summaryrefslogtreecommitdiffstats
path: root/lib/sha256.c
blob: ccf260fa7b31b1ffc498181f676e9ae139476c77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
// SPDX-License-Identifier: BSD-2-Clause
/*-
 * Copyright 2005,2007,2009 Colin Percival
 * All rights reserved.
 */

#include <zebra.h>
#include "sha256.h"

#if !HAVE_DECL_BE32DEC
static inline uint32_t be32dec(const void *pp)
{
	const uint8_t *p = (uint8_t const *)pp;

	return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8)
		+ ((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
}
#endif

#if !HAVE_DECL_BE32ENC
static inline void be32enc(void *pp, uint32_t x)
{
	uint8_t *p = (uint8_t *)pp;

	p[3] = x & 0xff;
	p[2] = (x >> 8) & 0xff;
	p[1] = (x >> 16) & 0xff;
	p[0] = (x >> 24) & 0xff;
}
#endif

/*
 * Encode a length len/4 vector of (uint32_t) into a length len vector of
 * (unsigned char) in big-endian form.  Assumes len is a multiple of 4.
 */
static void be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
{
	size_t i;

	for (i = 0; i < len / 4; i++)
		be32enc(dst + i * 4, src[i]);
}

/*
 * Decode a big-endian length len vector of (unsigned char) into a length
 * len/4 vector of (uint32_t).  Assumes len is a multiple of 4.
 */
static void be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
{
	size_t i;

	for (i = 0; i < len / 4; i++)
		dst[i] = be32dec(src + i * 4);
}

/* Elementary functions used by SHA256 */
#define Ch(x, y, z)     ((x & (y ^ z)) ^ z)
#define Maj(x, y, z)    ((x & (y | z)) | (y & z))
#define SHR(x, n)       (x >> n)
#define ROTR(x, n)      ((x >> n) | (x << (32 - n)))
#define S0(x)           (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x)           (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x)           (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x)           (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))

/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k)                                         \
	t0 = h + S1(e) + Ch(e, f, g) + k;                                      \
	t1 = S0(a) + Maj(a, b, c);                                             \
	d += t0;                                                               \
	h = t0 + t1;

/* Adjusted round function for rotating state */
#define RNDr(S, W, i, k)                                                       \
	RND(S[(64 - i) % 8], S[(65 - i) % 8], S[(66 - i) % 8],                 \
	    S[(67 - i) % 8], S[(68 - i) % 8], S[(69 - i) % 8],                 \
	    S[(70 - i) % 8], S[(71 - i) % 8], W[i] + k)

/*
 * SHA256 block compression function.  The 256-bit state is transformed via
 * the 512-bit input block to produce a new state.
 */
static void SHA256_Transform(uint32_t *state, const unsigned char block[64])
{
	uint32_t W[64];
	uint32_t S[8];
	uint32_t t0, t1;
	int i;

	/* 1. Prepare message schedule W. */
	be32dec_vect(W, block, 64);
	for (i = 16; i < 64; i++)
		W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];

	/* 2. Initialize working variables. */
	memcpy(S, state, 32);

	/* 3. Mix. */
	RNDr(S, W, 0, 0x428a2f98);
	RNDr(S, W, 1, 0x71374491);
	RNDr(S, W, 2, 0xb5c0fbcf);
	RNDr(S, W, 3, 0xe9b5dba5);
	RNDr(S, W, 4, 0x3956c25b);
	RNDr(S, W, 5, 0x59f111f1);
	RNDr(S, W, 6, 0x923f82a4);
	RNDr(S, W, 7, 0xab1c5ed5);
	RNDr(S, W, 8, 0xd807aa98);
	RNDr(S, W, 9, 0x12835b01);
	RNDr(S, W, 10, 0x243185be);
	RNDr(S, W, 11, 0x550c7dc3);
	RNDr(S, W, 12, 0x72be5d74);
	RNDr(S, W, 13, 0x80deb1fe);
	RNDr(S, W, 14, 0x9bdc06a7);
	RNDr(S, W, 15, 0xc19bf174);
	RNDr(S, W, 16, 0xe49b69c1);
	RNDr(S, W, 17, 0xefbe4786);
	RNDr(S, W, 18, 0x0fc19dc6);
	RNDr(S, W, 19, 0x240ca1cc);
	RNDr(S, W, 20, 0x2de92c6f);
	RNDr(S, W, 21, 0x4a7484aa);
	RNDr(S, W, 22, 0x5cb0a9dc);
	RNDr(S, W, 23, 0x76f988da);
	RNDr(S, W, 24, 0x983e5152);
	RNDr(S, W, 25, 0xa831c66d);
	RNDr(S, W, 26, 0xb00327c8);
	RNDr(S, W, 27, 0xbf597fc7);
	RNDr(S, W, 28, 0xc6e00bf3);
	RNDr(S, W, 29, 0xd5a79147);
	RNDr(S, W, 30, 0x06ca6351);
	RNDr(S, W, 31, 0x14292967);
	RNDr(S, W, 32, 0x27b70a85);
	RNDr(S, W, 33, 0x2e1b2138);
	RNDr(S, W, 34, 0x4d2c6dfc);
	RNDr(S, W, 35, 0x53380d13);
	RNDr(S, W, 36, 0x650a7354);
	RNDr(S, W, 37, 0x766a0abb);
	RNDr(S, W, 38, 0x81c2c92e);
	RNDr(S, W, 39, 0x92722c85);
	RNDr(S, W, 40, 0xa2bfe8a1);
	RNDr(S, W, 41, 0xa81a664b);
	RNDr(S, W, 42, 0xc24b8b70);
	RNDr(S, W, 43, 0xc76c51a3);
	RNDr(S, W, 44, 0xd192e819);
	RNDr(S, W, 45, 0xd6990624);
	RNDr(S, W, 46, 0xf40e3585);
	RNDr(S, W, 47, 0x106aa070);
	RNDr(S, W, 48, 0x19a4c116);
	RNDr(S, W, 49, 0x1e376c08);
	RNDr(S, W, 50, 0x2748774c);
	RNDr(S, W, 51, 0x34b0bcb5);
	RNDr(S, W, 52, 0x391c0cb3);
	RNDr(S, W, 53, 0x4ed8aa4a);
	RNDr(S, W, 54, 0x5b9cca4f);
	RNDr(S, W, 55, 0x682e6ff3);
	RNDr(S, W, 56, 0x748f82ee);
	RNDr(S, W, 57, 0x78a5636f);
	RNDr(S, W, 58, 0x84c87814);
	RNDr(S, W, 59, 0x8cc70208);
	RNDr(S, W, 60, 0x90befffa);
	RNDr(S, W, 61, 0xa4506ceb);
	RNDr(S, W, 62, 0xbef9a3f7);
	RNDr(S, W, 63, 0xc67178f2);

	/* 4. Mix local working variables into global state */
	for (i = 0; i < 8; i++)
		state[i] += S[i];

	/* Clean the stack. */
	explicit_bzero(W, 256);
	explicit_bzero(S, 32);
	explicit_bzero(&t0, sizeof(t0));
	explicit_bzero(&t1, sizeof(t0));
}

static unsigned char PAD[64] = {
	0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

/* Add padding and terminating bit-count. */
static void SHA256_Pad(SHA256_CTX *ctx)
{
	unsigned char len[8];
	uint32_t r, plen;

	/*
	 * Convert length to a vector of bytes -- we do this now rather
	 * than later because the length will change after we pad.
	 */
	be32enc_vect(len, ctx->count, 8);

	/* Add 1--64 bytes so that the resulting length is 56 mod 64 */
	r = (ctx->count[1] >> 3) & 0x3f;
	plen = (r < 56) ? (56 - r) : (120 - r);
	SHA256_Update(ctx, PAD, (size_t)plen);

	/* Add the terminating bit-count */
	SHA256_Update(ctx, len, 8);
}

/* SHA-256 initialization.  Begins a SHA-256 operation. */
void SHA256_Init(SHA256_CTX *ctx)
{

	/* Zero bits processed so far */
	ctx->count[0] = ctx->count[1] = 0;

	/* Magic initialization constants */
	ctx->state[0] = 0x6A09E667;
	ctx->state[1] = 0xBB67AE85;
	ctx->state[2] = 0x3C6EF372;
	ctx->state[3] = 0xA54FF53A;
	ctx->state[4] = 0x510E527F;
	ctx->state[5] = 0x9B05688C;
	ctx->state[6] = 0x1F83D9AB;
	ctx->state[7] = 0x5BE0CD19;
}

/* Add bytes into the hash */
void SHA256_Update(SHA256_CTX *ctx, const void *in, size_t len)
{
	uint32_t bitlen[2];
	uint32_t r;
	const unsigned char *src = in;

	/* Number of bytes left in the buffer from previous updates */
	r = (ctx->count[1] >> 3) & 0x3f;

	/* Convert the length into a number of bits */
	bitlen[1] = ((uint32_t)len) << 3;
	bitlen[0] = (uint32_t)(len >> 29);

	/* Update number of bits */
	if ((ctx->count[1] += bitlen[1]) < bitlen[1])
		ctx->count[0]++;
	ctx->count[0] += bitlen[0];

	/* Handle the case where we don't need to perform any transforms */
	if (len < 64 - r) {
		memcpy(&ctx->buf[r], src, len);
		return;
	}

	/* Finish the current block */
	memcpy(&ctx->buf[r], src, 64 - r);
	SHA256_Transform(ctx->state, ctx->buf);
	src += 64 - r;
	len -= 64 - r;

	/* Perform complete blocks */
	while (len >= 64) {
		SHA256_Transform(ctx->state, src);
		src += 64;
		len -= 64;
	}

	/* Copy left over data into buffer */
	memcpy(ctx->buf, src, len);
}

/*
 * SHA-256 finalization.  Pads the input data, exports the hash value,
 * and clears the context state.
 */
void SHA256_Final(unsigned char digest[32], SHA256_CTX *ctx)
{

	/* Add padding */
	SHA256_Pad(ctx);

	/* Write the hash */
	be32enc_vect(digest, ctx->state, 32);

	/* Clear the context state */
	explicit_bzero((void *)ctx, sizeof(*ctx));
}

/* Initialize an HMAC-SHA256 operation with the given key. */
void HMAC__SHA256_Init(HMAC_SHA256_CTX *ctx, const void *_K, size_t Klen)
{
	unsigned char pad[64];
	unsigned char khash[32];
	const unsigned char *K = _K;
	size_t i;

	/* If Klen > 64, the key is really SHA256(K). */
	if (Klen > 64) {
		SHA256_Init(&ctx->ictx);
		SHA256_Update(&ctx->ictx, K, Klen);
		SHA256_Final(khash, &ctx->ictx);
		K = khash;
		Klen = 32;
	}

	/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
	SHA256_Init(&ctx->ictx);
	memset(pad, 0x36, 64);
	for (i = 0; i < Klen; i++)
		pad[i] ^= K[i];
	SHA256_Update(&ctx->ictx, pad, 64);

	/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
	SHA256_Init(&ctx->octx);
	memset(pad, 0x5c, 64);
	for (i = 0; i < Klen; i++)
		pad[i] ^= K[i];
	SHA256_Update(&ctx->octx, pad, 64);

	/* Clean the stack. */
	explicit_bzero(khash, 32);
}

/* Add bytes to the HMAC-SHA256 operation. */
void HMAC__SHA256_Update(HMAC_SHA256_CTX *ctx, const void *in, size_t len)
{

	/* Feed data to the inner SHA256 operation. */
	SHA256_Update(&ctx->ictx, in, len);
}

/* Finish an HMAC-SHA256 operation. */
void HMAC__SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX *ctx)
{
	unsigned char ihash[32];

	/* Finish the inner SHA256 operation. */
	SHA256_Final(ihash, &ctx->ictx);

	/* Feed the inner hash to the outer SHA256 operation. */
	SHA256_Update(&ctx->octx, ihash, 32);

	/* Finish the outer SHA256 operation. */
	SHA256_Final(digest, &ctx->octx);

	/* Clean the stack. */
	explicit_bzero(ihash, 32);
}

/**
 * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
 * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
 * write the output to buf.  The value dkLen must be at most 32 * (2^32 - 1).
 */
void PBKDF2_SHA256(const uint8_t *passwd, size_t passwdlen, const uint8_t *salt,
		   size_t saltlen, uint64_t c, uint8_t *buf, size_t dkLen)
{
	HMAC_SHA256_CTX PShctx, hctx;
	size_t i;
	uint8_t ivec[4];
	uint8_t U[32];
	uint8_t T[32];
	uint64_t j;
	int k;
	size_t clen;

	/* Compute HMAC state after processing P and S. */
	HMAC__SHA256_Init(&PShctx, passwd, passwdlen);
	HMAC__SHA256_Update(&PShctx, salt, saltlen);

	/* Iterate through the blocks. */
	for (i = 0; i * 32 < dkLen; i++) {
		/* Generate INT(i + 1). */
		be32enc(ivec, (uint32_t)(i + 1));

		/* Compute U_1 = PRF(P, S || INT(i)). */
		memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
		HMAC__SHA256_Update(&hctx, ivec, 4);
		HMAC__SHA256_Final(U, &hctx);

		/* T_i = U_1 ... */
		memcpy(T, U, 32);

		for (j = 2; j <= c; j++) {
			/* Compute U_j. */
			HMAC__SHA256_Init(&hctx, passwd, passwdlen);
			HMAC__SHA256_Update(&hctx, U, 32);
			HMAC__SHA256_Final(U, &hctx);

			/* ... xor U_j ... */
			for (k = 0; k < 32; k++)
				T[k] ^= U[k];
		}

		/* Copy as many bytes as necessary into buf. */
		clen = dkLen - i * 32;
		if (clen > 32)
			clen = 32;
		memcpy(&buf[i * 32], T, clen);
	}

	/* Clean PShctx, since we never called _Final on it. */
	explicit_bzero(&PShctx, sizeof(HMAC_SHA256_CTX));
}