summaryrefslogtreecommitdiffstats
path: root/ospfd/ospf_spf.c
blob: 95553dacdfdf064785b4e610e01ce1bf7a4dfe80 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
/* OSPF SPF calculation.
 * Copyright (C) 1999, 2000 Kunihiro Ishiguro, Toshiaki Takada
 *
 * This file is part of GNU Zebra.
 *
 * GNU Zebra is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2, or (at your option) any
 * later version.
 *
 * GNU Zebra is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; see the file COPYING; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <zebra.h>

#include "monotime.h"
#include "thread.h"
#include "memory.h"
#include "hash.h"
#include "linklist.h"
#include "prefix.h"
#include "if.h"
#include "table.h"
#include "log.h"
#include "sockunion.h" /* for inet_ntop () */

#include "ospfd/ospfd.h"
#include "ospfd/ospf_interface.h"
#include "ospfd/ospf_ism.h"
#include "ospfd/ospf_asbr.h"
#include "ospfd/ospf_lsa.h"
#include "ospfd/ospf_lsdb.h"
#include "ospfd/ospf_neighbor.h"
#include "ospfd/ospf_nsm.h"
#include "ospfd/ospf_spf.h"
#include "ospfd/ospf_route.h"
#include "ospfd/ospf_ia.h"
#include "ospfd/ospf_ase.h"
#include "ospfd/ospf_abr.h"
#include "ospfd/ospf_dump.h"
#include "ospfd/ospf_sr.h"
#include "ospfd/ospf_ti_lfa.h"
#include "ospfd/ospf_errors.h"

/* Variables to ensure a SPF scheduled log message is printed only once */

static unsigned int spf_reason_flags = 0;

/* dummy vertex to flag "in spftree" */
static const struct vertex vertex_in_spftree = {};
#define LSA_SPF_IN_SPFTREE	(struct vertex *)&vertex_in_spftree
#define LSA_SPF_NOT_EXPLORED	NULL

static void ospf_clear_spf_reason_flags(void)
{
	spf_reason_flags = 0;
}

static void ospf_spf_set_reason(ospf_spf_reason_t reason)
{
	spf_reason_flags |= 1 << reason;
}

static void ospf_vertex_free(void *);

/*
 * Heap related functions, for the managment of the candidates, to
 * be used with pqueue.
 */
static int vertex_cmp(const struct vertex *v1, const struct vertex *v2)
{
	if (v1->distance != v2->distance)
		return v1->distance - v2->distance;

	if (v1->type != v2->type) {
		switch (v1->type) {
		case OSPF_VERTEX_NETWORK:
			return -1;
		case OSPF_VERTEX_ROUTER:
			return 1;
		}
	}
	return 0;
}
DECLARE_SKIPLIST_NONUNIQ(vertex_pqueue, struct vertex, pqi, vertex_cmp);

static void lsdb_clean_stat(struct ospf_lsdb *lsdb)
{
	struct route_table *table;
	struct route_node *rn;
	struct ospf_lsa *lsa;
	int i;

	for (i = OSPF_MIN_LSA; i < OSPF_MAX_LSA; i++) {
		table = lsdb->type[i].db;
		for (rn = route_top(table); rn; rn = route_next(rn))
			if ((lsa = (rn->info)) != NULL)
				lsa->stat = LSA_SPF_NOT_EXPLORED;
	}
}

static struct vertex_nexthop *vertex_nexthop_new(void)
{
	return XCALLOC(MTYPE_OSPF_NEXTHOP, sizeof(struct vertex_nexthop));
}

static void vertex_nexthop_free(struct vertex_nexthop *nh)
{
	XFREE(MTYPE_OSPF_NEXTHOP, nh);
}

/*
 * Free the canonical nexthop objects for an area, ie the nexthop objects
 * attached to the first-hop router vertices, and any intervening network
 * vertices.
 */
static void ospf_canonical_nexthops_free(struct vertex *root)
{
	struct listnode *node, *nnode;
	struct vertex *child;

	for (ALL_LIST_ELEMENTS(root->children, node, nnode, child)) {
		struct listnode *n2, *nn2;
		struct vertex_parent *vp;

		/*
		 * router vertices through an attached network each
		 * have a distinct (canonical / not inherited) nexthop
		 * which must be freed.
		 *
		 * A network vertex can only have router vertices as its
		 * children, so only one level of recursion is possible.
		 */
		if (child->type == OSPF_VERTEX_NETWORK)
			ospf_canonical_nexthops_free(child);

		/* Free child nexthops pointing back to this root vertex */
		for (ALL_LIST_ELEMENTS(child->parents, n2, nn2, vp)) {
			if (vp->parent == root && vp->nexthop) {
				vertex_nexthop_free(vp->nexthop);
				vp->nexthop = NULL;
				if (vp->local_nexthop) {
					vertex_nexthop_free(vp->local_nexthop);
					vp->local_nexthop = NULL;
				}
			}
		}
	}
}

/*
 * TODO: Parent list should be excised, in favour of maintaining only
 * vertex_nexthop, with refcounts.
 */
static struct vertex_parent *vertex_parent_new(struct vertex *v, int backlink,
					       struct vertex_nexthop *hop,
					       struct vertex_nexthop *lhop)
{
	struct vertex_parent *new;

	new = XMALLOC(MTYPE_OSPF_VERTEX_PARENT, sizeof(struct vertex_parent));

	new->parent = v;
	new->backlink = backlink;
	new->nexthop = hop;
	new->local_nexthop = lhop;

	return new;
}

static void vertex_parent_free(void *p)
{
	XFREE(MTYPE_OSPF_VERTEX_PARENT, p);
}

int vertex_parent_cmp(void *aa, void *bb)
{
	struct vertex_parent *a = aa, *b = bb;
	return IPV4_ADDR_CMP(&a->nexthop->router, &b->nexthop->router);
}

static struct vertex *ospf_vertex_new(struct ospf_area *area,
				      struct ospf_lsa *lsa)
{
	struct vertex *new;

	new = XCALLOC(MTYPE_OSPF_VERTEX, sizeof(struct vertex));

	new->flags = 0;
	new->type = lsa->data->type;
	new->id = lsa->data->id;
	new->lsa = lsa->data;
	new->children = list_new();
	new->parents = list_new();
	new->parents->del = vertex_parent_free;
	new->parents->cmp = vertex_parent_cmp;
	new->lsa_p = lsa;

	lsa->stat = new;

	listnode_add(area->spf_vertex_list, new);

	if (IS_DEBUG_OSPF_EVENT)
		zlog_debug("%s: Created %s vertex %pI4", __func__,
			   new->type == OSPF_VERTEX_ROUTER ? "Router"
							   : "Network",
			   &new->lsa->id);

	return new;
}

static void ospf_vertex_free(void *data)
{
	struct vertex *v = data;

	if (IS_DEBUG_OSPF_EVENT)
		zlog_debug("%s: Free %s vertex %pI4", __func__,
			   v->type == OSPF_VERTEX_ROUTER ? "Router" : "Network",
			   &v->lsa->id);

	if (v->children)
		list_delete(&v->children);

	if (v->parents)
		list_delete(&v->parents);

	v->lsa = NULL;

	XFREE(MTYPE_OSPF_VERTEX, v);
}

static void ospf_vertex_dump(const char *msg, struct vertex *v,
			     int print_parents, int print_children)
{
	if (!IS_DEBUG_OSPF_EVENT)
		return;

	zlog_debug("%s %s vertex %pI4  distance %u flags %u", msg,
		   v->type == OSPF_VERTEX_ROUTER ? "Router" : "Network",
		   &v->lsa->id, v->distance, (unsigned int)v->flags);

	if (print_parents) {
		struct listnode *node;
		struct vertex_parent *vp;

		for (ALL_LIST_ELEMENTS_RO(v->parents, node, vp)) {
			if (vp) {
				zlog_debug(
					"parent %pI4 backlink %d nexthop %pI4 lsa pos %d",
					&vp->parent->lsa->id, vp->backlink,
					&vp->nexthop->router,
					vp->nexthop->lsa_pos);
			}
		}
	}

	if (print_children) {
		struct listnode *cnode;
		struct vertex *cv;

		for (ALL_LIST_ELEMENTS_RO(v->children, cnode, cv))
			ospf_vertex_dump(" child:", cv, 0, 0);
	}
}


/* Add a vertex to the list of children in each of its parents. */
static void ospf_vertex_add_parent(struct vertex *v)
{
	struct vertex_parent *vp;
	struct listnode *node;

	assert(v && v->parents);

	for (ALL_LIST_ELEMENTS_RO(v->parents, node, vp)) {
		assert(vp->parent && vp->parent->children);

		/* No need to add two links from the same parent. */
		if (listnode_lookup(vp->parent->children, v) == NULL)
			listnode_add(vp->parent->children, v);
	}
}

/* Find a vertex according to its router id */
struct vertex *ospf_spf_vertex_find(struct in_addr id, struct list *vertex_list)
{
	struct listnode *node;
	struct vertex *found;

	for (ALL_LIST_ELEMENTS_RO(vertex_list, node, found)) {
		if (found->id.s_addr == id.s_addr)
			return found;
	}

	return NULL;
}

/* Find a vertex parent according to its router id */
struct vertex_parent *ospf_spf_vertex_parent_find(struct in_addr id,
						  struct vertex *vertex)
{
	struct listnode *node;
	struct vertex_parent *found;

	for (ALL_LIST_ELEMENTS_RO(vertex->parents, node, found)) {
		if (found->parent->id.s_addr == id.s_addr)
			return found;
	}

	return NULL;
}

struct vertex *ospf_spf_vertex_by_nexthop(struct vertex *root,
					  struct in_addr *nexthop)
{
	struct listnode *node;
	struct vertex *child;
	struct vertex_parent *vertex_parent;

	for (ALL_LIST_ELEMENTS_RO(root->children, node, child)) {
		vertex_parent = ospf_spf_vertex_parent_find(root->id, child);
		if (vertex_parent->nexthop->router.s_addr == nexthop->s_addr)
			return child;
	}

	return NULL;
}

/* Create a deep copy of a SPF vertex without children and parents */
static struct vertex *ospf_spf_vertex_copy(struct vertex *vertex)
{
	struct vertex *copy;

	copy = XCALLOC(MTYPE_OSPF_VERTEX, sizeof(struct vertex));

	memcpy(copy, vertex, sizeof(struct vertex));
	copy->parents = list_new();
	copy->parents->del = vertex_parent_free;
	copy->parents->cmp = vertex_parent_cmp;
	copy->children = list_new();

	return copy;
}

/* Create a deep copy of a SPF vertex_parent */
static struct vertex_parent *
ospf_spf_vertex_parent_copy(struct vertex_parent *vertex_parent)
{
	struct vertex_parent *vertex_parent_copy;
	struct vertex_nexthop *nexthop_copy, *local_nexthop_copy;

	vertex_parent_copy =
		XCALLOC(MTYPE_OSPF_VERTEX, sizeof(struct vertex_parent));

	nexthop_copy = vertex_nexthop_new();
	local_nexthop_copy = vertex_nexthop_new();

	memcpy(vertex_parent_copy, vertex_parent, sizeof(struct vertex_parent));
	memcpy(nexthop_copy, vertex_parent->nexthop,
	       sizeof(struct vertex_nexthop));
	memcpy(local_nexthop_copy, vertex_parent->local_nexthop,
	       sizeof(struct vertex_nexthop));

	vertex_parent_copy->nexthop = nexthop_copy;
	vertex_parent_copy->local_nexthop = local_nexthop_copy;

	return vertex_parent_copy;
}

/* Create a deep copy of a SPF tree */
void ospf_spf_copy(struct vertex *vertex, struct list *vertex_list)
{
	struct listnode *node;
	struct vertex *vertex_copy, *child, *child_copy, *parent_copy;
	struct vertex_parent *vertex_parent, *vertex_parent_copy;

	/* First check if the node is already in the vertex list */
	vertex_copy = ospf_spf_vertex_find(vertex->id, vertex_list);
	if (!vertex_copy) {
		vertex_copy = ospf_spf_vertex_copy(vertex);
		listnode_add(vertex_list, vertex_copy);
	}

	/* Copy all parents, create parent nodes if necessary */
	for (ALL_LIST_ELEMENTS_RO(vertex->parents, node, vertex_parent)) {
		parent_copy = ospf_spf_vertex_find(vertex_parent->parent->id,
						   vertex_list);
		if (!parent_copy) {
			parent_copy =
				ospf_spf_vertex_copy(vertex_parent->parent);
			listnode_add(vertex_list, parent_copy);
		}
		vertex_parent_copy = ospf_spf_vertex_parent_copy(vertex_parent);
		vertex_parent_copy->parent = parent_copy;
		listnode_add(vertex_copy->parents, vertex_parent_copy);
	}

	/* Copy all children, create child nodes if necessary */
	for (ALL_LIST_ELEMENTS_RO(vertex->children, node, child)) {
		child_copy = ospf_spf_vertex_find(child->id, vertex_list);
		if (!child_copy) {
			child_copy = ospf_spf_vertex_copy(child);
			listnode_add(vertex_list, child_copy);
		}
		listnode_add(vertex_copy->children, child_copy);
	}

	/* Finally continue copying with child nodes */
	for (ALL_LIST_ELEMENTS_RO(vertex->children, node, child))
		ospf_spf_copy(child, vertex_list);
}

static void ospf_spf_remove_branch(struct vertex_parent *vertex_parent,
				   struct vertex *child,
				   struct list *vertex_list)
{
	struct listnode *node, *nnode, *inner_node, *inner_nnode;
	struct vertex *grandchild;
	struct vertex_parent *vertex_parent_found;
	bool has_more_links = false;

	/*
	 * First check if there are more nexthops for that parent to that child
	 */
	for (ALL_LIST_ELEMENTS_RO(child->parents, node, vertex_parent_found)) {
		if (vertex_parent_found->parent->id.s_addr
			    == vertex_parent->parent->id.s_addr
		    && vertex_parent_found->nexthop->router.s_addr
			       != vertex_parent->nexthop->router.s_addr)
			has_more_links = true;
	}

	/*
	 * No more links from that parent? Then delete the child from its
	 * children list.
	 */
	if (!has_more_links)
		listnode_delete(vertex_parent->parent->children, child);

	/*
	 * Delete the vertex_parent from the child parents list, this needs to
	 * be done anyway.
	 */
	listnode_delete(child->parents, vertex_parent);

	/*
	 * Are there actually more parents left? If not, then delete the child!
	 * This is done by recursively removing the links to the grandchildren,
	 * such that finally the child can be removed without leaving unused
	 * partial branches.
	 */
	if (child->parents->count == 0) {
		for (ALL_LIST_ELEMENTS(child->children, node, nnode,
				       grandchild)) {
			for (ALL_LIST_ELEMENTS(grandchild->parents, inner_node,
					       inner_nnode,
					       vertex_parent_found)) {
				ospf_spf_remove_branch(vertex_parent_found,
						       grandchild, vertex_list);
			}
		}
		listnode_delete(vertex_list, child);
		ospf_vertex_free(child);
	}
}

static int ospf_spf_remove_link(struct vertex *vertex, struct list *vertex_list,
				struct router_lsa_link *link)
{
	struct listnode *node, *inner_node;
	struct vertex *child;
	struct vertex_parent *vertex_parent;

	/*
	 * Identify the node who shares a subnet (given by the link) with a
	 * child and remove the branch of this particular child.
	 */
	for (ALL_LIST_ELEMENTS_RO(vertex->children, node, child)) {
		for (ALL_LIST_ELEMENTS_RO(child->parents, inner_node,
					  vertex_parent)) {
			if ((vertex_parent->local_nexthop->router.s_addr
			     & link->link_data.s_addr)
			    == (link->link_id.s_addr
				& link->link_data.s_addr)) {
				ospf_spf_remove_branch(vertex_parent, child,
						       vertex_list);
				return 0;
			}
		}
	}

	/* No link found yet, move on recursively */
	for (ALL_LIST_ELEMENTS_RO(vertex->children, node, child)) {
		if (ospf_spf_remove_link(child, vertex_list, link) == 0)
			return 0;
	}

	/* link was not removed yet */
	return 1;
}

void ospf_spf_remove_resource(struct vertex *vertex, struct list *vertex_list,
			      struct protected_resource *resource)
{
	struct listnode *node, *nnode;
	struct vertex *found;
	struct vertex_parent *vertex_parent;

	switch (resource->type) {
	case OSPF_TI_LFA_LINK_PROTECTION:
		ospf_spf_remove_link(vertex, vertex_list, resource->link);
		break;
	case OSPF_TI_LFA_NODE_PROTECTION:
		found = ospf_spf_vertex_find(resource->router_id, vertex_list);
		if (!found)
			break;

		/*
		 * Remove the node by removing all links from its parents. Note
		 * that the child is automatically removed here with the last
		 * link from a parent, hence no explicit removal of the node.
		 */
		for (ALL_LIST_ELEMENTS(found->parents, node, nnode,
				       vertex_parent))
			ospf_spf_remove_branch(vertex_parent, found,
					       vertex_list);

		break;
	default:
		/* do nothing */
		break;
	}
}

static void ospf_spf_init(struct ospf_area *area, struct ospf_lsa *root_lsa,
			  bool is_dry_run, bool is_root_node)
{
	struct list *vertex_list;
	struct vertex *v;

	/* Create vertex list */
	vertex_list = list_new();
	vertex_list->del = ospf_vertex_free;
	area->spf_vertex_list = vertex_list;

	/* Create root node. */
	v = ospf_vertex_new(area, root_lsa);
	area->spf = v;

	area->spf_dry_run = is_dry_run;
	area->spf_root_node = is_root_node;

	/* Reset ABR and ASBR router counts. */
	area->abr_count = 0;
	area->asbr_count = 0;
}

/* return index of link back to V from W, or -1 if no link found */
static int ospf_lsa_has_link(struct lsa_header *w, struct lsa_header *v)
{
	unsigned int i, length;
	struct router_lsa *rl;
	struct network_lsa *nl;

	/* In case of W is Network LSA. */
	if (w->type == OSPF_NETWORK_LSA) {
		if (v->type == OSPF_NETWORK_LSA)
			return -1;

		nl = (struct network_lsa *)w;
		length = (ntohs(w->length) - OSPF_LSA_HEADER_SIZE - 4) / 4;

		for (i = 0; i < length; i++)
			if (IPV4_ADDR_SAME(&nl->routers[i], &v->id))
				return i;
		return -1;
	}

	/* In case of W is Router LSA. */
	if (w->type == OSPF_ROUTER_LSA) {
		rl = (struct router_lsa *)w;

		length = ntohs(w->length);

		for (i = 0; i < ntohs(rl->links)
			    && length >= sizeof(struct router_lsa);
		     i++, length -= 12) {
			switch (rl->link[i].type) {
			case LSA_LINK_TYPE_POINTOPOINT:
			case LSA_LINK_TYPE_VIRTUALLINK:
				/* Router LSA ID. */
				if (v->type == OSPF_ROUTER_LSA
				    && IPV4_ADDR_SAME(&rl->link[i].link_id,
						      &v->id)) {
					return i;
				}
				break;
			case LSA_LINK_TYPE_TRANSIT:
				/* Network LSA ID. */
				if (v->type == OSPF_NETWORK_LSA
				    && IPV4_ADDR_SAME(&rl->link[i].link_id,
						      &v->id)) {
					return i;
				}
				break;
			case LSA_LINK_TYPE_STUB:
				/* Stub can't lead anywhere, carry on */
				continue;
			default:
				break;
			}
		}
	}
	return -1;
}

/*
 * Find the next link after prev_link from v to w.  If prev_link is
 * NULL, return the first link from v to w.  Ignore stub and virtual links;
 * these link types will never be returned.
 */
static struct router_lsa_link *
ospf_get_next_link(struct vertex *v, struct vertex *w,
		   struct router_lsa_link *prev_link)
{
	uint8_t *p;
	uint8_t *lim;
	uint8_t lsa_type = LSA_LINK_TYPE_TRANSIT;
	struct router_lsa_link *l;

	if (w->type == OSPF_VERTEX_ROUTER)
		lsa_type = LSA_LINK_TYPE_POINTOPOINT;

	if (prev_link == NULL)
		p = ((uint8_t *)v->lsa) + OSPF_LSA_HEADER_SIZE + 4;
	else {
		p = (uint8_t *)prev_link;
		p += (OSPF_ROUTER_LSA_LINK_SIZE
		      + (prev_link->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));
	}

	lim = ((uint8_t *)v->lsa) + ntohs(v->lsa->length);

	while (p < lim) {
		l = (struct router_lsa_link *)p;

		p += (OSPF_ROUTER_LSA_LINK_SIZE
		      + (l->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));

		if (l->m[0].type != lsa_type)
			continue;

		if (IPV4_ADDR_SAME(&l->link_id, &w->id))
			return l;
	}

	return NULL;
}

static void ospf_spf_flush_parents(struct vertex *w)
{
	struct vertex_parent *vp;
	struct listnode *ln, *nn;

	/* delete the existing nexthops */
	for (ALL_LIST_ELEMENTS(w->parents, ln, nn, vp)) {
		list_delete_node(w->parents, ln);
		vertex_parent_free(vp);
	}
}

/*
 * Consider supplied next-hop for inclusion to the supplied list of
 * equal-cost next-hops, adjust list as neccessary.
 */
static void ospf_spf_add_parent(struct vertex *v, struct vertex *w,
				struct vertex_nexthop *newhop,
				struct vertex_nexthop *newlhop,
				unsigned int distance)
{
	struct vertex_parent *vp, *wp;
	struct listnode *node;

	/* we must have a newhop, and a distance */
	assert(v && w && newhop);
	assert(distance);

	/*
	 * IFF w has already been assigned a distance, then we shouldn't get
	 * here unless callers have determined V(l)->W is shortest /
	 * equal-shortest path (0 is a special case distance (no distance yet
	 * assigned)).
	 */
	if (w->distance)
		assert(distance <= w->distance);
	else
		w->distance = distance;

	if (IS_DEBUG_OSPF_EVENT)
		zlog_debug("%s: Adding %pI4 as parent of %pI4", __func__,
			   &v->lsa->id, &w->lsa->id);

	/*
	 * Adding parent for a new, better path: flush existing parents from W.
	 */
	if (distance < w->distance) {
		if (IS_DEBUG_OSPF_EVENT)
			zlog_debug(
				"%s: distance %d better than %d, flushing existing parents",
				__func__, distance, w->distance);
		ospf_spf_flush_parents(w);
		w->distance = distance;
	}

	/*
	 * new parent is <= existing parents, add it to parent list (if nexthop
	 * not on parent list)
	 */
	for (ALL_LIST_ELEMENTS_RO(w->parents, node, wp)) {
		if (memcmp(newhop, wp->nexthop, sizeof(*newhop)) == 0) {
			if (IS_DEBUG_OSPF_EVENT)
				zlog_debug(
					"%s: ... nexthop already on parent list, skipping add",
					__func__);
			return;
		}
	}

	vp = vertex_parent_new(v, ospf_lsa_has_link(w->lsa, v->lsa), newhop,
			       newlhop);
	listnode_add_sort(w->parents, vp);

	return;
}

static int match_stub_prefix(struct lsa_header *lsa, struct in_addr v_link_addr,
			     struct in_addr w_link_addr)
{
	uint8_t *p, *lim;
	struct router_lsa_link *l = NULL;
	struct in_addr masked_lsa_addr;

	if (lsa->type != OSPF_ROUTER_LSA)
		return 0;

	p = ((uint8_t *)lsa) + OSPF_LSA_HEADER_SIZE + 4;
	lim = ((uint8_t *)lsa) + ntohs(lsa->length);

	while (p < lim) {
		l = (struct router_lsa_link *)p;
		p += (OSPF_ROUTER_LSA_LINK_SIZE
		      + (l->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));

		if (l->m[0].type != LSA_LINK_TYPE_STUB)
			continue;

		masked_lsa_addr.s_addr =
			(l->link_id.s_addr & l->link_data.s_addr);

		/* check that both links belong to the same stub subnet */
		if ((masked_lsa_addr.s_addr
		     == (v_link_addr.s_addr & l->link_data.s_addr))
		    && (masked_lsa_addr.s_addr
			== (w_link_addr.s_addr & l->link_data.s_addr)))
			return 1;
	}

	return 0;
}

/*
 * 16.1.1.  Calculate nexthop from root through V (parent) to
 * vertex W (destination), with given distance from root->W.
 *
 * The link must be supplied if V is the root vertex. In all other cases
 * it may be NULL.
 *
 * Note that this function may fail, hence the state of the destination
 * vertex, W, should /not/ be modified in a dependent manner until
 * this function returns. This function will update the W vertex with the
 * provided distance as appropriate.
 */
static unsigned int ospf_nexthop_calculation(struct ospf_area *area,
					     struct vertex *v, struct vertex *w,
					     struct router_lsa_link *l,
					     unsigned int distance, int lsa_pos)
{
	struct listnode *node, *nnode;
	struct vertex_nexthop *nh, *lnh;
	struct vertex_parent *vp;
	unsigned int added = 0;

	if (IS_DEBUG_OSPF_EVENT) {
		zlog_debug("ospf_nexthop_calculation(): Start");
		ospf_vertex_dump("V (parent):", v, 1, 1);
		ospf_vertex_dump("W (dest)  :", w, 1, 1);
		zlog_debug("V->W distance: %d", distance);
	}

	if (v == area->spf) {
		/*
		 * 16.1.1 para 4.  In the first case, the parent vertex (V) is
		 * the root (the calculating router itself).  This means that
		 * the destination is either a directly connected network or
		 * directly connected router.  The outgoing interface in this
		 * case is simply the OSPF interface connecting to the
		 * destination network/router.
		 */

		/* we *must* be supplied with the link data */
		assert(l != NULL);

		if (IS_DEBUG_OSPF_EVENT)
			zlog_debug(
				"%s: considering link type:%d link_id:%pI4 link_data:%pI4",
				__func__, l->m[0].type, &l->link_id,
				&l->link_data);

		if (w->type == OSPF_VERTEX_ROUTER) {
			/*
			 * l is a link from v to w l2 will be link from w to v
			 */
			struct router_lsa_link *l2 = NULL;

			if (l->m[0].type == LSA_LINK_TYPE_POINTOPOINT) {
				struct ospf_interface *oi = NULL;
				struct in_addr nexthop = {.s_addr = 0};

				if (area->spf_root_node) {
					oi = ospf_if_lookup_by_lsa_pos(area,
								       lsa_pos);
					if (!oi) {
						zlog_debug(
							"%s: OI not found in LSA: lsa_pos: %d link_id:%pI4 link_data:%pI4",
							__func__, lsa_pos,
							&l->link_id,
							&l->link_data);
						return 0;
					}
				}

				/*
				 * If the destination is a router which connects
				 * to the calculating router via a
				 * Point-to-MultiPoint network, the
				 * destination's next hop IP address(es) can be
				 * determined by examining the destination's
				 * router-LSA: each link pointing back to the
				 * calculating router and having a Link Data
				 * field belonging to the Point-to-MultiPoint
				 * network provides an IP address of the next
				 * hop router.
				 *
				 * At this point l is a link from V to W, and V
				 * is the root ("us"). If it is a point-to-
				 * multipoint interface, then look through the
				 * links in the opposite direction (W to V).
				 * If any of them have an address that lands
				 * within the subnet declared by the PtMP link,
				 * then that link is a constituent of the PtMP
				 * link, and its address is a nexthop address
				 * for V.
				 *
				 * Note for point-to-point interfaces:
				 *
				 * Having nexthop = 0 (as proposed in the RFC)
				 * is tempting, but NOT acceptable. It breaks
				 * AS-External routes with a forwarding address,
				 * since ospf_ase_complete_direct_routes() will
				 * mistakenly assume we've reached the last hop
				 * and should place the forwarding address as
				 * nexthop. Also, users may configure multi-
				 * access links in p2p mode, so we need the IP
				 * to ARP the nexthop.
				 *
				 * If the calculating router is the SPF root
				 * node and the link is P2P then access the
				 * interface information directly. This can be
				 * crucial when e.g. IP unnumbered is used
				 * where 'correct' nexthop information are not
				 * available via Router LSAs.
				 *
				 * Otherwise handle P2P and P2MP the same way
				 * as described above using a reverse lookup to
				 * figure out the nexthop.
				 */

				/*
				 * HACK: we don't know (yet) how to distinguish
				 * between P2P and P2MP interfaces by just
				 * looking at LSAs, which is important for
				 * TI-LFA since you want to do SPF calculations
				 * from the perspective of other nodes. Since
				 * TI-LFA is currently not implemented for P2MP
				 * we just check here if it is enabled and then
				 * blindly assume that P2P is used. Ultimately
				 * the interface code needs to be removed
				 * somehow.
				 */
				if (area->ospf->ti_lfa_enabled
				    || (oi && oi->type == OSPF_IFTYPE_POINTOPOINT)) {
					struct ospf_neighbor *nbr_w = NULL;

					/* Calculating node is root node, link
					 * is P2P */
					if (area->spf_root_node) {
						nbr_w = ospf_nbr_lookup_by_routerid(
							oi->nbrs, &l->link_id);
						if (nbr_w) {
							added = 1;
							nexthop = nbr_w->src;
						}
					}

					/* Reverse lookup */
					if (!added) {
						while ((l2 = ospf_get_next_link(
								w, v, l2))) {
							if (match_stub_prefix(
								    v->lsa,
								    l->link_data,
								    l2->link_data)) {
								added = 1;
								nexthop =
									l2->link_data;
								break;
							}
						}
					}
				} else if (oi && oi->type
					   == OSPF_IFTYPE_POINTOMULTIPOINT) {
					struct prefix_ipv4 la;

					la.family = AF_INET;
					la.prefixlen = oi->address->prefixlen;

					/*
					 * V links to W on PtMP interface;
					 * find the interface address on W
					 */
					while ((l2 = ospf_get_next_link(w, v,
									l2))) {
						la.prefix = l2->link_data;

						if (prefix_cmp((struct prefix
									*)&la,
							       oi->address)
						    != 0)
							continue;
						added = 1;
						nexthop = l2->link_data;
						break;
					}
				}

				if (added) {
					nh = vertex_nexthop_new();
					nh->router = nexthop;
					nh->lsa_pos = lsa_pos;

					/*
					 * Since v is the root the nexthop and
					 * local nexthop are the same.
					 */
					lnh = vertex_nexthop_new();
					memcpy(lnh, nh,
					       sizeof(struct vertex_nexthop));

					ospf_spf_add_parent(v, w, nh, lnh,
							    distance);
					return 1;
				} else
					zlog_info(
						"%s: could not determine nexthop for link %s",
						__func__, oi ? oi->ifp->name : "");
			} /* end point-to-point link from V to W */
			else if (l->m[0].type == LSA_LINK_TYPE_VIRTUALLINK) {
				/*
				 * VLink implementation limitations:
				 * a) vl_data can only reference one nexthop,
				 *    so no ECMP to backbone through VLinks.
				 *    Though transit-area summaries may be
				 *    considered, and those can be ECMP.
				 * b) We can only use /one/ VLink, even if
				 *    multiple ones exist this router through
				 *    multiple transit-areas.
				 */

				struct ospf_vl_data *vl_data;

				vl_data = ospf_vl_lookup(area->ospf, NULL,
							 l->link_id);

				if (vl_data
				    && CHECK_FLAG(vl_data->flags,
						  OSPF_VL_FLAG_APPROVED)) {
					nh = vertex_nexthop_new();
					nh->router = vl_data->nexthop.router;
					nh->lsa_pos = vl_data->nexthop.lsa_pos;

					/*
					 * Since v is the root the nexthop and
					 * local nexthop are the same.
					 */
					lnh = vertex_nexthop_new();
					memcpy(lnh, nh,
					       sizeof(struct vertex_nexthop));

					ospf_spf_add_parent(v, w, nh, lnh,
							    distance);
					return 1;
				} else
					zlog_info(
						"ospf_nexthop_calculation(): vl_data for VL link not found");
			} /* end virtual-link from V to W */
			return 0;
		} /* end W is a Router vertex */
		else {
			assert(w->type == OSPF_VERTEX_NETWORK);

			nh = vertex_nexthop_new();
			nh->router.s_addr = 0; /* Nexthop not required */
			nh->lsa_pos = lsa_pos;

			/*
			 * Since v is the root the nexthop and
			 * local nexthop are the same.
			 */
			lnh = vertex_nexthop_new();
			memcpy(lnh, nh, sizeof(struct vertex_nexthop));

			ospf_spf_add_parent(v, w, nh, lnh, distance);
			return 1;
		}
	} /* end V is the root */
	/* Check if W's parent is a network connected to root. */
	else if (v->type == OSPF_VERTEX_NETWORK) {
		/* See if any of V's parents are the root. */
		for (ALL_LIST_ELEMENTS(v->parents, node, nnode, vp)) {
			if (vp->parent == area->spf) {
				/*
				 * 16.1.1 para 5. ...the parent vertex is a
				 * network that directly connects the
				 * calculating router to the destination
				 * router. The list of next hops is then
				 * determined by examining the destination's
				 * router-LSA ...
				 */

				assert(w->type == OSPF_VERTEX_ROUTER);
				while ((l = ospf_get_next_link(w, v, l))) {
					/*
					 * ... For each link in the router-LSA
					 * that points back to the parent
					 * network, the link's Link Data field
					 * provides the IP address of a next hop
					 * router. The outgoing interface to use
					 * can then be derived from the next
					 * hop IP address (or it can be
					 * inherited from the parent network).
					 */
					nh = vertex_nexthop_new();
					nh->router = l->link_data;
					nh->lsa_pos = vp->nexthop->lsa_pos;

					/*
					 * Since v is the root the nexthop and
					 * local nexthop are the same.
					 */
					lnh = vertex_nexthop_new();
					memcpy(lnh, nh,
					       sizeof(struct vertex_nexthop));

					added = 1;
					ospf_spf_add_parent(v, w, nh, lnh,
							    distance);
				}
				/*
				 * Note lack of return is deliberate. See next
				 * comment.
				 */
			}
		}
		/*
		 * NB: This code is non-trivial.
		 *
		 * E.g. it is not enough to know that V connects to the root. It
		 * is also important that the while above, looping through all
		 * links from W->V found at least one link, so that we know
		 * there is bi-directional connectivity between V and W (which
		 * need not be the case, e.g.  when OSPF has not yet converged
		 * fully). Otherwise, if we /always/ return here, without having
		 * checked that root->V->-W actually resulted in a valid nexthop
		 * being created, then we we will prevent SPF from finding/using
		 * higher cost paths.
		 *
		 * It is important, if root->V->W has not been added, that we
		 * continue through to the intervening-router nexthop code
		 * below. So as to ensure other paths to V may be used. This
		 * avoids unnecessary blackholes while OSPF is converging.
		 *
		 * I.e. we may have arrived at this function, examining V -> W,
		 * via workable paths other than root -> V, and it's important
		 * to avoid getting "confused" by non-working root->V->W path
		 * - it's important to *not* lose the working non-root paths,
		 * just because of a non-viable root->V->W.
		 */
		if (added)
			return added;
	}

	/*
	 * 16.1.1 para 4.  If there is at least one intervening router in the
	 * current shortest path between the destination and the root, the
	 * destination simply inherits the set of next hops from the
	 * parent.
	 */
	if (IS_DEBUG_OSPF_EVENT)
		zlog_debug("%s: Intervening routers, adding parent(s)",
			   __func__);

	for (ALL_LIST_ELEMENTS(v->parents, node, nnode, vp)) {
		added = 1;

		/*
		 * The nexthop is inherited, but the local nexthop still needs
		 * to be created.
		 */
		if (l) {
			lnh = vertex_nexthop_new();
			lnh->router = l->link_data;
			lnh->lsa_pos = lsa_pos;
		} else {
			lnh = NULL;
		}

		ospf_spf_add_parent(v, w, vp->nexthop, lnh, distance);
	}

	return added;
}

static int ospf_spf_is_protected_resource(struct ospf_area *area,
					  struct router_lsa_link *link,
					  struct lsa_header *lsa)
{
	uint8_t *p, *lim;
	struct router_lsa_link *p_link;
	struct router_lsa_link *l = NULL;
	struct in_addr router_id;
	int link_type;

	if (!area->spf_protected_resource)
		return 0;

	link_type = link->m[0].type;

	switch (area->spf_protected_resource->type) {
	case OSPF_TI_LFA_LINK_PROTECTION:
		p_link = area->spf_protected_resource->link;
		if (!p_link)
			return 0;

		/* For P2P: check if the link belongs to the same subnet */
		if (link_type == LSA_LINK_TYPE_POINTOPOINT
		    && (p_link->link_id.s_addr & p_link->link_data.s_addr)
			       == (link->link_data.s_addr
				   & p_link->link_data.s_addr))
			return 1;

		/* For stub: check if this the same subnet */
		if (link_type == LSA_LINK_TYPE_STUB
		    && (p_link->link_id.s_addr == link->link_id.s_addr)
		    && (p_link->link_data.s_addr == link->link_data.s_addr))
			return 1;

		break;
	case OSPF_TI_LFA_NODE_PROTECTION:
		router_id = area->spf_protected_resource->router_id;
		if (router_id.s_addr == INADDR_ANY)
			return 0;

		/* For P2P: check if the link leads to the protected node */
		if (link_type == LSA_LINK_TYPE_POINTOPOINT
		    && link->link_id.s_addr == router_id.s_addr)
			return 1;

		/* The rest is about stub links! */
		if (link_type != LSA_LINK_TYPE_STUB)
			return 0;

		/*
		 * Check if there's a P2P link in the router LSA with the
		 * corresponding link data in the same subnet.
		 */

		p = ((uint8_t *)lsa) + OSPF_LSA_HEADER_SIZE + 4;
		lim = ((uint8_t *)lsa) + ntohs(lsa->length);

		while (p < lim) {
			l = (struct router_lsa_link *)p;
			p += (OSPF_ROUTER_LSA_LINK_SIZE
			      + (l->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));

			/* We only care about P2P with the proper link id */
			if ((l->m[0].type != LSA_LINK_TYPE_POINTOPOINT)
			    || (l->link_id.s_addr != router_id.s_addr))
				continue;

			/* Link data in the subnet given by the link? */
			if ((link->link_id.s_addr & link->link_data.s_addr)
			    == (l->link_data.s_addr & link->link_data.s_addr))
				return 1;
		}

		break;
	case OSPF_TI_LFA_UNDEFINED_PROTECTION:
		break;
	}

	return 0;
}

/*
 * For TI-LFA we need the reverse SPF for Q spaces. The reverse SPF is created
 * by honoring the weight of the reverse 'edge', e.g. the edge from W to V, and
 * NOT the weight of the 'edge' from V to W as usual. Hence we need to find the
 * corresponding link in the LSA of W and extract the particular weight.
 *
 * TODO: Only P2P supported by now!
 */
static uint16_t get_reverse_distance(struct vertex *v,
				     struct router_lsa_link *l,
				     struct ospf_lsa *w_lsa)
{
	uint8_t *p, *lim;
	struct router_lsa_link *w_link;
	uint16_t distance = 0;

	assert(w_lsa && w_lsa->data);

	p = ((uint8_t *)w_lsa->data) + OSPF_LSA_HEADER_SIZE + 4;
	lim = ((uint8_t *)w_lsa->data) + ntohs(w_lsa->data->length);

	while (p < lim) {
		w_link = (struct router_lsa_link *)p;
		p += (OSPF_ROUTER_LSA_LINK_SIZE
		      + (w_link->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));

		/* Only care about P2P with link ID equal to V's router id */
		if (w_link->m[0].type == LSA_LINK_TYPE_POINTOPOINT
		    && w_link->link_id.s_addr == v->id.s_addr) {
			distance = ntohs(w_link->m[0].metric);
			break;
		}
	}

	/*
	 * This might happen if the LSA for W is not complete yet. In this
	 * case we take the weight of the 'forward' link from V. When the LSA
	 * for W is completed the reverse SPF is run again anyway.
	 */
	if (distance == 0)
		distance = ntohs(l->m[0].metric);

	if (IS_DEBUG_OSPF_EVENT)
		zlog_debug("%s: reversed distance is %u", __func__, distance);

	return distance;
}

/*
 * RFC2328 16.1 (2).
 * v is on the SPF tree. Examine the links in v's LSA. Update the list of
 * candidates with any vertices not already on the list. If a lower-cost path
 * is found to a vertex already on the candidate list, store the new cost.
 */
static void ospf_spf_next(struct vertex *v, struct ospf_area *area,
			  struct vertex_pqueue_head *candidate)
{
	struct ospf_lsa *w_lsa = NULL;
	uint8_t *p;
	uint8_t *lim;
	struct router_lsa_link *l = NULL;
	struct in_addr *r;
	int type = 0, lsa_pos = -1, lsa_pos_next = 0;
	uint16_t link_distance;

	/*
	 * If this is a router-LSA, and bit V of the router-LSA (see Section
	 * A.4.2:RFC2328) is set, set Area A's TransitCapability to true.
	 */
	if (v->type == OSPF_VERTEX_ROUTER) {
		if (IS_ROUTER_LSA_VIRTUAL((struct router_lsa *)v->lsa))
			area->transit = OSPF_TRANSIT_TRUE;
	}

	if (IS_DEBUG_OSPF_EVENT)
		zlog_debug("%s: Next vertex of %s vertex %pI4", __func__,
			   v->type == OSPF_VERTEX_ROUTER ? "Router" : "Network",
			   &v->lsa->id);

	p = ((uint8_t *)v->lsa) + OSPF_LSA_HEADER_SIZE + 4;
	lim = ((uint8_t *)v->lsa) + ntohs(v->lsa->length);

	while (p < lim) {
		struct vertex *w;
		unsigned int distance;

		/* In case of V is Router-LSA. */
		if (v->lsa->type == OSPF_ROUTER_LSA) {
			l = (struct router_lsa_link *)p;

			lsa_pos = lsa_pos_next; /* LSA link position */
			lsa_pos_next++;

			p += (OSPF_ROUTER_LSA_LINK_SIZE
			      + (l->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));

			/*
			 * (a) If this is a link to a stub network, examine the
			 * next link in V's LSA. Links to stub networks will
			 * be considered in the second stage of the shortest
			 * path calculation.
			 */
			if ((type = l->m[0].type) == LSA_LINK_TYPE_STUB)
				continue;

			/*
			 * Don't process TI-LFA protected resources.
			 *
			 * TODO: Replace this by a proper solution, e.g. remove
			 * corresponding links from the LSDB and run the SPF
			 * algo with the stripped-down LSDB.
			 */
			if (ospf_spf_is_protected_resource(area, l, v->lsa))
				continue;

			/*
			 * (b) Otherwise, W is a transit vertex (router or
			 * transit network). Look up the vertex W's LSA
			 * (router-LSA or network-LSA) in Area A's link state
			 * database.
			 */
			switch (type) {
			case LSA_LINK_TYPE_POINTOPOINT:
			case LSA_LINK_TYPE_VIRTUALLINK:
				if (type == LSA_LINK_TYPE_VIRTUALLINK
				    && IS_DEBUG_OSPF_EVENT)
					zlog_debug(
						"looking up LSA through VL: %pI4",
						&l->link_id);
				w_lsa = ospf_lsa_lookup(area->ospf, area,
							OSPF_ROUTER_LSA,
							l->link_id, l->link_id);
				if (w_lsa && IS_DEBUG_OSPF_EVENT)
					zlog_debug("found Router LSA %pI4",
						   &l->link_id);
				break;
			case LSA_LINK_TYPE_TRANSIT:
				if (IS_DEBUG_OSPF_EVENT)
					zlog_debug(
						"Looking up Network LSA, ID: %pI4",
						&l->link_id);
				w_lsa = ospf_lsa_lookup_by_id(
					area, OSPF_NETWORK_LSA, l->link_id);
				if (w_lsa && IS_DEBUG_OSPF_EVENT)
					zlog_debug("found the LSA");
				break;
			default:
				flog_warn(EC_OSPF_LSA,
					  "Invalid LSA link type %d", type);
				continue;
			}

			/*
			 * For TI-LFA we might need the reverse SPF.
			 * Currently only works with P2P!
			 */
			if (type == LSA_LINK_TYPE_POINTOPOINT
			    && area->spf_reversed)
				link_distance =
					get_reverse_distance(v, l, w_lsa);
			else
				link_distance = ntohs(l->m[0].metric);

			/* step (d) below */
			distance = v->distance + link_distance;
		} else {
			/* In case of V is Network-LSA. */
			r = (struct in_addr *)p;
			p += sizeof(struct in_addr);

			/* Lookup the vertex W's LSA. */
			w_lsa = ospf_lsa_lookup_by_id(area, OSPF_ROUTER_LSA,
						      *r);
			if (w_lsa && IS_DEBUG_OSPF_EVENT)
				zlog_debug("found Router LSA %pI4",
					   &w_lsa->data->id);

			/* step (d) below */
			distance = v->distance;
		}

		/*
		 * (b cont.) If the LSA does not exist, or its LS age is equal
		 * to MaxAge, or it does not have a link back to vertex V,
		 * examine the next link in V's LSA.[23]
		 */
		if (w_lsa == NULL) {
			if (IS_DEBUG_OSPF_EVENT)
				zlog_debug("No LSA found");
			continue;
		}

		if (IS_LSA_MAXAGE(w_lsa)) {
			if (IS_DEBUG_OSPF_EVENT)
				zlog_debug("LSA is MaxAge");
			continue;
		}

		if (ospf_lsa_has_link(w_lsa->data, v->lsa) < 0) {
			if (IS_DEBUG_OSPF_EVENT)
				zlog_debug("The LSA doesn't have a link back");
			continue;
		}

		/*
		 * (c) If vertex W is already on the shortest-path tree, examine
		 * the next link in the LSA.
		 */
		if (w_lsa->stat == LSA_SPF_IN_SPFTREE) {
			if (IS_DEBUG_OSPF_EVENT)
				zlog_debug("The LSA is already in SPF");
			continue;
		}

		/*
		 * (d) Calculate the link state cost D of the resulting path
		 * from the root to vertex W.  D is equal to the sum of the link
		 * state cost of the (already calculated) shortest path to
		 * vertex V and the advertised cost of the link between vertices
		 * V and W.  If D is:
		 */

		/* calculate link cost D -- moved above */

		/* Is there already vertex W in candidate list? */
		if (w_lsa->stat == LSA_SPF_NOT_EXPLORED) {
			/* prepare vertex W. */
			w = ospf_vertex_new(area, w_lsa);

			/* Calculate nexthop to W. */
			if (ospf_nexthop_calculation(area, v, w, l, distance,
						     lsa_pos))
				vertex_pqueue_add(candidate, w);
			else if (IS_DEBUG_OSPF_EVENT)
				zlog_debug("Nexthop Calc failed");
		} else if (w_lsa->stat != LSA_SPF_IN_SPFTREE) {
			w = w_lsa->stat;
			if (w->distance < distance) {
				continue;
			}
			else if (w->distance == distance) {
				/*
				 * Found an equal-cost path to W.
				 * Calculate nexthop of to W from V.
				 */
				ospf_nexthop_calculation(area, v, w, l,
							 distance, lsa_pos);
			}
			else {
				/*
				 * Found a lower-cost path to W.
				 * nexthop_calculation is conditional, if it
				 * finds valid nexthop it will call
				 * spf_add_parents, which will flush the old
				 * parents.
				 */
				vertex_pqueue_del(candidate, w);
				ospf_nexthop_calculation(area, v, w, l,
							 distance, lsa_pos);
				vertex_pqueue_add(candidate, w);
			}
		} /* end W is already on the candidate list */
	}	 /* end loop over the links in V's LSA */
}

static void ospf_spf_dump(struct vertex *v, int i)
{
	struct listnode *cnode;
	struct listnode *nnode;
	struct vertex_parent *parent;

	if (v->type == OSPF_VERTEX_ROUTER) {
		if (IS_DEBUG_OSPF_EVENT)
			zlog_debug("SPF Result: %d [R] %pI4", i,
				   &v->lsa->id);
	} else {
		struct network_lsa *lsa = (struct network_lsa *)v->lsa;
		if (IS_DEBUG_OSPF_EVENT)
			zlog_debug("SPF Result: %d [N] %pI4/%d", i,
				   &v->lsa->id,
				   ip_masklen(lsa->mask));
	}

	if (IS_DEBUG_OSPF_EVENT)
		for (ALL_LIST_ELEMENTS_RO(v->parents, nnode, parent)) {
			zlog_debug(" nexthop %p %pI4 %d",
				   (void *)parent->nexthop,
				   &parent->nexthop->router,
				   parent->nexthop->lsa_pos);
		}

	i++;

	for (ALL_LIST_ELEMENTS_RO(v->children, cnode, v))
		ospf_spf_dump(v, i);
}

void ospf_spf_print(struct vty *vty, struct vertex *v, int i)
{
	struct listnode *cnode;
	struct listnode *nnode;
	struct vertex_parent *parent;

	if (v->type == OSPF_VERTEX_ROUTER) {
		vty_out(vty, "SPF Result: depth %d [R] %pI4\n", i, &v->lsa->id);
	} else {
		struct network_lsa *lsa = (struct network_lsa *)v->lsa;
		vty_out(vty, "SPF Result: depth %d [N] %pI4/%d\n", i,
			&v->lsa->id, ip_masklen(lsa->mask));
	}

	for (ALL_LIST_ELEMENTS_RO(v->parents, nnode, parent)) {
		vty_out(vty,
			" nexthop %pI4 lsa pos %d -- local nexthop %pI4 lsa pos %d\n",
			&parent->nexthop->router, parent->nexthop->lsa_pos,
			&parent->local_nexthop->router,
			parent->local_nexthop->lsa_pos);
	}

	i++;

	for (ALL_LIST_ELEMENTS_RO(v->children, cnode, v))
		ospf_spf_print(vty, v, i);
}

/* Second stage of SPF calculation. */
static void ospf_spf_process_stubs(struct ospf_area *area, struct vertex *v,
				   struct route_table *rt, int parent_is_root)
{
	struct listnode *cnode, *cnnode;
	struct vertex *child;

	if (IS_DEBUG_OSPF_EVENT)
		zlog_debug("ospf_process_stub():processing stubs for area %pI4",
			   &area->area_id);

	if (v->type == OSPF_VERTEX_ROUTER) {
		uint8_t *p;
		uint8_t *lim;
		struct router_lsa_link *l;
		struct router_lsa *router_lsa;
		int lsa_pos = 0;

		if (IS_DEBUG_OSPF_EVENT)
			zlog_debug(
				"ospf_process_stubs():processing router LSA, id: %pI4",
				&v->lsa->id);

		router_lsa = (struct router_lsa *)v->lsa;

		if (IS_DEBUG_OSPF_EVENT)
			zlog_debug(
				"ospf_process_stubs(): we have %d links to process",
				ntohs(router_lsa->links));

		p = ((uint8_t *)v->lsa) + OSPF_LSA_HEADER_SIZE + 4;
		lim = ((uint8_t *)v->lsa) + ntohs(v->lsa->length);

		while (p < lim) {
			l = (struct router_lsa_link *)p;

			p += (OSPF_ROUTER_LSA_LINK_SIZE
			      + (l->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));

			/* Don't process TI-LFA protected resources */
			if (l->m[0].type == LSA_LINK_TYPE_STUB
			    && !ospf_spf_is_protected_resource(area, l, v->lsa))
				ospf_intra_add_stub(rt, l, v, area,
						    parent_is_root, lsa_pos);
			lsa_pos++;
		}
	}

	ospf_vertex_dump("ospf_process_stubs(): after examining links: ", v, 1,
			 1);

	for (ALL_LIST_ELEMENTS(v->children, cnode, cnnode, child)) {
		if (CHECK_FLAG(child->flags, OSPF_VERTEX_PROCESSED))
			continue;

		/*
		 * The first level of routers connected to the root
		 * should have 'parent_is_root' set, including those
		 * connected via a network vertex.
		 */
		if (area->spf == v)
			parent_is_root = 1;
		else if (v->type == OSPF_VERTEX_ROUTER)
			parent_is_root = 0;

		ospf_spf_process_stubs(area, child, rt, parent_is_root);

		SET_FLAG(child->flags, OSPF_VERTEX_PROCESSED);
	}
}

void ospf_rtrs_free(struct route_table *rtrs)
{
	struct route_node *rn;
	struct list *or_list;
	struct ospf_route * or ;
	struct listnode *node, *nnode;

	if (IS_DEBUG_OSPF_EVENT)
		zlog_debug("Route: Router Routing Table free");

	for (rn = route_top(rtrs); rn; rn = route_next(rn))
		if ((or_list = rn->info) != NULL) {
			for (ALL_LIST_ELEMENTS(or_list, node, nnode, or))
				ospf_route_free(or);

			list_delete(&or_list);

			/* Unlock the node. */
			rn->info = NULL;
			route_unlock_node(rn);
		}

	route_table_finish(rtrs);
}

void ospf_spf_cleanup(struct vertex *spf, struct list *vertex_list)
{
	/*
	 * Free nexthop information, canonical versions of which are
	 * attached the first level of router vertices attached to the
	 * root vertex, see ospf_nexthop_calculation.
	 */
	if (spf)
		ospf_canonical_nexthops_free(spf);

	/* Free SPF vertices list with deconstructor ospf_vertex_free. */
	if (vertex_list)
		list_delete(&vertex_list);
}

/* Calculating the shortest-path tree for an area, see RFC2328 16.1. */
void ospf_spf_calculate(struct ospf_area *area, struct ospf_lsa *root_lsa,
			struct route_table *new_table,
			struct route_table *new_rtrs, bool is_dry_run,
			bool is_root_node)
{
	struct vertex_pqueue_head candidate;
	struct vertex *v;

	if (IS_DEBUG_OSPF_EVENT) {
		zlog_debug("ospf_spf_calculate: Start");
		zlog_debug("ospf_spf_calculate: running Dijkstra for area %pI4",
			   &area->area_id);
	}

	/*
	 * If the router LSA of the root is not yet allocated, return this
	 * area's calculation. In the 'usual' case the root_lsa is the
	 * self-originated router LSA of the node itself.
	 */
	if (!root_lsa) {
		if (IS_DEBUG_OSPF_EVENT)
			zlog_debug(
				"ospf_spf_calculate: Skip area %pI4's calculation due to empty root LSA",
				&area->area_id);
		return;
	}

	/* Initialize the algorithm's data structures, see RFC2328 16.1. (1). */

	/*
	 * This function scans all the LSA database and set the stat field to
	 * LSA_SPF_NOT_EXPLORED.
	 */
	lsdb_clean_stat(area->lsdb);

	/* Create a new heap for the candidates. */
	vertex_pqueue_init(&candidate);

	/*
	 * Initialize the shortest-path tree to only the root (which is usually
	 * the router doing the calculation).
	 */
	ospf_spf_init(area, root_lsa, is_dry_run, is_root_node);

	/* Set Area A's TransitCapability to false. */
	area->transit = OSPF_TRANSIT_FALSE;
	area->shortcut_capability = 1;

	/*
	 * Use the root vertex for the start of the SPF algorithm and make it
	 * part of the tree.
	 */
	v = area->spf;
	v->lsa_p->stat = LSA_SPF_IN_SPFTREE;

	for (;;) {
		/* RFC2328 16.1. (2). */
		ospf_spf_next(v, area, &candidate);

		/* RFC2328 16.1. (3). */
		v = vertex_pqueue_pop(&candidate);
		if (!v)
			/* No more vertices left. */
			break;

		v->lsa_p->stat = LSA_SPF_IN_SPFTREE;

		ospf_vertex_add_parent(v);

		/* RFC2328 16.1. (4). */
		if (v->type == OSPF_VERTEX_ROUTER)
			ospf_intra_add_router(new_rtrs, v, area);
		else
			ospf_intra_add_transit(new_table, v, area);

		/* Iterate back to (2), see RFC2328 16.1. (5). */
	}

	if (IS_DEBUG_OSPF_EVENT) {
		ospf_spf_dump(area->spf, 0);
		ospf_route_table_dump(new_table);
	}

	/*
	 * Second stage of SPF calculation procedure's, add leaves to the tree
	 * for stub networks.
	 */
	ospf_spf_process_stubs(area, area->spf, new_table, 0);

	ospf_vertex_dump(__func__, area->spf, 0, 1);

	/* Increment SPF Calculation Counter. */
	area->spf_calculation++;

	monotime(&area->ospf->ts_spf);
	area->ts_spf = area->ospf->ts_spf;

	if (IS_DEBUG_OSPF_EVENT)
		zlog_debug("ospf_spf_calculate: Stop. %zd vertices",
			   mtype_stats_alloc(MTYPE_OSPF_VERTEX));
}

void ospf_spf_calculate_area(struct ospf *ospf, struct ospf_area *area,
			     struct route_table *new_table,
			     struct route_table *new_rtrs)
{
	ospf_spf_calculate(area, area->router_lsa_self, new_table, new_rtrs,
			   false, true);

	if (ospf->ti_lfa_enabled)
		ospf_ti_lfa_compute(area, new_table,
				    ospf->ti_lfa_protection_type);

	ospf_spf_cleanup(area->spf, area->spf_vertex_list);
}

void ospf_spf_calculate_areas(struct ospf *ospf, struct route_table *new_table,
			      struct route_table *new_rtrs)
{
	struct ospf_area *area;
	struct listnode *node, *nnode;

	/* Calculate SPF for each area. */
	for (ALL_LIST_ELEMENTS(ospf->areas, node, nnode, area)) {
		/* Do backbone last, so as to first discover intra-area paths
		 * for any back-bone virtual-links */
		if (ospf->backbone && ospf->backbone == area)
			continue;

		ospf_spf_calculate_area(ospf, area, new_table, new_rtrs);
	}

	/* SPF for backbone, if required */
	if (ospf->backbone)
		ospf_spf_calculate_area(ospf, ospf->backbone, new_table,
					new_rtrs);
}

/* Worker for SPF calculation scheduler. */
static int ospf_spf_calculate_schedule_worker(struct thread *thread)
{
	struct ospf *ospf = THREAD_ARG(thread);
	struct route_table *new_table, *new_rtrs;
	struct timeval start_time, spf_start_time;
	unsigned long ia_time, prune_time, rt_time;
	unsigned long abr_time, total_spf_time, spf_time;
	char rbuf[32]; /* reason_buf */

	if (IS_DEBUG_OSPF_EVENT)
		zlog_debug("SPF: Timer (SPF calculation expire)");

	ospf->t_spf_calc = NULL;

	ospf_vl_unapprove(ospf);

	/* Execute SPF for each area including backbone, see RFC 2328 16.1. */
	monotime(&spf_start_time);
	new_table = route_table_init(); /* routing table */
	new_rtrs = route_table_init();  /* ABR/ASBR routing table */
	ospf_spf_calculate_areas(ospf, new_table, new_rtrs);
	spf_time = monotime_since(&spf_start_time, NULL);

	ospf_vl_shut_unapproved(ospf);

	/* Calculate inter-area routes, see RFC 2328 16.2. */
	monotime(&start_time);
	ospf_ia_routing(ospf, new_table, new_rtrs);
	ia_time = monotime_since(&start_time, NULL);

	/* Get rid of transit networks and routers we cannot reach anyway. */
	monotime(&start_time);
	ospf_prune_unreachable_networks(new_table);
	ospf_prune_unreachable_routers(new_rtrs);
	prune_time = monotime_since(&start_time, NULL);

	/* Note: RFC 2328 16.3. is apparently missing. */

	/*
	 * Calculate AS external routes, see RFC 2328 16.4.
	 * There is a dedicated routing table for external routes which is not
	 * handled here directly
	 */
	ospf_ase_calculate_schedule(ospf);
	ospf_ase_calculate_timer_add(ospf);

	if (IS_DEBUG_OSPF_EVENT)
		zlog_debug(
			"%s: ospf install new route, vrf %s id %u new_table count %lu",
			__func__, ospf_vrf_id_to_name(ospf->vrf_id),
			ospf->vrf_id, new_table->count);

	/* Update routing table. */
	monotime(&start_time);
	ospf_route_install(ospf, new_table);
	rt_time = monotime_since(&start_time, NULL);

	/* Free old ABR/ASBR routing table */
	if (ospf->old_rtrs)
		/* ospf_route_delete (ospf->old_rtrs); */
		ospf_rtrs_free(ospf->old_rtrs);

	/* Update ABR/ASBR routing table */
	ospf->old_rtrs = ospf->new_rtrs;
	ospf->new_rtrs = new_rtrs;

	/* ABRs may require additional changes, see RFC 2328 16.7. */
	monotime(&start_time);
	if (IS_OSPF_ABR(ospf)) {
		if (ospf->anyNSSA)
			ospf_abr_nssa_check_status(ospf);
		ospf_abr_task(ospf);
	}
	abr_time = monotime_since(&start_time, NULL);

	/* Schedule Segment Routing update */
	ospf_sr_update_task(ospf);

	total_spf_time =
		monotime_since(&spf_start_time, &ospf->ts_spf_duration);

	rbuf[0] = '\0';
	if (spf_reason_flags) {
		if (spf_reason_flags & SPF_FLAG_ROUTER_LSA_INSTALL)
			strlcat(rbuf, "R, ", sizeof(rbuf));
		if (spf_reason_flags & SPF_FLAG_NETWORK_LSA_INSTALL)
			strlcat(rbuf, "N, ", sizeof(rbuf));
		if (spf_reason_flags & SPF_FLAG_SUMMARY_LSA_INSTALL)
			strlcat(rbuf, "S, ", sizeof(rbuf));
		if (spf_reason_flags & SPF_FLAG_ASBR_SUMMARY_LSA_INSTALL)
			strlcat(rbuf, "AS, ", sizeof(rbuf));
		if (spf_reason_flags & SPF_FLAG_ABR_STATUS_CHANGE)
			strlcat(rbuf, "ABR, ", sizeof(rbuf));
		if (spf_reason_flags & SPF_FLAG_ASBR_STATUS_CHANGE)
			strlcat(rbuf, "ASBR, ",	sizeof(rbuf));
		if (spf_reason_flags & SPF_FLAG_MAXAGE)
			strlcat(rbuf, "M, ", sizeof(rbuf));

		size_t rbuflen = strlen(rbuf);
		if (rbuflen >= 2)
			rbuf[rbuflen - 2] = '\0'; /* skip the last ", " */
		else
			rbuf[0] = '\0';
	}

	if (IS_DEBUG_OSPF_EVENT) {
		zlog_info("SPF Processing Time(usecs): %ld", total_spf_time);
		zlog_info("            SPF Time: %ld", spf_time);
		zlog_info("           InterArea: %ld", ia_time);
		zlog_info("               Prune: %ld", prune_time);
		zlog_info("        RouteInstall: %ld", rt_time);
		if (IS_OSPF_ABR(ospf))
			zlog_info("                 ABR: %ld (%d areas)",
				  abr_time, ospf->areas->count);
		zlog_info("Reason(s) for SPF: %s", rbuf);
	}

	ospf_clear_spf_reason_flags();

	return 0;
}

/*
 * Add schedule for SPF calculation. To avoid frequenst SPF calc, we set timer
 * for SPF calc.
 */
void ospf_spf_calculate_schedule(struct ospf *ospf, ospf_spf_reason_t reason)
{
	unsigned long delay, elapsed, ht;

	if (IS_DEBUG_OSPF_EVENT)
		zlog_debug("SPF: calculation timer scheduled");

	/* OSPF instance does not exist. */
	if (ospf == NULL)
		return;

	ospf_spf_set_reason(reason);

	/* SPF calculation timer is already scheduled. */
	if (ospf->t_spf_calc) {
		if (IS_DEBUG_OSPF_EVENT)
			zlog_debug(
				"SPF: calculation timer is already scheduled: %p",
				(void *)ospf->t_spf_calc);
		return;
	}

	elapsed = monotime_since(&ospf->ts_spf, NULL) / 1000;

	ht = ospf->spf_holdtime * ospf->spf_hold_multiplier;

	if (ht > ospf->spf_max_holdtime)
		ht = ospf->spf_max_holdtime;

	/* Get SPF calculation delay time. */
	if (elapsed < ht) {
		/*
		 * Got an event within the hold time of last SPF. We need to
		 * increase the hold_multiplier, if it's not already at/past
		 * maximum value, and wasn't already increased.
		 */
		if (ht < ospf->spf_max_holdtime)
			ospf->spf_hold_multiplier++;

		/* always honour the SPF initial delay */
		if ((ht - elapsed) < ospf->spf_delay)
			delay = ospf->spf_delay;
		else
			delay = ht - elapsed;
	} else {
		/* Event is past required hold-time of last SPF */
		delay = ospf->spf_delay;
		ospf->spf_hold_multiplier = 1;
	}

	if (IS_DEBUG_OSPF_EVENT)
		zlog_debug("SPF: calculation timer delay = %ld msec", delay);

	ospf->t_spf_calc = NULL;
	thread_add_timer_msec(master, ospf_spf_calculate_schedule_worker, ospf,
			      delay, &ospf->t_spf_calc);
}

/* Restart OSPF SPF algorithm*/
void ospf_restart_spf(struct ospf *ospf)
{
	if (IS_DEBUG_OSPF_EVENT)
		zlog_debug("%s: Restart SPF.", __PRETTY_FUNCTION__);

	/* Handling inter area and intra area routes*/
	if (ospf->new_table) {
		ospf_route_delete(ospf, ospf->new_table);
		ospf_route_table_free(ospf->new_table);
		ospf->new_table = route_table_init();
	}

	/* Handling of TYPE-5 lsa(external routes) */
	if (ospf->old_external_route) {
		ospf_route_delete(ospf, ospf->old_external_route);
		ospf_route_table_free(ospf->old_external_route);
		ospf->old_external_route = route_table_init();
	}

	/* Trigger SPF */
	ospf_spf_calculate_schedule(ospf, SPF_FLAG_CONFIG_CHANGE);
}