R':
filter |= (1 << EVENT_READ);
break;
case 'w':
case 'W':
filter |= (1 << EVENT_WRITE);
break;
case 't':
case 'T':
filter |= (1 << EVENT_TIMER);
break;
case 'e':
case 'E':
filter |= (1 << EVENT_EVENT);
break;
case 'x':
case 'X':
filter |= (1 << EVENT_EXECUTE);
break;
default:
break;
}
++i;
}
return filter;
}
DEFUN_NOSH (show_thread_cpu,
show_thread_cpu_cmd,
"show thread cpu [FILTER]",
SHOW_STR
"Thread information\n"
"Thread CPU usage\n"
"Display filter (rwtex)\n")
{
uint8_t filter = (uint8_t)-1U;
int idx = 0;
if (argv_find(argv, argc, "FILTER", &idx)) {
filter = parse_filter(argv[idx]->arg);
if (!filter) {
vty_out(vty,
"Invalid filter \"%s\" specified; must contain at leastone of 'RWTEXB'\n",
argv[idx]->arg);
return CMD_WARNING;
}
}
cpu_record_print(vty, filter);
return CMD_SUCCESS;
}
DEFPY (service_cputime_stats,
service_cputime_stats_cmd,
"[no] service cputime-stats",
NO_STR
"Set up miscellaneous service\n"
"Collect CPU usage statistics\n")
{
cputime_enabled = !no;
return CMD_SUCCESS;
}
DEFPY (service_cputime_warning,
service_cputime_warning_cmd,
"[no] service cputime-warning (1-4294967295)",
NO_STR
"Set up miscellaneous service\n"
"Warn for tasks exceeding CPU usage threshold\n"
"Warning threshold in milliseconds\n")
{
if (no)
cputime_threshold = 0;
else
cputime_threshold = cputime_warning * 1000;
return CMD_SUCCESS;
}
ALIAS (service_cputime_warning,
no_service_cputime_warning_cmd,
"no service cputime-warning",
NO_STR
"Set up miscellaneous service\n"
"Warn for tasks exceeding CPU usage threshold\n")
DEFPY (service_walltime_warning,
service_walltime_warning_cmd,
"[no] service walltime-warning (1-4294967295)",
NO_STR
"Set up miscellaneous service\n"
"Warn for tasks exceeding total wallclock threshold\n"
"Warning threshold in milliseconds\n")
{
if (no)
walltime_threshold = 0;
else
walltime_threshold = walltime_warning * 1000;
return CMD_SUCCESS;
}
ALIAS (service_walltime_warning,
no_service_walltime_warning_cmd,
"no service walltime-warning",
NO_STR
"Set up miscellaneous service\n"
"Warn for tasks exceeding total wallclock threshold\n")
static void show_thread_poll_helper(struct vty *vty, struct event_master *m)
{
const char *name = m->name ? m->name : "main";
char underline[strlen(name) + 1];
struct event *thread;
uint32_t i;
memset(underline, '-', sizeof(underline));
underline[sizeof(underline) - 1] = '\0';
vty_out(vty, "\nShowing poll FD's for %s\n", name);
vty_out(vty, "----------------------%s\n", underline);
vty_out(vty, "Count: %u/%d\n", (uint32_t)m->handler.pfdcount,
m->fd_limit);
for (i = 0; i < m->handler.pfdcount; i++) {
vty_out(vty, "\t%6d fd:%6d events:%2d revents:%2d\t\t", i,
m->handler.pfds[i].fd, m->handler.pfds[i].events,
m->handler.pfds[i].revents);
if (m->handler.pfds[i].events & POLLIN) {
thread = m->read[m->handler.pfds[i].fd];
if (!thread)
vty_out(vty, "ERROR ");
else
vty_out(vty, "%s ", thread->xref->funcname);
} else
vty_out(vty, " ");
if (m->handler.pfds[i].events & POLLOUT) {
thread = m->write[m->handler.pfds[i].fd];
if (!thread)
vty_out(vty, "ERROR\n");
else
vty_out(vty, "%s\n", thread->xref->funcname);
} else
vty_out(vty, "\n");
}
}
DEFUN_NOSH (show_thread_poll,
show_thread_poll_cmd,
"show thread poll",
SHOW_STR
"Thread information\n"
"Show poll FD's and information\n")
{
struct listnode *node;
struct event_master *m;
frr_with_mutex (&masters_mtx) {
for (ALL_LIST_ELEMENTS_RO(masters, node, m)) {
show_thread_poll_helper(vty, m);
}
}
return CMD_SUCCESS;
}
DEFUN (clear_thread_cpu,
clear_thread_cpu_cmd,
"clear thread cpu [FILTER]",
"Clear stored data in all pthreads\n"
"Thread information\n"
"Thread CPU usage\n"
"Display filter (rwtexb)\n")
{
uint8_t filter = (uint8_t)-1U;
int idx = 0;
if (argv_find(argv, argc, "FILTER", &idx)) {
filter = parse_filter(argv[idx]->arg);
if (!filter) {
vty_out(vty,
"Invalid filter \"%s\" specified; must contain at leastone of 'RWTEXB'\n",
argv[idx]->arg);
return CMD_WARNING;
}
}
cpu_record_clear(filter);
return CMD_SUCCESS;
}
static void show_thread_timers_helper(struct vty *vty, struct event_master *m)
{
const char *name = m->name ? m->name : "main";
char underline[strlen(name) + 1];
struct event *thread;
memset(underline, '-', sizeof(underline));
underline[sizeof(underline) - 1] = '\0';
vty_out(vty, "\nShowing timers for %s\n", name);
vty_out(vty, "-------------------%s\n", underline);
frr_each (thread_timer_list, &m->timer, thread) {
vty_out(vty, " %-50s%pTH\n", thread->hist->funcname, thread);
}
}
DEFPY_NOSH (show_thread_timers,
show_thread_timers_cmd,
"show thread timers",
SHOW_STR
"Thread information\n"
"Show all timers and how long they have in the system\n")
{
struct listnode *node;
struct event_master *m;
frr_with_mutex (&masters_mtx) {
for (ALL_LIST_ELEMENTS_RO(masters, node, m))
show_thread_timers_helper(vty, m);
}
return CMD_SUCCESS;
}
void event_cmd_init(void)
{
install_element(VIEW_NODE, &show_thread_cpu_cmd);
install_element(VIEW_NODE, &show_thread_poll_cmd);
install_element(ENABLE_NODE, &clear_thread_cpu_cmd);
install_element(CONFIG_NODE, &service_cputime_stats_cmd);
install_element(CONFIG_NODE, &service_cputime_warning_cmd);
install_element(CONFIG_NODE, &no_service_cputime_warning_cmd);
install_element(CONFIG_NODE, &service_walltime_warning_cmd);
install_element(CONFIG_NODE, &no_service_walltime_warning_cmd);
install_element(VIEW_NODE, &show_thread_timers_cmd);
}
/* CLI end ------------------------------------------------------------------ */
static void cancelreq_del(void *cr)
{
XFREE(MTYPE_TMP, cr);
}
/* initializer, only ever called once */
static void initializer(void)
{
pthread_key_create(&thread_current, NULL);
}
struct event_master *thread_master_create(const char *name)
{
struct event_master *rv;
struct rlimit limit;
pthread_once(&init_once, &initializer);
rv = XCALLOC(MTYPE_EVENT_MASTER, sizeof(struct event_master));
/* Initialize master mutex */
pthread_mutex_init(&rv->mtx, NULL);
pthread_cond_init(&rv->cancel_cond, NULL);
/* Set name */
name = name ? name : "default";
rv->name = XSTRDUP(MTYPE_EVENT_MASTER, name);
/* Initialize I/O task data structures */
/* Use configured limit if present, ulimit otherwise. */
rv->fd_limit = frr_get_fd_limit();
if (rv->fd_limit == 0) {
getrlimit(RLIMIT_NOFILE, &limit);
rv->fd_limit = (int)limit.rlim_cur;
}
rv->read = XCALLOC(MTYPE_EVENT_POLL,
sizeof(struct event *) * rv->fd_limit);
rv->write = XCALLOC(MTYPE_EVENT_POLL,
sizeof(struct event *) * rv->fd_limit);
char tmhashname[strlen(name) + 32];
snprintf(tmhashname, sizeof(tmhashname), "%s - threadmaster event hash",
name);
rv->cpu_record = hash_create_size(
8, (unsigned int (*)(const void *))cpu_record_hash_key,
(bool (*)(const void *, const void *))cpu_record_hash_cmp,
tmhashname);
thread_list_init(&rv->event);
thread_list_init(&rv->ready);
thread_list_init(&rv->unuse);
thread_timer_list_init(&rv->timer);
/* Initialize event_fetch() settings */
rv->spin = true;
rv->handle_signals = true;
/* Set pthread owner, should be updated by actual owner */
rv->owner = pthread_self();
rv->cancel_req = list_new();
rv->cancel_req->del = cancelreq_del;
rv->canceled = true;
/* Initialize pipe poker */
pipe(rv->io_pipe);
set_nonblocking(rv->io_pipe[0]);
set_nonblocking(rv->io_pipe[1]);
/* Initialize data structures for poll() */
rv->handler.pfdsize = rv->fd_limit;
rv->handler.pfdcount = 0;
rv->handler.pfds = XCALLOC(MTYPE_EVENT_MASTER,
sizeof(struct pollfd) * rv->handler.pfdsize);
rv->handler.copy = XCALLOC(MTYPE_EVENT_MASTER,
sizeof(struct pollfd) * rv->handler.pfdsize);
/* add to list of threadmasters */
frr_with_mutex (&masters_mtx) {
if (!masters)
masters = list_new();
listnode_add(masters, rv);
}
return rv;
}
void thread_master_set_name(struct event_master *master, const char *name)
{
frr_with_mutex (&master->mtx) {
XFREE(MTYPE_EVENT_MASTER, master->name);
master->name = XSTRDUP(MTYPE_EVENT_MASTER, name);
}
}
#define EVENT_UNUSED_DEPTH 10
/* Move thread to unuse list. */
static void thread_add_unuse(struct event_master *m, struct event *thread)
{
pthread_mutex_t mtxc = thread->mtx;
assert(m != NULL && thread != NULL);
thread->hist->total_active--;
memset(thread, 0, sizeof(struct event));
thread->type = EVENT_UNUSED;
/* Restore the thread mutex context. */
thread->mtx = mtxc;
if (thread_list_count(&m->unuse) < EVENT_UNUSED_DEPTH) {
thread_list_add_tail(&m->unuse, thread);
return;
}
thread_free(m, thread);
}
/* Free all unused thread. */
static void thread_list_free(struct event_master *m,
struct thread_list_head *list)
{
struct event *t;
while ((t = thread_list_pop(list)))
thread_free(m, t);
}
static void thread_array_free(struct event_master *m,
struct event **thread_array)
{
struct event *t;
int index;
for (index = 0; index < m->fd_limit; ++index) {
t = thread_array[index];
if (t) {
thread_array[index] = NULL;
thread_free(m, t);
}
}
XFREE(MTYPE_EVENT_POLL, thread_array);
}
/*
* thread_master_free_unused
*
* As threads are finished with they are put on the
* unuse list for later reuse.
* If we are shutting down, Free up unused threads
* So we can see if we forget to shut anything off
*/
void thread_master_free_unused(struct event_master *m)
{
frr_with_mutex (&m->mtx) {
struct event *t;
while ((t = thread_list_pop(&m->unuse)))
thread_free(m, t);
}
}
/* Stop thread scheduler. */
void thread_master_free(struct event_master *m)
{
struct event *t;
frr_with_mutex (&masters_mtx) {
listnode_delete(masters, m);
if (masters->count == 0) {
list_delete(&masters);
}
}
thread_array_free(m, m->read);
thread_array_free(m, m->write);
while ((t = thread_timer_list_pop(&m->timer)))
thread_free(m, t);
thread_list_free(m, &m->event);
thread_list_free(m, &m->ready);
thread_list_free(m, &m->unuse);
pthread_mutex_destroy(&m->mtx);
pthread_cond_destroy(&m->cancel_cond);
close(m->io_pipe[0]);
close(m->io_pipe[1]);
list_delete(&m->cancel_req);
m->cancel_req = NULL;
hash_clean_and_free(&m->cpu_record, cpu_record_hash_free);
XFREE(MTYPE_EVENT_MASTER, m->name);
XFREE(MTYPE_EVENT_MASTER, m->handler.pfds);
XFREE(MTYPE_EVENT_MASTER, m->handler.copy);
XFREE(MTYPE_EVENT_MASTER, m);
}
/* Return remain time in milliseconds. */
unsigned long event_timer_remain_msec(struct event *thread)
{
int64_t remain;
if (!event_is_scheduled(thread))
return 0;
frr_with_mutex (&thread->mtx) {
remain = monotime_until(&thread->u.sands, NULL) / 1000LL;
}
return remain < 0 ? 0 : remain;
}
/* Return remain time in seconds. */
unsigned long event_timer_remain_second(struct event *thread)
{
return event_timer_remain_msec(thread) / 1000LL;
}
struct timeval event_timer_remain(struct event *thread)
{
struct timeval remain;
frr_with_mutex (&thread->mtx) {
monotime_until(&thread->u.sands, &remain);
}
return remain;
}
static int time_hhmmss(char *buf, int buf_size, long sec)
{
long hh;
long mm;
int wr;
assert(buf_size >= 8);
hh = sec / 3600;
sec %= 3600;
mm = sec / 60;
sec %= 60;
wr = snprintf(buf, buf_size, "%02ld:%02ld:%02ld", hh, mm, sec);
return wr != 8;
}
char *event_timer_to_hhmmss(char *buf, int buf_size, struct event *t_timer)
{
if (t_timer) {
time_hhmmss(buf, buf_size, event_timer_remain_second(t_timer));
} else {
snprintf(buf, buf_size, "--:--:--");
}
return buf;
}
/* Get new thread. */
static struct event *thread_get(struct event_master *m, uint8_t type,
void (*func)(struct event *), void *arg,
const struct xref_threadsched *xref)
{
struct event *thread = thread_list_pop(&m->unuse);
struct cpu_thread_history tmp;
if (!thread) {
thread = XCALLOC(MTYPE_THREAD, sizeof(struct event));
/* mutex only needs to be initialized at struct creation. */
pthread_mutex_init(&thread->mtx, NULL);
m->alloc++;
}
thread->type = type;
thread->add_type = type;
thread->master = m;
thread->arg = arg;
thread->yield = EVENT_YIELD_TIME_SLOT; /* default */
thread->ref = NULL;
thread->ignore_timer_late = false;
/*
* So if the passed in funcname is not what we have
* stored that means the thread->hist needs to be
* updated. We keep the last one around in unused
* under the assumption that we are probably
* going to immediately allocate the same
* type of thread.
* This hopefully saves us some serious
* hash_get lookups.
*/
if ((thread->xref && thread->xref->funcname != xref->funcname)
|| thread->func != func) {
tmp.func = func;
tmp.funcname = xref->funcname;
thread->hist =
hash_get(m->cpu_record, &tmp,
(void *(*)(void *))cpu_record_hash_alloc);
}
thread->hist->total_active++;
thread->func = func;
thread->xref = xref;
return thread;
}
static void thread_free(struct event_master *master, struct event *thread)
{
/* Update statistics. */
assert(master->alloc > 0);
master->alloc--;
/* Free allocated resources. */
pthread_mutex_destroy(&thread->mtx);
XFREE(MTYPE_THREAD, thread);
}
static int fd_poll(struct event_master *m, const struct timeval *timer_wait,
bool *eintr_p)
{
sigset_t origsigs;
unsigned char trash[64];
nfds_t count = m->handler.copycount;
/*
* If timer_wait is null here, that means poll() should block
* indefinitely, unless the thread_master has overridden it by setting
* ->selectpoll_timeout.
*
* If the value is positive, it specifies the maximum number of
* milliseconds to wait. If the timeout is -1, it specifies that
* we should never wait and always return immediately even if no
* event is detected. If the value is zero, the behavior is default.
*/
int timeout = -1;
/* number of file descriptors with events */
int num;
if (timer_wait != NULL
&& m->selectpoll_timeout == 0) // use the default value
timeout = (timer_wait->tv_sec * 1000)
+ (timer_wait->tv_usec / 1000);
else if (m->selectpoll_timeout > 0) // use the user's timeout
timeout = m->selectpoll_timeout;
else if (m->selectpoll_timeout
< 0) // effect a poll (return immediately)
timeout = 0;
zlog_tls_buffer_flush();
rcu_read_unlock();
rcu_assert_read_unlocked();
/* add poll pipe poker */
assert(count + 1 < m->handler.pfdsize);
m->handler.copy[count].fd = m->io_pipe[0];
m->handler.copy[count].events = POLLIN;
m->handler.copy[count].revents = 0x00;
/* We need to deal with a signal-handling race here: we
* don't want to miss a crucial signal, such as SIGTERM or SIGINT,
* that may arrive just before we enter poll(). We will block the
* key signals, then check whether any have arrived - if so, we return
* before calling poll(). If not, we'll re-enable the signals
* in the ppoll() call.
*/
sigemptyset(&origsigs);
if (m->handle_signals) {
/* Main pthread that handles the app signals */
if (frr_sigevent_check(&origsigs)) {
/* Signal to process - restore signal mask and return */
pthread_sigmask(SIG_SETMASK, &origsigs, NULL);
num = -1;
*eintr_p = true;
goto done;
}
} else {
/* Don't make any changes for the non-main pthreads */
pthread_sigmask(SIG_SETMASK, NULL, &origsigs);
}
#if defined(HAVE_PPOLL)
struct timespec ts, *tsp;
if (timeout >= 0) {
ts.tv_sec = timeout / 1000;
ts.tv_nsec = (timeout % 1000) * 1000000;
tsp = &ts;
} else
tsp = NULL;
num = ppoll(m->handler.copy, count + 1, tsp, &origsigs);
pthread_sigmask(SIG_SETMASK, &origsigs, NULL);
#else
/* Not ideal - there is a race after we restore the signal mask */
pthread_sigmask(SIG_SETMASK, &origsigs, NULL);
num = poll(m->handler.copy, count + 1, timeout);
#endif
done:
if (num < 0 && errno == EINTR)
*eintr_p = true;
if (num > 0 && m->handler.copy[count].revents != 0 && num--)
while (read(m->io_pipe[0], &trash, sizeof(trash)) > 0)
;
rcu_read_lock();
return num;
}
/* Add new read thread. */
void _event_add_read_write(const struct xref_threadsched *xref,
struct event_master *m, void (*func)(struct event *),
void *arg, int fd, struct event **t_ptr)
{
int dir = xref->event_type;
struct event *thread = NULL;
struct event **thread_array;
if (dir == EVENT_READ)
frrtrace(9, frr_libfrr, schedule_read, m,
xref->funcname, xref->xref.file, xref->xref.line,
t_ptr, fd, 0, arg, 0);
else
frrtrace(9, frr_libfrr, schedule_write, m,
xref->funcname, xref->xref.file, xref->xref.line,
t_ptr, fd, 0, arg, 0);
assert(fd >= 0);
if (fd >= m->fd_limit)
assert(!"Number of FD's open is greater than FRR currently configured to handle, aborting");
frr_with_mutex (&m->mtx) {
if (t_ptr && *t_ptr)
// thread is already scheduled; don't reschedule
break;
/* default to a new pollfd */
nfds_t queuepos = m->handler.pfdcount;
if (dir == EVENT_READ)
thread_array = m->read;
else
thread_array = m->write;
/* if we already have a pollfd for our file descriptor, find and
* use it */
for (nfds_t i = 0; i < m->handler.pfdcount; i++)
if (m->handler.pfds[i].fd == fd) {
queuepos = i;
#ifdef DEV_BUILD
/*
* What happens if we have a thread already
* created for this event?
*/
if (thread_array[fd])
assert(!"Thread already scheduled for file descriptor");
#endif
break;
}
/* make sure we have room for this fd + pipe poker fd */
assert(queuepos + 1 < m->handler.pfdsize);
thread = thread_get(m, dir, func, arg, xref);
m->handler.pfds[queuepos].fd = fd;
m->handler.pfds[queuepos].events |=
(dir == EVENT_READ ? POLLIN : POLLOUT);
if (queuepos == m->handler.pfdcount)
m->handler.pfdcount++;
if (thread) {
frr_with_mutex (&thread->mtx) {
thread->u.fd = fd;
thread_array[thread->u.fd] = thread;
}
if (t_ptr) {
*t_ptr = thread;
thread->ref = t_ptr;
}
}
AWAKEN(m);
}
}
static void _event_add_timer_timeval(const struct xref_threadsched *xref,
struct event_master *m,
void (*func)(struct event *), void *arg,
struct timeval *time_relative,
struct event **t_ptr)
{
struct event *thread;
struct timeval t;
assert(m != NULL);
assert(time_relative);
frrtrace(9, frr_libfrr, schedule_timer, m,
xref->funcname, xref->xref.file, xref->xref.line,
t_ptr, 0, 0, arg, (long)time_relative->tv_sec);
/* Compute expiration/deadline time. */
monotime(&t);
timeradd(&t, time_relative, &t);
frr_with_mutex (&m->mtx) {
if (t_ptr && *t_ptr)
/* thread is already scheduled; don't reschedule */
return;
thread = thread_get(m, EVENT_TIMER, func, arg, xref);
frr_with_mutex (&thread->mtx) {
thread->u.sands = t;
thread_timer_list_add(&m->timer, thread);
if (t_ptr) {
*t_ptr = thread;
thread->ref = t_ptr;
}
}
/* The timer list is sorted - if this new timer
* might change the time we'll wait for, give the pthread
* a chance to re-compute.
*/
if (thread_timer_list_first(&m->timer) == thread)
AWAKEN(m);
}
#define ONEYEAR2SEC (60 * 60 * 24 * 365)
if (time_relative->tv_sec > ONEYEAR2SEC)
flog_err(
EC_LIB_TIMER_TOO_LONG,
"Timer: %pTHD is created with an expiration that is greater than 1 year",
thread);
}
/* Add timer event thread. */
void _event_add_timer(const struct xref_threadsched *xref,
struct event_master *m, void (*func)(struct event *),
void *arg, long timer, struct event **t_ptr)
{
struct timeval trel;
assert(m != NULL);
trel.tv_sec = timer;
trel.tv_usec = 0;
_event_add_timer_timeval(xref, m, func, arg, &trel, t_ptr);
}
/* Add timer event thread with "millisecond" resolution */
void _event_add_timer_msec(const struct xref_threadsched *xref,
struct event_master *m, void (*func)(struct event *),
void *arg, long timer, struct event **t_ptr)
{
struct timeval trel;
assert(m != NULL);
trel.tv_sec = timer / 1000;
trel.tv_usec = 1000 * (timer % 1000);
_event_add_timer_timeval(xref, m, func, arg, &trel, t_ptr);
}
/* Add timer event thread with "timeval" resolution */
void _event_add_timer_tv(const struct xref_threadsched *xref,
struct event_master *m, void (*func)(struct event *),
void *arg, struct timeval *tv, struct event **t_ptr)
{
_event_add_timer_timeval(xref, m, func, arg, tv, t_ptr);
}
/* Add simple event thread. */
void _event_add_event(const struct xref_threadsched *xref,
struct event_master *m, void (*func)(struct event *),
void *arg, int val, struct event **t_ptr)
{
struct event *thread = NULL;
frrtrace(9, frr_libfrr, schedule_event, m,
xref->funcname, xref->xref.file, xref->xref.line,
t_ptr, 0, val, arg, 0);
assert(m != NULL);
frr_with_mutex (&m->mtx) {
if (t_ptr && *t_ptr)
/* thread is already scheduled; don't reschedule */
break;
thread = thread_get(m, EVENT_EVENT, func, arg, xref);
frr_with_mutex (&thread->mtx) {
thread->u.val = val;
thread_list_add_tail(&m->event, thread);
}
if (t_ptr) {
*t_ptr = thread;
thread->ref = t_ptr;
}
AWAKEN(m);
}
}
/* Thread cancellation ------------------------------------------------------ */
/**
* NOT's out the .events field of pollfd corresponding to the given file
* descriptor. The event to be NOT'd is passed in the 'state' parameter.
*
* This needs to happen for both copies of pollfd's. See 'event_fetch'
* implementation for details.
*
* @param master
* @param fd
* @param state the event to cancel. One or more (OR'd together) of the
* following:
* - POLLIN
* - POLLOUT
*/
static void event_cancel_rw(struct event_master *master, int fd, short state,
int idx_hint)
{
bool found = false;
/* find the index of corresponding pollfd */
nfds_t i;
/* Cancel POLLHUP too just in case some bozo set it */
state |= POLLHUP;
/* Some callers know the index of the pfd already */
if (idx_hint >= 0) {
i = idx_hint;
found = true;
} else {
/* Have to look for the fd in the pfd array */
for (i = 0; i < master->handler.pfdcount; i++)
if (master->handler.pfds[i].fd == fd) {
found = true;
break;
}
}
if (!found) {
zlog_debug(
"[!] Received cancellation request for nonexistent rw job");
zlog_debug("[!] threadmaster: %s | fd: %d",
master->name ? master->name : "", fd);
return;
}
/* NOT out event. */
master->handler.pfds[i].events &= ~(state);
/* If all events are canceled, delete / resize the pollfd array. */
if (master->handler.pfds[i].events == 0) {
memmove(master->handler.pfds + i, master->handler.pfds + i + 1,
(master->handler.pfdcount - i - 1)
* sizeof(struct pollfd));
master->handler.pfdcount--;
master->handler.pfds[master->handler.pfdcount].fd = 0;
master->handler.pfds[master->handler.pfdcount].events = 0;
}
/* If we have the same pollfd in the copy, perform the same operations,
* otherwise return. */
if (i >= master->handler.copycount)
return;
master->handler.copy[i].events &= ~(state);
if (master->handler.copy[i].events == 0) {
memmove(master->handler.copy + i, master->handler.copy + i + 1,
(master->handler.copycount - i - 1)
* sizeof(struct pollfd));
master->handler.copycount--;
master->handler.copy[master->handler.copycount].fd = 0;
master->handler.copy[master->handler.copycount].events = 0;
}
}
/*
* Process task cancellation given a task argument: iterate through the
* various lists of tasks, looking for any that match the argument.
*/
static void cancel_arg_helper(struct event_master *master,
const struct cancel_req *cr)
{
struct event *t;
nfds_t i;
int fd;
struct pollfd *pfd;
/* We're only processing arg-based cancellations here. */
if (cr->eventobj == NULL)
return;
/* First process the ready lists. */
frr_each_safe(thread_list, &master->event, t) {
if (t->arg != cr->eventobj)
continue;
thread_list_del(&master->event, t);
if (t->ref)
*t->ref = NULL;
thread_add_unuse(master, t);
}
frr_each_safe(thread_list, &master->ready, t) {
if (t->arg != cr->eventobj)
continue;
thread_list_del(&master->ready, t);
if (t->ref)
*t->ref = NULL;
thread_add_unuse(master, t);
}
/* If requested, stop here and ignore io and timers */
if (CHECK_FLAG(cr->flags, EVENT_CANCEL_FLAG_READY))
return;
/* Check the io tasks */
for (i = 0; i < master->handler.pfdcount;) {
pfd = master->handler.pfds + i;
if (pfd->events & POLLIN)
t = master->read[pfd->fd];
else
t = master->write[pfd->fd];
if (t && t->arg == cr->eventobj) {
fd = pfd->fd;
/* Found a match to cancel: clean up fd arrays */
event_cancel_rw(master, pfd->fd, pfd->events, i);
/* Clean up thread arrays */
master->read[fd] = NULL;
master->write[fd] = NULL;
/* Clear caller's ref */
if (t->ref)
*t->ref = NULL;
thread_add_unuse(master, t);
/* Don't increment 'i' since the cancellation will have
* removed the entry from the pfd array
*/
} else
i++;
}
/* Check the timer tasks */
t = thread_timer_list_first(&master->timer);
while (t) {
struct event *t_next;
t_next = thread_timer_list_next(&master->timer, t);
if (t->arg == cr->eventobj) {
thread_timer_list_del(&master->timer, t);
if (t->ref)
*t->ref = NULL;
thread_add_unuse(master, t);
}
t = t_next;
}
}
/**
* Process cancellation requests.
*
* This may only be run from the pthread which owns the thread_master.
*
* @param master the thread master to process
* @REQUIRE master->mtx
*/
static void do_event_cancel(struct event_master *master)
{
struct thread_list_head *list = NULL;
struct event **thread_array = NULL;
struct event *thread;
struct cancel_req *cr;
struct listnode *ln;
for (ALL_LIST_ELEMENTS_RO(master->cancel_req, ln, cr)) {
/*
* If this is an event object cancellation, search
* through task lists deleting any tasks which have the
* specified argument - use this handy helper function.
*/
if (cr->eventobj) {
cancel_arg_helper(master, cr);
continue;
}
/*
* The pointer varies depending on whether the cancellation
* request was made asynchronously or not. If it was, we
* need to check whether the thread even exists anymore
* before cancelling it.
*/
thread = (cr->thread) ? cr->thread : *cr->threadref;
if (!thread)
continue;
list = NULL;
thread_array = NULL;
/* Determine the appropriate queue to cancel the thread from */
switch (thread->type) {
case EVENT_READ:
event_cancel_rw(master, thread->u.fd, POLLIN, -1);
thread_array = master->read;
break;
case EVENT_WRITE:
event_cancel_rw(master, thread->u.fd, POLLOUT, -1);
thread_array = master->write;
break;
case EVENT_TIMER:
thread_timer_list_del(&master->timer, thread);
break;
case EVENT_EVENT:
list = &master->event;
break;
case EVENT_READY:
list = &master->ready;
break;
case EVENT_UNUSED:
case EVENT_EXECUTE:
continue;
break;
}
if (list) {
thread_list_del(list, thread);
} else if (thread_array) {
thread_array[thread->u.fd] = NULL;
}
if (thread->ref)
*thread->ref = NULL;
thread_add_unuse(thread->master, thread);
}
/* Delete and free all cancellation requests */
if (master->cancel_req)
list_delete_all_node(master->cancel_req);
/* Wake up any threads which may be blocked in event_cancel_async() */
master->canceled = true;
pthread_cond_broadcast(&master->cancel_cond);
}
/*
* Helper function used for multiple flavors of arg-based cancellation.
*/
static void cancel_event_helper(struct event_master *m, void *arg, int flags)
{
struct cancel_req *cr;
assert(m->owner == pthread_self());
/* Only worth anything if caller supplies an arg. */
if (arg == NULL)
return;
cr = XCALLOC(MTYPE_TMP, sizeof(struct cancel_req));
cr->flags = flags;
frr_with_mutex (&m->mtx) {
cr->eventobj = arg;
listnode_add(m->cancel_req, cr);
do_event_cancel(m);
}
}
/**
* Cancel any events which have the specified argument.
*
* MT-Unsafe
*
* @param m the thread_master to cancel from
* @param arg the argument passed when creating the event
*/
void event_cancel_event(struct event_master *master, void *arg)
{
cancel_event_helper(master, arg, 0);
}
/*
* Cancel ready tasks with an arg matching 'arg'
*
* MT-Unsafe
*
* @param m the thread_master to cancel from
* @param arg the argument passed when creating the event
*/
void event_cancel_event_ready(struct event_master *m, void *arg)
{
/* Only cancel ready/event tasks */
cancel_event_helper(m, arg, EVENT_CANCEL_FLAG_READY);
}
/**
* Cancel a specific task.
*
* MT-Unsafe
*
* @param thread task to cancel
*/
void event_cancel(struct event **thread)
{
struct event_master *master;
if (thread == NULL || *thread == NULL)
return;
master = (*thread)->master;
frrtrace(9, frr_libfrr, event_cancel, master, (*thread)->xref->funcname,
(*thread)->xref->xref.file, (*thread)->xref->xref.line, NULL,
(*thread)->u.fd, (*thread)->u.val, (*thread)->arg,
(*thread)->u.sands.tv_sec);
assert(master->owner == pthread_self());
frr_with_mutex (&master->mtx) {
struct cancel_req *cr =
XCALLOC(MTYPE_TMP, sizeof(struct cancel_req));
cr->thread = *thread;
listnode_add(master->cancel_req, cr);
do_event_cancel(master);
}
*thread = NULL;
}
/**
* Asynchronous cancellation.
*
* Called with either a struct event ** or void * to an event argument,
* this function posts the correct cancellation request and blocks until it is
* serviced.
*
* If the thread is currently running, execution blocks until it completes.
*
* The last two parameters are mutually exclusive, i.e. if you pass one the
* other must be NULL.
*
* When the cancellation procedure executes on the target thread_master, the
* thread * provided is checked for nullity. If it is null, the thread is
* assumed to no longer exist and the cancellation request is a no-op. Thus
* users of this API must pass a back-reference when scheduling the original
* task.
*
* MT-Safe
*
* @param master the thread master with the relevant event / task
* @param thread pointer to thread to cancel
* @param eventobj the event
*/
void event_cancel_async(struct event_master *master, struct event **thread,
void *eventobj)
{
assert(!(thread && eventobj) && (thread || eventobj));
if (thread && *thread)
frrtrace(9, frr_libfrr, event_cancel_async, master,
(*thread)->xref->funcname, (*thread)->xref->xref.file,
(*thread)->xref->xref.line, NULL, (*thread)->u.fd,
(*thread)->u.val, (*thread)->arg,
(*thread)->u.sands.tv_sec);
else
frrtrace(9, frr_libfrr, event_cancel_async, master, NULL, NULL,
0, NULL, 0, 0, eventobj, 0);
assert(master->owner != pthread_self());
frr_with_mutex (&master->mtx) {
master->canceled = false;
if (thread) {
struct cancel_req *cr =
XCALLOC(MTYPE_TMP, sizeof(struct cancel_req));
cr->threadref = thread;
listnode_add(master->cancel_req, cr);
} else if (eventobj) {
struct cancel_req *cr =
XCALLOC(MTYPE_TMP, sizeof(struct cancel_req));
cr->eventobj = eventobj;
listnode_add(master->cancel_req, cr);
}
AWAKEN(master);
while (!master->canceled)
pthread_cond_wait(&master->cancel_cond, &master->mtx);
}
if (thread)
*thread = NULL;
}
/* ------------------------------------------------------------------------- */
static struct timeval *thread_timer_wait(struct thread_timer_list_head *timers,
struct timeval *timer_val)
{
if (!thread_timer_list_count(timers))
return NULL;
struct event *next_timer = thread_timer_list_first(timers);
monotime_until(&next_timer->u.sands, timer_val);
return timer_val;
}
static struct event *thread_run(struct event_master *m, struct event *thread,
struct event *fetch)
{
*fetch = *thread;
thread_add_unuse(m, thread);
return fetch;
}
static int thread_process_io_helper(struct event_master *m,
struct event *thread, short state,
short actual_state, int pos)
{
struct event **thread_array;
/*
* poll() clears the .events field, but the pollfd array we
* pass to poll() is a copy of the one used to schedule threads.
* We need to synchronize state between the two here by applying
* the same changes poll() made on the copy of the "real" pollfd
* array.
*
* This cleans up a possible infinite loop where we refuse
* to respond to a poll event but poll is insistent that
* we should.
*/
m->handler.pfds[pos].events &= ~(state);
if (!thread) {
if ((actual_state & (POLLHUP|POLLIN)) != POLLHUP)
flog_err(EC_LIB_NO_THREAD,
"Attempting to process an I/O event but for fd: %d(%d) no thread to handle this!",
m->handler.pfds[pos].fd, actual_state);
return 0;
}
if (thread->type == EVENT_READ)
thread_array = m->read;
else
thread_array = m->write;
thread_array[thread->u.fd] = NULL;
thread_list_add_tail(&m->ready, thread);
thread->type = EVENT_READY;
return 1;
}
/**
* Process I/O events.
*
* Walks through file descriptor array looking for those pollfds whose .revents
* field has something interesting. Deletes any invalid file descriptors.
*
* @param m the thread master
* @param num the number of active file descriptors (return value of poll())
*/
static void thread_process_io(struct event_master *m, unsigned int num)
{
unsigned int ready = 0;
struct pollfd *pfds = m->handler.copy;
for (nfds_t i = 0; i < m->handler.copycount && ready < num; ++i) {
/* no event for current fd? immediately continue */
if (pfds[i].revents == 0)
continue;
ready++;
/*
* Unless someone has called event_cancel from another
* pthread, the only thing that could have changed in
* m->handler.pfds while we were asleep is the .events
* field in a given pollfd. Barring event_cancel() that
* value should be a superset of the values we have in our
* copy, so there's no need to update it. Similarily,
* barring deletion, the fd should still be a valid index
* into the master's pfds.
*
* We are including POLLERR here to do a READ event
* this is because the read should fail and the
* read function should handle it appropriately
*/
if (pfds[i].revents & (POLLIN | POLLHUP | POLLERR)) {
thread_process_io_helper(m, m->read[pfds[i].fd], POLLIN,
pfds[i].revents, i);
}
if (pfds[i].revents & POLLOUT)
thread_process_io_helper(m, m->write[pfds[i].fd],
POLLOUT, pfds[i].revents, i);
/* if one of our file descriptors is garbage, remove the same
* from
* both pfds + update sizes and index */
if (pfds[i].revents & POLLNVAL) {
memmove(m->handler.pfds + i, m->handler.pfds + i + 1,
(m->handler.pfdcount - i - 1)
* sizeof(struct pollfd));
m->handler.pfdcount--;
m->handler.pfds[m->handler.pfdcount].fd = 0;
m->handler.pfds[m->handler.pfdcount].events = 0;
memmove(pfds + i, pfds + i + 1,
(m->handler.copycount - i - 1)
* sizeof(struct pollfd));
m->handler.copycount--;
m->handler.copy[m->handler.copycount].fd = 0;
m->handler.copy[m->handler.copycount].events = 0;
i--;
}
}
}
/* Add all timers that have popped to the ready list. */
static unsigned int thread_process_timers(struct event_master *m,
struct timeval *timenow)
{
struct timeval prev = *timenow;
bool displayed = false;
struct event *thread;
unsigned int ready = 0;
while ((thread = thread_timer_list_first(&m->timer))) {
if (timercmp(timenow, &thread->u.sands, <))
break;
prev = thread->u.sands;
prev.tv_sec += 4;
/*
* If the timer would have popped 4 seconds in the
* past then we are in a situation where we are
* really getting behind on handling of events.
* Let's log it and do the right thing with it.
*/
if (timercmp(timenow, &prev, >)) {
atomic_fetch_add_explicit(
&thread->hist->total_starv_warn, 1,
memory_order_seq_cst);
if (!displayed && !thread->ignore_timer_late) {
flog_warn(
EC_LIB_STARVE_THREAD,
"Thread Starvation: %pTHD was scheduled to pop greater than 4s ago",
thread);
displayed = true;
}
}
thread_timer_list_pop(&m->timer);
thread->type = EVENT_READY;
thread_list_add_tail(&m->ready, thread);
ready++;
}
return ready;
}
/* process a list en masse, e.g. for event thread lists */
static unsigned int thread_process(struct thread_list_head *list)
{
struct event *thread;
unsigned int ready = 0;
while ((thread = thread_list_pop(list))) {
thread->type = EVENT_READY;
thread_list_add_tail(&thread->master->ready, thread);
ready++;
}
return ready;
}
/* Fetch next ready thread. */
struct event *event_fetch(struct event_master *m, struct event *fetch)
{
struct event *thread = NULL;
struct timeval now;
struct timeval zerotime = {0, 0};
struct timeval tv;
struct timeval *tw = NULL;
bool eintr_p = false;
int num = 0;
do {
/* Handle signals if any */
if (m->handle_signals)
frr_sigevent_process();
pthread_mutex_lock(&m->mtx);
/* Process any pending cancellation requests */
do_event_cancel(m);
/*
* Attempt to flush ready queue before going into poll().
* This is performance-critical. Think twice before modifying.
*/
if ((thread = thread_list_pop(&m->ready))) {
fetch = thread_run(m, thread, fetch);
if (fetch->ref)
*fetch->ref = NULL;
pthread_mutex_unlock(&m->mtx);
if (!m->ready_run_loop)
GETRUSAGE(&m->last_getrusage);
m->ready_run_loop = true;
break;
}
m->ready_run_loop = false;
/* otherwise, tick through scheduling sequence */
/*
* Post events to ready queue. This must come before the
* following block since events should occur immediately
*/
thread_process(&m->event);
/*
* If there are no tasks on the ready queue, we will poll()
* until a timer expires or we receive I/O, whichever comes
* first. The strategy for doing this is:
*
* - If there are events pending, set the poll() timeout to zero
* - If there are no events pending, but there are timers
* pending, set the timeout to the smallest remaining time on
* any timer.
* - If there are neither timers nor events pending, but there
* are file descriptors pending, block indefinitely in poll()
* - If nothing is pending, it's time for the application to die
*
* In every case except the last, we need to hit poll() at least
* once per loop to avoid starvation by events
*/
if (!thread_list_count(&m->ready))
tw = thread_timer_wait(&m->timer, &tv);
if (thread_list_count(&m->ready) ||
(tw && !timercmp(tw, &zerotime, >)))
tw = &zerotime;
if (!tw && m->handler.pfdcount == 0) { /* die */
pthread_mutex_unlock(&m->mtx);
fetch = NULL;
break;
}
/*
* Copy pollfd array + # active pollfds in it. Not necessary to
* copy the array size as this is fixed.
*/
m->handler.copycount = m->handler.pfdcount;
memcpy(m->handler.copy, m->handler.pfds,
m->handler.copycount * sizeof(struct pollfd));
pthread_mutex_unlock(&m->mtx);
{
eintr_p = false;
num = fd_poll(m, tw, &eintr_p);
}
pthread_mutex_lock(&m->mtx);
/* Handle any errors received in poll() */
if (num < 0) {
if (eintr_p) {
pthread_mutex_unlock(&m->mtx);
/* loop around to signal handler */
continue;
}
/* else die */
flog_err(EC_LIB_SYSTEM_CALL, "poll() error: %s",
safe_strerror(errno));
pthread_mutex_unlock(&m->mtx);
fetch = NULL;
break;
}
/* Post timers to ready queue. */
monotime(&now);
thread_process_timers(m, &now);
/* Post I/O to ready queue. */
if (num > 0)
thread_process_io(m, num);
pthread_mutex_unlock(&m->mtx);
} while (!thread && m->spin);
return fetch;
}
static unsigned long timeval_elapsed(struct timeval a, struct timeval b)
{
return (((a.tv_sec - b.tv_sec) * TIMER_SECOND_MICRO)
+ (a.tv_usec - b.tv_usec));
}
unsigned long event_consumed_time(RUSAGE_T *now, RUSAGE_T *start,
unsigned long *cputime)
{
#ifdef HAVE_CLOCK_THREAD_CPUTIME_ID
#ifdef __FreeBSD__
/*
* FreeBSD appears to have an issue when calling clock_gettime
* with CLOCK_THREAD_CPUTIME_ID really close to each other
* occassionally the now time will be before the start time.
* This is not good and FRR is ending up with CPU HOG's
* when the subtraction wraps to very large numbers
*
* What we are going to do here is cheat a little bit
* and notice that this is a problem and just correct
* it so that it is impossible to happen
*/
if (start->cpu.tv_sec == now->cpu.tv_sec &&
start->cpu.tv_nsec > now->cpu.tv_nsec)
now->cpu.tv_nsec = start->cpu.tv_nsec + 1;
else if (start->cpu.tv_sec > now->cpu.tv_sec) {
now->cpu.tv_sec = start->cpu.tv_sec;
now->cpu.tv_nsec = start->cpu.tv_nsec + 1;
}
#endif
*cputime = (now->cpu.tv_sec - start->cpu.tv_sec) * TIMER_SECOND_MICRO
+ (now->cpu.tv_nsec - start->cpu.tv_nsec) / 1000;
#else
/* This is 'user + sys' time. */
*cputime = timeval_elapsed(now->cpu.ru_utime, start->cpu.ru_utime)
+ timeval_elapsed(now->cpu.ru_stime, start->cpu.ru_stime);
#endif
return timeval_elapsed(now->real, start->real);
}
/* We should aim to yield after yield milliseconds, which defaults
to EVENT_YIELD_TIME_SLOT .
Note: we are using real (wall clock) time for this calculation.
It could be argued that CPU time may make more sense in certain
contexts. The things to consider are whether the thread may have
blocked (in which case wall time increases, but CPU time does not),
or whether the system is heavily loaded with other processes competing
for CPU time. On balance, wall clock time seems to make sense.
Plus it has the added benefit that gettimeofday should be faster
than calling getrusage. */
int event_should_yield(struct event *thread)
{
int result;
frr_with_mutex (&thread->mtx) {
result = monotime_since(&thread->real, NULL)
> (int64_t)thread->yield;
}
return result;
}
void event_set_yield_time(struct event *thread, unsigned long yield_time)
{
frr_with_mutex (&thread->mtx) {
thread->yield = yield_time;
}
}
void event_getrusage(RUSAGE_T *r)
{
monotime(&r->real);
if (!cputime_enabled) {
memset(&r->cpu, 0, sizeof(r->cpu));
return;
}
#ifdef HAVE_CLOCK_THREAD_CPUTIME_ID
/* not currently implemented in Linux's vDSO, but maybe at some point
* in the future?
*/
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &r->cpu);
#else /* !HAVE_CLOCK_THREAD_CPUTIME_ID */
#if defined RUSAGE_THREAD
#define FRR_RUSAGE RUSAGE_THREAD
#else
#define FRR_RUSAGE RUSAGE_SELF
#endif
getrusage(FRR_RUSAGE, &(r->cpu));
#endif
}
/*
* Call a thread.
*
* This function will atomically update the thread's usage history. At present
* this is the only spot where usage history is written. Nevertheless the code
* has been written such that the introduction of writers in the future should
* not need to update it provided the writers atomically perform only the
* operations done here, i.e. updating the total and maximum times. In
* particular, the maximum real and cpu times must be monotonically increasing
* or this code is not correct.
*/
void event_call(struct event *thread)
{
RUSAGE_T before, after;
/* if the thread being called is the CLI, it may change cputime_enabled
* ("service cputime-stats" command), which can result in nonsensical
* and very confusing warnings
*/
bool cputime_enabled_here = cputime_enabled;
if (thread->master->ready_run_loop)
before = thread->master->last_getrusage;
else
GETRUSAGE(&before);
thread->real = before.real;
frrtrace(9, frr_libfrr, event_call, thread->master,
thread->xref->funcname, thread->xref->xref.file,
thread->xref->xref.line, NULL, thread->u.fd, thread->u.val,
thread->arg, thread->u.sands.tv_sec);
pthread_setspecific(thread_current, thread);
(*thread->func)(thread);
pthread_setspecific(thread_current, NULL);
GETRUSAGE(&after);
thread->master->last_getrusage = after;
unsigned long walltime, cputime;
unsigned long exp;
walltime = event_consumed_time(&after, &before, &cputime);
/* update walltime */
atomic_fetch_add_explicit(&thread->hist->real.total, walltime,
memory_order_seq_cst);
exp = atomic_load_explicit(&thread->hist->real.max,
memory_order_seq_cst);
while (exp < walltime
&& !atomic_compare_exchange_weak_explicit(
&thread->hist->real.max, &exp, walltime,
memory_order_seq_cst, memory_order_seq_cst))
;
if (cputime_enabled_here && cputime_enabled) {
/* update cputime */
atomic_fetch_add_explicit(&thread->hist->cpu.total, cputime,
memory_order_seq_cst);
exp = atomic_load_explicit(&thread->hist->cpu.max,
memory_order_seq_cst);
while (exp < cputime
&& !atomic_compare_exchange_weak_explicit(
&thread->hist->cpu.max, &exp, cputime,
memory_order_seq_cst, memory_order_seq_cst))
;
}
atomic_fetch_add_explicit(&thread->hist->total_calls, 1,
memory_order_seq_cst);
atomic_fetch_or_explicit(&thread->hist->types, 1 << thread->add_type,
memory_order_seq_cst);
if (cputime_enabled_here && cputime_enabled && cputime_threshold
&& cputime > cputime_threshold) {
/*
* We have a CPU Hog on our hands. The time FRR has spent
* doing actual work (not sleeping) is greater than 5 seconds.
* Whinge about it now, so we're aware this is yet another task
* to fix.
*/
atomic_fetch_add_explicit(&thread->hist->total_cpu_warn,
1, memory_order_seq_cst);
flog_warn(
EC_LIB_SLOW_THREAD_CPU,
"CPU HOG: task %s (%lx) ran for %lums (cpu time %lums)",
thread->xref->funcname, (unsigned long)thread->func,
walltime / 1000, cputime / 1000);
} else if (walltime_threshold && walltime > walltime_threshold) {
/*
* The runtime for a task is greater than 5 seconds, but the
* cpu time is under 5 seconds. Let's whine about this because
* this could imply some sort of scheduling issue.
*/
atomic_fetch_add_explicit(&thread->hist->total_wall_warn,
1, memory_order_seq_cst);
flog_warn(
EC_LIB_SLOW_THREAD_WALL,
"STARVATION: task %s (%lx) ran for %lums (cpu time %lums)",
thread->xref->funcname, (unsigned long)thread->func,
walltime / 1000, cputime / 1000);
}
}
/* Execute thread */
void _event_execute(const struct xref_threadsched *xref, struct event_master *m,
void (*func)(struct event *), void *arg, int val)
{
struct event *thread;
/* Get or allocate new thread to execute. */
frr_with_mutex (&m->mtx) {
thread = thread_get(m, EVENT_EVENT, func, arg, xref);
/* Set its event value. */
frr_with_mutex (&thread->mtx) {
thread->add_type = EVENT_EXECUTE;
thread->u.val = val;
thread->ref = &thread;
}
}
/* Execute thread doing all accounting. */
event_call(thread);
/* Give back or free thread. */
thread_add_unuse(m, thread);
}
/* Debug signal mask - if 'sigs' is NULL, use current effective mask. */
void debug_signals(const sigset_t *sigs)
{
int i, found;
sigset_t tmpsigs;
char buf[300];
/*
* We're only looking at the non-realtime signals here, so we need
* some limit value. Platform differences mean at some point we just
* need to pick a reasonable value.
*/
#if defined SIGRTMIN
# define LAST_SIGNAL SIGRTMIN
#else
# define LAST_SIGNAL 32
#endif
if (sigs == NULL) {
sigemptyset(&tmpsigs);
pthread_sigmask(SIG_BLOCK, NULL, &tmpsigs);
sigs = &tmpsigs;
}
found = 0;
buf[0] = '\0';
for (i = 0; i < LAST_SIGNAL; i++) {
char tmp[20];
if (sigismember(sigs, i) > 0) {
if (found > 0)
strlcat(buf, ",", sizeof(buf));
snprintf(tmp, sizeof(tmp), "%d", i);
strlcat(buf, tmp, sizeof(buf));
found++;
}
}
if (found == 0)
snprintf(buf, sizeof(buf), "<none>");
zlog_debug("%s: %s", __func__, buf);
}
static ssize_t printfrr_thread_dbg(struct fbuf *buf, struct printfrr_eargs *ea,
const struct event *thread)
{
static const char *const types[] = {
[EVENT_READ] = "read", [EVENT_WRITE] = "write",
[EVENT_TIMER] = "timer", [EVENT_EVENT] = "event",
[EVENT_READY] = "ready", [EVENT_UNUSED] = "unused",
[EVENT_EXECUTE] = "exec",
};
ssize_t rv = 0;
char info[16] = "";
if (!thread)
return bputs(buf, "{(thread *)NULL}");
rv += bprintfrr(buf, "{(thread *)%p arg=%p", thread, thread->arg);
if (thread->type < array_size(types) && types[thread->type])
rv += bprintfrr(buf, " %-6s", types[thread->type]);
else
rv += bprintfrr(buf, " INVALID(%u)", thread->type);
switch (thread->type) {
case EVENT_READ:
case EVENT_WRITE:
snprintfrr(info, sizeof(info), "fd=%d", thread->u.fd);
break;
case EVENT_TIMER:
snprintfrr(info, sizeof(info), "r=%pTVMud", &thread->u.sands);
break;
case EVENT_READY:
case EVENT_EVENT:
case EVENT_UNUSED:
case EVENT_EXECUTE:
break;
}
rv += bprintfrr(buf, " %-12s %s() %s from %s:%d}", info,
thread->xref->funcname, thread->xref->dest,
thread->xref->xref.file, thread->xref->xref.line);
return rv;
}
printfrr_ext_autoreg_p("TH", printfrr_thread);
static ssize_t printfrr_thread(struct fbuf *buf, struct printfrr_eargs *ea,
const void *ptr)
{
const struct event *thread = ptr;
struct timespec remain = {};
if (ea->fmt[0] == 'D') {
ea->fmt++;
return printfrr_thread_dbg(buf, ea, thread);
}
if (!thread) {
/* need to jump over time formatting flag characters in the
* input format string, i.e. adjust ea->fmt!
*/
printfrr_time(buf, ea, &remain,
TIMEFMT_TIMER_DEADLINE | TIMEFMT_SKIP);
return bputch(buf, '-');
}
TIMEVAL_TO_TIMESPEC(&thread->u.sands, &remain);
return printfrr_time(buf, ea, &remain, TIMEFMT_TIMER_DEADLINE);
}
|