1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
|
/* Thread management routine
* Copyright (C) 1998, 2000 Kunihiro Ishiguro <kunihiro@zebra.org>
*
* This file is part of GNU Zebra.
*
* GNU Zebra is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* GNU Zebra is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Zebra; see the file COPYING. If not, write to the Free
* Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*/
/* #define DEBUG */
#include <zebra.h>
#include <sys/resource.h>
#include "thread.h"
#include "memory.h"
#include "log.h"
#include "hash.h"
#include "pqueue.h"
#include "command.h"
#include "sigevent.h"
DEFINE_MTYPE_STATIC(LIB, THREAD, "Thread")
DEFINE_MTYPE_STATIC(LIB, THREAD_MASTER, "Thread master")
DEFINE_MTYPE_STATIC(LIB, THREAD_STATS, "Thread stats")
#if defined(__APPLE__)
#include <mach/mach.h>
#include <mach/mach_time.h>
#endif
/* Relative time, since startup */
static struct hash *cpu_record = NULL;
static unsigned long
timeval_elapsed (struct timeval a, struct timeval b)
{
return (((a.tv_sec - b.tv_sec) * TIMER_SECOND_MICRO)
+ (a.tv_usec - b.tv_usec));
}
static unsigned int
cpu_record_hash_key (struct cpu_thread_history *a)
{
return (uintptr_t) a->func;
}
static int
cpu_record_hash_cmp (const struct cpu_thread_history *a,
const struct cpu_thread_history *b)
{
return a->func == b->func;
}
static void *
cpu_record_hash_alloc (struct cpu_thread_history *a)
{
struct cpu_thread_history *new;
new = XCALLOC (MTYPE_THREAD_STATS, sizeof (struct cpu_thread_history));
new->func = a->func;
new->funcname = a->funcname;
return new;
}
static void
cpu_record_hash_free (void *a)
{
struct cpu_thread_history *hist = a;
XFREE (MTYPE_THREAD_STATS, hist);
}
static void
vty_out_cpu_thread_history(struct vty* vty,
struct cpu_thread_history *a)
{
vty_out(vty, "%5d %10ld.%03ld %9d %8ld %9ld %8ld %9ld",
a->total_active, a->cpu.total/1000, a->cpu.total%1000, a->total_calls,
a->cpu.total/a->total_calls, a->cpu.max,
a->real.total/a->total_calls, a->real.max);
vty_out(vty, " %c%c%c%c%c%c %s%s",
a->types & (1 << THREAD_READ) ? 'R':' ',
a->types & (1 << THREAD_WRITE) ? 'W':' ',
a->types & (1 << THREAD_TIMER) ? 'T':' ',
a->types & (1 << THREAD_EVENT) ? 'E':' ',
a->types & (1 << THREAD_EXECUTE) ? 'X':' ',
a->types & (1 << THREAD_BACKGROUND) ? 'B' : ' ',
a->funcname, VTY_NEWLINE);
}
static void
cpu_record_hash_print(struct hash_backet *bucket,
void *args[])
{
struct cpu_thread_history *totals = args[0];
struct vty *vty = args[1];
thread_type *filter = args[2];
struct cpu_thread_history *a = bucket->data;
if ( !(a->types & *filter) )
return;
vty_out_cpu_thread_history(vty,a);
totals->total_active += a->total_active;
totals->total_calls += a->total_calls;
totals->real.total += a->real.total;
if (totals->real.max < a->real.max)
totals->real.max = a->real.max;
totals->cpu.total += a->cpu.total;
if (totals->cpu.max < a->cpu.max)
totals->cpu.max = a->cpu.max;
}
static void
cpu_record_print(struct vty *vty, thread_type filter)
{
struct cpu_thread_history tmp;
void *args[3] = {&tmp, vty, &filter};
memset(&tmp, 0, sizeof tmp);
tmp.funcname = "TOTAL";
tmp.types = filter;
vty_out(vty, "%21s %18s %18s%s",
"", "CPU (user+system):", "Real (wall-clock):", VTY_NEWLINE);
vty_out(vty, "Active Runtime(ms) Invoked Avg uSec Max uSecs");
vty_out(vty, " Avg uSec Max uSecs");
vty_out(vty, " Type Thread%s", VTY_NEWLINE);
hash_iterate(cpu_record,
(void(*)(struct hash_backet*,void*))cpu_record_hash_print,
args);
if (tmp.total_calls > 0)
vty_out_cpu_thread_history(vty, &tmp);
}
DEFUN (show_thread_cpu,
show_thread_cpu_cmd,
"show thread cpu [FILTER]",
SHOW_STR
"Thread information\n"
"Thread CPU usage\n"
"Display filter (rwtexb)\n")
{
int idx_filter = 3;
int i = 0;
thread_type filter = (thread_type) -1U;
if (argc > 3)
{
filter = 0;
while (argv[idx_filter]->arg[i] != '\0')
{
switch ( argv[idx_filter]->arg[i] )
{
case 'r':
case 'R':
filter |= (1 << THREAD_READ);
break;
case 'w':
case 'W':
filter |= (1 << THREAD_WRITE);
break;
case 't':
case 'T':
filter |= (1 << THREAD_TIMER);
break;
case 'e':
case 'E':
filter |= (1 << THREAD_EVENT);
break;
case 'x':
case 'X':
filter |= (1 << THREAD_EXECUTE);
break;
case 'b':
case 'B':
filter |= (1 << THREAD_BACKGROUND);
break;
default:
break;
}
++i;
}
if (filter == 0)
{
vty_out(vty, "Invalid filter \"%s\" specified,"
" must contain at least one of 'RWTEXB'%s",
argv[idx_filter]->arg, VTY_NEWLINE);
return CMD_WARNING;
}
}
cpu_record_print(vty, filter);
return CMD_SUCCESS;
}
static void
cpu_record_hash_clear (struct hash_backet *bucket,
void *args)
{
thread_type *filter = args;
struct cpu_thread_history *a = bucket->data;
if ( !(a->types & *filter) )
return;
hash_release (cpu_record, bucket->data);
}
static void
cpu_record_clear (thread_type filter)
{
thread_type *tmp = &filter;
hash_iterate (cpu_record,
(void (*) (struct hash_backet*,void*)) cpu_record_hash_clear,
tmp);
}
DEFUN (clear_thread_cpu,
clear_thread_cpu_cmd,
"clear thread cpu [FILTER]",
"Clear stored data\n"
"Thread information\n"
"Thread CPU usage\n"
"Display filter (rwtexb)\n")
{
int idx_filter = 3;
int i = 0;
thread_type filter = (thread_type) -1U;
if (argc > 3)
{
filter = 0;
while (argv[idx_filter]->arg[i] != '\0')
{
switch ( argv[idx_filter]->arg[i] )
{
case 'r':
case 'R':
filter |= (1 << THREAD_READ);
break;
case 'w':
case 'W':
filter |= (1 << THREAD_WRITE);
break;
case 't':
case 'T':
filter |= (1 << THREAD_TIMER);
break;
case 'e':
case 'E':
filter |= (1 << THREAD_EVENT);
break;
case 'x':
case 'X':
filter |= (1 << THREAD_EXECUTE);
break;
case 'b':
case 'B':
filter |= (1 << THREAD_BACKGROUND);
break;
default:
break;
}
++i;
}
if (filter == 0)
{
vty_out(vty, "Invalid filter \"%s\" specified,"
" must contain at least one of 'RWTEXB'%s",
argv[idx_filter]->arg, VTY_NEWLINE);
return CMD_WARNING;
}
}
cpu_record_clear (filter);
return CMD_SUCCESS;
}
void
thread_cmd_init (void)
{
install_element (VIEW_NODE, &show_thread_cpu_cmd);
install_element (ENABLE_NODE, &clear_thread_cpu_cmd);
}
static int
thread_timer_cmp(void *a, void *b)
{
struct thread *thread_a = a;
struct thread *thread_b = b;
if (timercmp (&thread_a->u.sands, &thread_b->u.sands, <))
return -1;
if (timercmp (&thread_a->u.sands, &thread_b->u.sands, >))
return 1;
return 0;
}
static void
thread_timer_update(void *node, int actual_position)
{
struct thread *thread = node;
thread->index = actual_position;
}
/* Allocate new thread master. */
struct thread_master *
thread_master_create (void)
{
struct thread_master *rv;
struct rlimit limit;
getrlimit(RLIMIT_NOFILE, &limit);
if (cpu_record == NULL)
cpu_record
= hash_create ((unsigned int (*) (void *))cpu_record_hash_key,
(int (*) (const void *, const void *))cpu_record_hash_cmp);
rv = XCALLOC (MTYPE_THREAD_MASTER, sizeof (struct thread_master));
if (rv == NULL)
{
return NULL;
}
rv->fd_limit = (int)limit.rlim_cur;
rv->read = XCALLOC (MTYPE_THREAD, sizeof (struct thread *) * rv->fd_limit);
if (rv->read == NULL)
{
XFREE (MTYPE_THREAD_MASTER, rv);
return NULL;
}
rv->write = XCALLOC (MTYPE_THREAD, sizeof (struct thread *) * rv->fd_limit);
if (rv->write == NULL)
{
XFREE (MTYPE_THREAD, rv->read);
XFREE (MTYPE_THREAD_MASTER, rv);
return NULL;
}
/* Initialize the timer queues */
rv->timer = pqueue_create();
rv->background = pqueue_create();
rv->timer->cmp = rv->background->cmp = thread_timer_cmp;
rv->timer->update = rv->background->update = thread_timer_update;
#if defined(HAVE_POLL)
rv->handler.pfdsize = rv->fd_limit;
rv->handler.pfdcount = 0;
rv->handler.pfds = XCALLOC (MTYPE_THREAD_MASTER,
sizeof (struct pollfd) * rv->handler.pfdsize);
#endif
return rv;
}
/* Add a new thread to the list. */
static void
thread_list_add (struct thread_list *list, struct thread *thread)
{
thread->next = NULL;
thread->prev = list->tail;
if (list->tail)
list->tail->next = thread;
else
list->head = thread;
list->tail = thread;
list->count++;
}
/* Delete a thread from the list. */
static struct thread *
thread_list_delete (struct thread_list *list, struct thread *thread)
{
if (thread->next)
thread->next->prev = thread->prev;
else
list->tail = thread->prev;
if (thread->prev)
thread->prev->next = thread->next;
else
list->head = thread->next;
thread->next = thread->prev = NULL;
list->count--;
return thread;
}
static void
thread_delete_fd (struct thread **thread_array, struct thread *thread)
{
thread_array[thread->u.fd] = NULL;
}
static void
thread_add_fd (struct thread **thread_array, struct thread *thread)
{
thread_array[thread->u.fd] = thread;
}
/* Thread list is empty or not. */
static int
thread_empty (struct thread_list *list)
{
return list->head ? 0 : 1;
}
/* Delete top of the list and return it. */
static struct thread *
thread_trim_head (struct thread_list *list)
{
if (!thread_empty (list))
return thread_list_delete (list, list->head);
return NULL;
}
/* Move thread to unuse list. */
static void
thread_add_unuse (struct thread_master *m, struct thread *thread)
{
assert (m != NULL && thread != NULL);
assert (thread->next == NULL);
assert (thread->prev == NULL);
thread->type = THREAD_UNUSED;
thread->hist->total_active--;
thread_list_add (&m->unuse, thread);
}
/* Free all unused thread. */
static void
thread_list_free (struct thread_master *m, struct thread_list *list)
{
struct thread *t;
struct thread *next;
for (t = list->head; t; t = next)
{
next = t->next;
XFREE (MTYPE_THREAD, t);
list->count--;
m->alloc--;
}
}
static void
thread_array_free (struct thread_master *m, struct thread **thread_array)
{
struct thread *t;
int index;
for (index = 0; index < m->fd_limit; ++index)
{
t = thread_array[index];
if (t)
{
thread_array[index] = NULL;
XFREE (MTYPE_THREAD, t);
m->alloc--;
}
}
XFREE (MTYPE_THREAD, thread_array);
}
static void
thread_queue_free (struct thread_master *m, struct pqueue *queue)
{
int i;
for (i = 0; i < queue->size; i++)
XFREE(MTYPE_THREAD, queue->array[i]);
m->alloc -= queue->size;
pqueue_delete(queue);
}
/*
* thread_master_free_unused
*
* As threads are finished with they are put on the
* unuse list for later reuse.
* If we are shutting down, Free up unused threads
* So we can see if we forget to shut anything off
*/
void
thread_master_free_unused (struct thread_master *m)
{
struct thread *t;
while ((t = thread_trim_head(&m->unuse)) != NULL)
{
XFREE(MTYPE_THREAD, t);
}
}
/* Stop thread scheduler. */
void
thread_master_free (struct thread_master *m)
{
thread_array_free (m, m->read);
thread_array_free (m, m->write);
thread_queue_free (m, m->timer);
thread_list_free (m, &m->event);
thread_list_free (m, &m->ready);
thread_list_free (m, &m->unuse);
thread_queue_free (m, m->background);
#if defined(HAVE_POLL)
XFREE (MTYPE_THREAD_MASTER, m->handler.pfds);
#endif
XFREE (MTYPE_THREAD_MASTER, m);
if (cpu_record)
{
hash_clean (cpu_record, cpu_record_hash_free);
hash_free (cpu_record);
cpu_record = NULL;
}
}
/* Return remain time in second. */
unsigned long
thread_timer_remain_second (struct thread *thread)
{
int64_t remain = monotime_until(&thread->u.sands, NULL) / 1000000LL;
return remain < 0 ? 0 : remain;
}
#define debugargdef const char *funcname, const char *schedfrom, int fromln
#define debugargpass funcname, schedfrom, fromln
struct timeval
thread_timer_remain(struct thread *thread)
{
struct timeval remain;
monotime_until(&thread->u.sands, &remain);
return remain;
}
/* Get new thread. */
static struct thread *
thread_get (struct thread_master *m, u_char type,
int (*func) (struct thread *), void *arg, debugargdef)
{
struct thread *thread = thread_trim_head (&m->unuse);
struct cpu_thread_history tmp;
if (! thread)
{
thread = XCALLOC (MTYPE_THREAD, sizeof (struct thread));
m->alloc++;
}
thread->type = type;
thread->add_type = type;
thread->master = m;
thread->arg = arg;
thread->index = -1;
thread->yield = THREAD_YIELD_TIME_SLOT; /* default */
/*
* So if the passed in funcname is not what we have
* stored that means the thread->hist needs to be
* updated. We keep the last one around in unused
* under the assumption that we are probably
* going to immediately allocate the same
* type of thread.
* This hopefully saves us some serious
* hash_get lookups.
*/
if (thread->funcname != funcname ||
thread->func != func)
{
tmp.func = func;
tmp.funcname = funcname;
thread->hist = hash_get (cpu_record, &tmp,
(void * (*) (void *))cpu_record_hash_alloc);
}
thread->hist->total_active++;
thread->func = func;
thread->funcname = funcname;
thread->schedfrom = schedfrom;
thread->schedfrom_line = fromln;
return thread;
}
#if defined (HAVE_POLL)
#define fd_copy_fd_set(X) (X)
/* generic add thread function */
static struct thread *
generic_thread_add(struct thread_master *m, int (*func) (struct thread *),
void *arg, int fd, int dir, debugargdef)
{
struct thread *thread;
u_char type;
short int event;
if (dir == THREAD_READ)
{
event = (POLLIN | POLLHUP);
type = THREAD_READ;
}
else
{
event = (POLLOUT | POLLHUP);
type = THREAD_WRITE;
}
nfds_t queuepos = m->handler.pfdcount;
nfds_t i=0;
for (i=0; i<m->handler.pfdcount; i++)
if (m->handler.pfds[i].fd == fd)
{
queuepos = i;
break;
}
/* is there enough space for a new fd? */
assert (queuepos < m->handler.pfdsize);
thread = thread_get (m, type, func, arg, debugargpass);
m->handler.pfds[queuepos].fd = fd;
m->handler.pfds[queuepos].events |= event;
if (queuepos == m->handler.pfdcount)
m->handler.pfdcount++;
return thread;
}
#else
#define fd_copy_fd_set(X) (X)
#endif
static int
fd_select (struct thread_master *m, int size, thread_fd_set *read, thread_fd_set *write, thread_fd_set *except, struct timeval *timer_wait)
{
int num;
#if defined(HAVE_POLL)
/* recalc timeout for poll. Attention NULL pointer is no timeout with
select, where with poll no timeount is -1 */
int timeout = -1;
if (timer_wait != NULL)
timeout = (timer_wait->tv_sec*1000) + (timer_wait->tv_usec/1000);
num = poll (m->handler.pfds, m->handler.pfdcount + m->handler.pfdcountsnmp, timeout);
#else
num = select (size, read, write, except, timer_wait);
#endif
return num;
}
static int
fd_is_set (struct thread *thread, thread_fd_set *fdset, int pos)
{
#if defined(HAVE_POLL)
return 1;
#else
return FD_ISSET (THREAD_FD (thread), fdset);
#endif
}
static int
fd_clear_read_write (struct thread *thread)
{
#if !defined(HAVE_POLL)
thread_fd_set *fdset = NULL;
int fd = THREAD_FD (thread);
if (thread->type == THREAD_READ)
fdset = &thread->master->handler.readfd;
else
fdset = &thread->master->handler.writefd;
if (!FD_ISSET (fd, fdset))
return 0;
FD_CLR (fd, fdset);
#endif
return 1;
}
/* Add new read thread. */
struct thread *
funcname_thread_add_read_write (int dir, struct thread_master *m,
int (*func) (struct thread *), void *arg, int fd,
debugargdef)
{
struct thread *thread = NULL;
#if !defined(HAVE_POLL)
thread_fd_set *fdset = NULL;
if (dir == THREAD_READ)
fdset = &m->handler.readfd;
else
fdset = &m->handler.writefd;
#endif
#if defined (HAVE_POLL)
thread = generic_thread_add(m, func, arg, fd, dir, debugargpass);
if (thread == NULL)
return NULL;
#else
if (FD_ISSET (fd, fdset))
{
zlog (NULL, LOG_WARNING, "There is already %s fd [%d]", (dir == THREAD_READ) ? "read" : "write", fd);
return NULL;
}
FD_SET (fd, fdset);
thread = thread_get (m, dir, func, arg, debugargpass);
#endif
thread->u.fd = fd;
if (dir == THREAD_READ)
thread_add_fd (m->read, thread);
else
thread_add_fd (m->write, thread);
return thread;
}
static struct thread *
funcname_thread_add_timer_timeval (struct thread_master *m,
int (*func) (struct thread *),
int type,
void *arg,
struct timeval *time_relative,
debugargdef)
{
struct thread *thread;
struct pqueue *queue;
assert (m != NULL);
assert (type == THREAD_TIMER || type == THREAD_BACKGROUND);
assert (time_relative);
queue = ((type == THREAD_TIMER) ? m->timer : m->background);
thread = thread_get (m, type, func, arg, debugargpass);
monotime(&thread->u.sands);
timeradd(&thread->u.sands, time_relative, &thread->u.sands);
pqueue_enqueue(thread, queue);
return thread;
}
/* Add timer event thread. */
struct thread *
funcname_thread_add_timer (struct thread_master *m,
int (*func) (struct thread *),
void *arg, long timer,
debugargdef)
{
struct timeval trel;
assert (m != NULL);
trel.tv_sec = timer;
trel.tv_usec = 0;
return funcname_thread_add_timer_timeval (m, func, THREAD_TIMER, arg,
&trel, debugargpass);
}
/* Add timer event thread with "millisecond" resolution */
struct thread *
funcname_thread_add_timer_msec (struct thread_master *m,
int (*func) (struct thread *),
void *arg, long timer,
debugargdef)
{
struct timeval trel;
assert (m != NULL);
trel.tv_sec = timer / 1000;
trel.tv_usec = 1000*(timer % 1000);
return funcname_thread_add_timer_timeval (m, func, THREAD_TIMER,
arg, &trel, debugargpass);
}
/* Add timer event thread with "millisecond" resolution */
struct thread *
funcname_thread_add_timer_tv (struct thread_master *m,
int (*func) (struct thread *),
void *arg, struct timeval *tv,
debugargdef)
{
return funcname_thread_add_timer_timeval (m, func, THREAD_TIMER,
arg, tv, debugargpass);
}
/* Add a background thread, with an optional millisec delay */
struct thread *
funcname_thread_add_background (struct thread_master *m,
int (*func) (struct thread *),
void *arg, long delay,
debugargdef)
{
struct timeval trel;
assert (m != NULL);
if (delay)
{
trel.tv_sec = delay / 1000;
trel.tv_usec = 1000*(delay % 1000);
}
else
{
trel.tv_sec = 0;
trel.tv_usec = 0;
}
return funcname_thread_add_timer_timeval (m, func, THREAD_BACKGROUND,
arg, &trel, debugargpass);
}
/* Add simple event thread. */
struct thread *
funcname_thread_add_event (struct thread_master *m,
int (*func) (struct thread *), void *arg, int val,
debugargdef)
{
struct thread *thread;
assert (m != NULL);
thread = thread_get (m, THREAD_EVENT, func, arg, debugargpass);
thread->u.val = val;
thread_list_add (&m->event, thread);
return thread;
}
static void
thread_cancel_read_or_write (struct thread *thread, short int state)
{
#if defined(HAVE_POLL)
nfds_t i;
for (i=0;i<thread->master->handler.pfdcount;++i)
if (thread->master->handler.pfds[i].fd == thread->u.fd)
{
thread->master->handler.pfds[i].events &= ~(state);
/* remove thread fds from pfd list */
if (thread->master->handler.pfds[i].events == 0)
{
memmove(thread->master->handler.pfds+i,
thread->master->handler.pfds+i+1,
(thread->master->handler.pfdsize-i-1) * sizeof(struct pollfd));
thread->master->handler.pfdcount--;
return;
}
}
#endif
fd_clear_read_write (thread);
}
/* Cancel thread from scheduler. */
void
thread_cancel (struct thread *thread)
{
struct thread_list *list = NULL;
struct pqueue *queue = NULL;
struct thread **thread_array = NULL;
switch (thread->type)
{
case THREAD_READ:
#if defined (HAVE_POLL)
thread_cancel_read_or_write (thread, POLLIN | POLLHUP);
#else
thread_cancel_read_or_write (thread, 0);
#endif
thread_array = thread->master->read;
break;
case THREAD_WRITE:
#if defined (HAVE_POLL)
thread_cancel_read_or_write (thread, POLLOUT | POLLHUP);
#else
thread_cancel_read_or_write (thread, 0);
#endif
thread_array = thread->master->write;
break;
case THREAD_TIMER:
queue = thread->master->timer;
break;
case THREAD_EVENT:
list = &thread->master->event;
break;
case THREAD_READY:
list = &thread->master->ready;
break;
case THREAD_BACKGROUND:
queue = thread->master->background;
break;
default:
return;
break;
}
if (queue)
{
assert(thread->index >= 0);
assert(thread == queue->array[thread->index]);
pqueue_remove_at(thread->index, queue);
}
else if (list)
{
thread_list_delete (list, thread);
}
else if (thread_array)
{
thread_delete_fd (thread_array, thread);
}
else
{
assert(!"Thread should be either in queue or list or array!");
}
thread_add_unuse (thread->master, thread);
}
/* Delete all events which has argument value arg. */
unsigned int
thread_cancel_event (struct thread_master *m, void *arg)
{
unsigned int ret = 0;
struct thread *thread;
thread = m->event.head;
while (thread)
{
struct thread *t;
t = thread;
thread = t->next;
if (t->arg == arg)
{
ret++;
thread_list_delete (&m->event, t);
thread_add_unuse (m, t);
}
}
/* thread can be on the ready list too */
thread = m->ready.head;
while (thread)
{
struct thread *t;
t = thread;
thread = t->next;
if (t->arg == arg)
{
ret++;
thread_list_delete (&m->ready, t);
thread_add_unuse (m, t);
}
}
return ret;
}
static struct timeval *
thread_timer_wait (struct pqueue *queue, struct timeval *timer_val)
{
if (queue->size)
{
struct thread *next_timer = queue->array[0];
monotime_until(&next_timer->u.sands, timer_val);
return timer_val;
}
return NULL;
}
static struct thread *
thread_run (struct thread_master *m, struct thread *thread,
struct thread *fetch)
{
*fetch = *thread;
thread_add_unuse (m, thread);
return fetch;
}
static int
thread_process_fds_helper (struct thread_master *m, struct thread *thread, thread_fd_set *fdset, short int state, int pos)
{
struct thread **thread_array;
if (!thread)
return 0;
if (thread->type == THREAD_READ)
thread_array = m->read;
else
thread_array = m->write;
if (fd_is_set (thread, fdset, pos))
{
fd_clear_read_write (thread);
thread_delete_fd (thread_array, thread);
thread_list_add (&m->ready, thread);
thread->type = THREAD_READY;
#if defined(HAVE_POLL)
thread->master->handler.pfds[pos].events &= ~(state);
#endif
return 1;
}
return 0;
}
#if defined(HAVE_POLL)
#if defined(HAVE_SNMP)
/* add snmp fds to poll set */
static void
add_snmp_pollfds(struct thread_master *m, fd_set *snmpfds, int fdsetsize)
{
int i;
m->handler.pfdcountsnmp = m->handler.pfdcount;
/* cycle trough fds and add neccessary fds to poll set */
for (i=0;i<fdsetsize;++i)
{
if (FD_ISSET(i, snmpfds))
{
assert (m->handler.pfdcountsnmp <= m->handler.pfdsize);
m->handler.pfds[m->handler.pfdcountsnmp].fd = i;
m->handler.pfds[m->handler.pfdcountsnmp].events = POLLIN;
m->handler.pfdcountsnmp++;
}
}
}
#endif
/* check poll events */
static void
check_pollfds(struct thread_master *m, fd_set *readfd, int num)
{
nfds_t i = 0;
int ready = 0;
for (i = 0; i < m->handler.pfdcount && ready < num ; ++i)
{
/* no event for current fd? immideatly continue */
if(m->handler.pfds[i].revents == 0)
continue;
ready++;
/* POLLIN / POLLOUT process event */
if (m->handler.pfds[i].revents & POLLIN)
thread_process_fds_helper(m, m->read[m->handler.pfds[i].fd], NULL, POLLIN, i);
if (m->handler.pfds[i].revents & POLLOUT)
thread_process_fds_helper(m, m->write[m->handler.pfds[i].fd], NULL, POLLOUT, i);
/* remove fd from list on POLLNVAL */
if (m->handler.pfds[i].revents & POLLNVAL ||
m->handler.pfds[i].revents & POLLHUP)
{
memmove(m->handler.pfds+i,
m->handler.pfds+i+1,
(m->handler.pfdsize-i-1) * sizeof(struct pollfd));
m->handler.pfdcount--;
i--;
}
else
m->handler.pfds[i].revents = 0;
}
}
#endif
static void
thread_process_fds (struct thread_master *m, thread_fd_set *rset, thread_fd_set *wset, int num)
{
#if defined (HAVE_POLL)
check_pollfds (m, rset, num);
#else
int ready = 0, index;
for (index = 0; index < m->fd_limit && ready < num; ++index)
{
ready += thread_process_fds_helper (m, m->read[index], rset, 0, 0);
ready += thread_process_fds_helper (m, m->write[index], wset, 0, 0);
}
#endif
}
/* Add all timers that have popped to the ready list. */
static unsigned int
thread_timer_process (struct pqueue *queue, struct timeval *timenow)
{
struct thread *thread;
unsigned int ready = 0;
while (queue->size)
{
thread = queue->array[0];
if (timercmp (timenow, &thread->u.sands, <))
return ready;
pqueue_dequeue(queue);
thread->type = THREAD_READY;
thread_list_add (&thread->master->ready, thread);
ready++;
}
return ready;
}
/* process a list en masse, e.g. for event thread lists */
static unsigned int
thread_process (struct thread_list *list)
{
struct thread *thread;
struct thread *next;
unsigned int ready = 0;
for (thread = list->head; thread; thread = next)
{
next = thread->next;
thread_list_delete (list, thread);
thread->type = THREAD_READY;
thread_list_add (&thread->master->ready, thread);
ready++;
}
return ready;
}
/* Fetch next ready thread. */
struct thread *
thread_fetch (struct thread_master *m, struct thread *fetch)
{
struct thread *thread;
thread_fd_set readfd;
thread_fd_set writefd;
thread_fd_set exceptfd;
struct timeval now;
struct timeval timer_val = { .tv_sec = 0, .tv_usec = 0 };
struct timeval timer_val_bg;
struct timeval *timer_wait = &timer_val;
struct timeval *timer_wait_bg;
while (1)
{
int num = 0;
/* Signals pre-empt everything */
quagga_sigevent_process ();
/* Drain the ready queue of already scheduled jobs, before scheduling
* more.
*/
if ((thread = thread_trim_head (&m->ready)) != NULL)
return thread_run (m, thread, fetch);
/* To be fair to all kinds of threads, and avoid starvation, we
* need to be careful to consider all thread types for scheduling
* in each quanta. I.e. we should not return early from here on.
*/
/* Normal event are the next highest priority. */
thread_process (&m->event);
/* Structure copy. */
#if !defined(HAVE_POLL)
readfd = fd_copy_fd_set(m->handler.readfd);
writefd = fd_copy_fd_set(m->handler.writefd);
exceptfd = fd_copy_fd_set(m->handler.exceptfd);
#endif
/* Calculate select wait timer if nothing else to do */
if (m->ready.count == 0)
{
timer_wait = thread_timer_wait (m->timer, &timer_val);
timer_wait_bg = thread_timer_wait (m->background, &timer_val_bg);
if (timer_wait_bg &&
(!timer_wait || (timercmp (timer_wait, timer_wait_bg, >))))
timer_wait = timer_wait_bg;
}
if (timer_wait && timer_wait->tv_sec < 0)
{
timerclear(&timer_val);
timer_wait = &timer_val;
}
num = fd_select (m, FD_SETSIZE, &readfd, &writefd, &exceptfd, timer_wait);
/* Signals should get quick treatment */
if (num < 0)
{
if (errno == EINTR)
continue; /* signal received - process it */
zlog_warn ("select() error: %s", safe_strerror (errno));
return NULL;
}
/* Check foreground timers. Historically, they have had higher
priority than I/O threads, so let's push them onto the ready
list in front of the I/O threads. */
monotime(&now);
thread_timer_process (m->timer, &now);
/* Got IO, process it */
if (num > 0)
thread_process_fds (m, &readfd, &writefd, num);
#if 0
/* If any threads were made ready above (I/O or foreground timer),
perhaps we should avoid adding background timers to the ready
list at this time. If this is code is uncommented, then background
timer threads will not run unless there is nothing else to do. */
if ((thread = thread_trim_head (&m->ready)) != NULL)
return thread_run (m, thread, fetch);
#endif
/* Background timer/events, lowest priority */
thread_timer_process (m->background, &now);
if ((thread = thread_trim_head (&m->ready)) != NULL)
return thread_run (m, thread, fetch);
}
}
unsigned long
thread_consumed_time (RUSAGE_T *now, RUSAGE_T *start, unsigned long *cputime)
{
/* This is 'user + sys' time. */
*cputime = timeval_elapsed (now->cpu.ru_utime, start->cpu.ru_utime) +
timeval_elapsed (now->cpu.ru_stime, start->cpu.ru_stime);
return timeval_elapsed (now->real, start->real);
}
/* We should aim to yield after yield milliseconds, which defaults
to THREAD_YIELD_TIME_SLOT .
Note: we are using real (wall clock) time for this calculation.
It could be argued that CPU time may make more sense in certain
contexts. The things to consider are whether the thread may have
blocked (in which case wall time increases, but CPU time does not),
or whether the system is heavily loaded with other processes competing
for CPU time. On balance, wall clock time seems to make sense.
Plus it has the added benefit that gettimeofday should be faster
than calling getrusage. */
int
thread_should_yield (struct thread *thread)
{
return monotime_since(&thread->real, NULL) > (int64_t)thread->yield;
}
void
thread_set_yield_time (struct thread *thread, unsigned long yield_time)
{
thread->yield = yield_time;
}
void
thread_getrusage (RUSAGE_T *r)
{
monotime(&r->real);
getrusage(RUSAGE_SELF, &(r->cpu));
}
struct thread *thread_current = NULL;
/* We check thread consumed time. If the system has getrusage, we'll
use that to get in-depth stats on the performance of the thread in addition
to wall clock time stats from gettimeofday. */
void
thread_call (struct thread *thread)
{
unsigned long realtime, cputime;
RUSAGE_T before, after;
GETRUSAGE (&before);
thread->real = before.real;
thread_current = thread;
(*thread->func) (thread);
thread_current = NULL;
GETRUSAGE (&after);
realtime = thread_consumed_time (&after, &before, &cputime);
thread->hist->real.total += realtime;
if (thread->hist->real.max < realtime)
thread->hist->real.max = realtime;
thread->hist->cpu.total += cputime;
if (thread->hist->cpu.max < cputime)
thread->hist->cpu.max = cputime;
++(thread->hist->total_calls);
thread->hist->types |= (1 << thread->add_type);
#ifdef CONSUMED_TIME_CHECK
if (realtime > CONSUMED_TIME_CHECK)
{
/*
* We have a CPU Hog on our hands.
* Whinge about it now, so we're aware this is yet another task
* to fix.
*/
zlog_warn ("SLOW THREAD: task %s (%lx) ran for %lums (cpu time %lums)",
thread->funcname,
(unsigned long) thread->func,
realtime/1000, cputime/1000);
}
#endif /* CONSUMED_TIME_CHECK */
}
/* Execute thread */
struct thread *
funcname_thread_execute (struct thread_master *m,
int (*func)(struct thread *),
void *arg,
int val,
debugargdef)
{
struct cpu_thread_history tmp;
struct thread dummy;
memset (&dummy, 0, sizeof (struct thread));
dummy.type = THREAD_EVENT;
dummy.add_type = THREAD_EXECUTE;
dummy.master = NULL;
dummy.arg = arg;
dummy.u.val = val;
tmp.func = dummy.func = func;
tmp.funcname = dummy.funcname = funcname;
dummy.hist = hash_get (cpu_record, &tmp,
(void * (*) (void *))cpu_record_hash_alloc);
dummy.schedfrom = schedfrom;
dummy.schedfrom_line = fromln;
thread_call (&dummy);
return NULL;
}
|