summaryrefslogtreecommitdiffstats
path: root/cipher/cipher.c
blob: cedcb37af5cf52a4006a4bee0dc5cbfcc80a6243 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
/* cipher.c  -	cipher dispatcher
 *	Copyright (C) 1998 Free Software Foundation, Inc.
 *
 * This file is part of GNUPG.
 *
 * GNUPG is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * GNUPG is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
 */

#define DEFINES_CIPHER_HANDLE 1

#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include "util.h"
#include "errors.h"
#include "cipher.h"
#include "blowfish.h"
#include "cast5.h"
#include "dynload.h"


#define STD_BLOCKSIZE 8
#define TABLE_SIZE 20

struct cipher_table_s {
    const char *name;
    int algo;
    size_t keylen;
    size_t contextsize; /* allocate this amount of context */
    void (*setkey)( void *c, byte *key, unsigned keylen );
    void (*encrypt)( void *c, byte *outbuf, byte *inbuf );
    void (*decrypt)( void *c, byte *outbuf, byte *inbuf );
};

static struct cipher_table_s cipher_table[TABLE_SIZE];


struct cipher_handle_s {
    int  algo;
    int  mode;
    byte iv[STD_BLOCKSIZE];	/* (this should be ulong aligned) */
    byte lastiv[STD_BLOCKSIZE];
    int  unused;  /* in IV */
    void (*setkey)( void *c, byte *key, unsigned keylen );
    void (*encrypt)( void *c, byte *outbuf, byte *inbuf );
    void (*decrypt)( void *c, byte *outbuf, byte *inbuf );
    byte context[1];
};


static void
dummy_setkey( void *c, byte *key, unsigned keylen ) { }
static void
dummy_encrypt_block( void *c, byte *outbuf, byte *inbuf ) { BUG(); }
static void
dummy_decrypt_block( void *c, byte *outbuf, byte *inbuf ) { BUG(); }



/****************
 * Put the static entries into the table.
 */
static void
setup_cipher_table()
{

    static int initialized = 0;
    int i;
    size_t blocksize;

    if( initialized )
	return;

    i = 0;
    cipher_table[i].algo = CIPHER_ALGO_BLOWFISH;
    cipher_table[i].name = blowfish_get_info( cipher_table[i].algo,
					 &cipher_table[i].keylen,
					 &blocksize,
					 &cipher_table[i].contextsize,
					 &cipher_table[i].setkey,
					 &cipher_table[i].encrypt,
					 &cipher_table[i].decrypt     );
    if( !cipher_table[i].name || blocksize != STD_BLOCKSIZE )
	BUG();
    i++;
    cipher_table[i].algo = CIPHER_ALGO_CAST5;
    cipher_table[i].name = cast5_get_info( cipher_table[i].algo,
					 &cipher_table[i].keylen,
					 &blocksize,
					 &cipher_table[i].contextsize,
					 &cipher_table[i].setkey,
					 &cipher_table[i].encrypt,
					 &cipher_table[i].decrypt     );
    if( !cipher_table[i].name || blocksize != STD_BLOCKSIZE )
	BUG();
    i++;
    cipher_table[i].algo = CIPHER_ALGO_BLOWFISH160;
    cipher_table[i].name = blowfish_get_info( cipher_table[i].algo,
					 &cipher_table[i].keylen,
					 &blocksize,
					 &cipher_table[i].contextsize,
					 &cipher_table[i].setkey,
					 &cipher_table[i].encrypt,
					 &cipher_table[i].decrypt     );
    if( !cipher_table[i].name || blocksize != STD_BLOCKSIZE )
	BUG();
    i++;
    cipher_table[i].algo = CIPHER_ALGO_DUMMY;
    cipher_table[i].name = "DUMMY";
    cipher_table[i].keylen = 128;
    cipher_table[i].contextsize = 0;
    cipher_table[i].setkey = dummy_setkey;
    cipher_table[i].encrypt = dummy_encrypt_block;
    cipher_table[i].decrypt = dummy_decrypt_block;
    i++;

    for( ; i < TABLE_SIZE; i++ )
	cipher_table[i].name = NULL;
    initialized = 1;
}


/****************
 * Try to load all modules and return true if new modules are available
 */
static int
load_cipher_modules()
{
    static int done = 0;
    void *context = NULL;
    struct cipher_table_s *ct;
    int ct_idx;
    size_t blocksize;
    int i;
    const char *name;
    int any = 0;

    if( done )
	return 0;
    done = 1;

    for(ct_idx=0, ct = cipher_table; ct_idx < TABLE_SIZE; ct_idx++,ct++ ) {
	if( !ct->name )
	    break;
    }
    if( ct_idx >= TABLE_SIZE-1 )
	BUG(); /* table already full */
    /* now load all extensions */
    while( (name = enum_gnupgext_ciphers( &context, &ct->algo,
				&ct->keylen, &blocksize, &ct->contextsize,
				&ct->setkey, &ct->encrypt, &ct->decrypt)) ) {
	if( blocksize != STD_BLOCKSIZE ) {
	    log_info("skipping cipher %d: unsupported blocksize\n", ct->algo);
	    continue;
	}
	for(i=0; cipher_table[i].name; i++ )
	    if( cipher_table[i].algo == ct->algo )
		break;
	if( cipher_table[i].name ) {
	    log_info("skipping cipher %d: already loaded\n", ct->algo );
	    continue;
	}
	/* put it into the table */
	if( g10_opt_verbose > 1 )
	    log_info("loaded cipher %d (%s)\n", ct->algo, name);
	ct->name = name;
	ct_idx++;
	ct++;
	any = 1;
	/* check whether there are more available table slots */
	if( ct_idx >= TABLE_SIZE-1 ) {
	    log_info("cipher table full; ignoring other extensions\n");
	    break;
	}
    }
    enum_gnupgext_ciphers( &context, NULL, NULL, NULL, NULL,
					   NULL, NULL, NULL );
    return any;
}







/****************
 * Map a string to the cipher algo
 */
int
string_to_cipher_algo( const char *string )
{
    int i;
    const char *s;

    setup_cipher_table();
    do {
	for(i=0; (s=cipher_table[i].name); i++ )
	    if( !stricmp( s, string ) )
		return cipher_table[i].algo;
    } while( load_cipher_modules() );
    return 0;
}

/****************
 * Map a cipher algo to a string
 */
const char *
cipher_algo_to_string( int algo )
{
    int i;

    setup_cipher_table();
    do {
	for(i=0; cipher_table[i].name; i++ )
	    if( cipher_table[i].algo == algo )
		return cipher_table[i].name;
    } while( load_cipher_modules() );
    return NULL;
}

/****************
 * Return 0 if the cipher algo is available
 */
int
check_cipher_algo( int algo )
{
    int i;

    setup_cipher_table();
    do {
       for(i=0; cipher_table[i].name; i++ )
	   if( cipher_table[i].algo == algo )
	       return 0; /* okay */
    } while( load_cipher_modules() );
    return G10ERR_CIPHER_ALGO;
}


unsigned
cipher_get_keylen( int algo )
{
    int i;
    unsigned len = 0;

    setup_cipher_table();
    do {
	for(i=0; cipher_table[i].name; i++ ) {
	    if( cipher_table[i].algo == algo ) {
		len = cipher_table[i].keylen;
		if( !len )
		    log_bug("cipher %d w/o key length\n", algo );
		return len;
	    }
	}
    } while( load_cipher_modules() );
    log_bug("cipher %d not found\n", algo );
    return 0;
}


/****************
 * Open a cipher handle for use with algorithm ALGO, in mode MODE
 * and put it into secure memory if SECURE is true.
 */
CIPHER_HANDLE
cipher_open( int algo, int mode, int secure )
{
    CIPHER_HANDLE hd;
    int i;

    setup_cipher_table();
    fast_random_poll();
    do {
	for(i=0; cipher_table[i].name; i++ )
	    if( cipher_table[i].algo == algo )
		break;
    } while( !cipher_table[i].name && load_cipher_modules() );
    if( !cipher_table[i].name ) {
	log_fatal("cipher_open: algorithm %d not available\n", algo );
	return NULL;
    }

    /* ? perform selftest here and mark this with a flag in cipher_table ? */

    hd = secure ? m_alloc_secure_clear( sizeof *hd
					+ cipher_table[i].contextsize )
		: m_alloc_clear( sizeof *hd + cipher_table[i].contextsize );
    hd->algo = algo;
    hd->setkey	= cipher_table[i].setkey;
    hd->encrypt = cipher_table[i].encrypt;
    hd->decrypt = cipher_table[i].decrypt;
    if( algo == CIPHER_ALGO_DUMMY )
	hd->mode = CIPHER_MODE_DUMMY;
    else if( mode == CIPHER_MODE_AUTO_CFB ) {
	if( algo != CIPHER_ALGO_BLOWFISH160 )
	    hd->mode = CIPHER_MODE_PHILS_CFB;
	else
	    hd->mode = CIPHER_MODE_CFB;
    }
    else
	hd->mode = mode;

    return hd;
}


void
cipher_close( CIPHER_HANDLE c )
{
    m_free(c);
}


void
cipher_setkey( CIPHER_HANDLE c, byte *key, unsigned keylen )
{
    (*c->setkey)( &c->context, key, keylen );
}



void
cipher_setiv( CIPHER_HANDLE c, const byte *iv )
{
    if( iv )
	memcpy( c->iv, iv, STD_BLOCKSIZE );
    else
	memset( c->iv, 0, STD_BLOCKSIZE );
    c->unused = 0;
}



static void
do_ecb_encrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nblocks )
{
    unsigned n;

    for(n=0; n < nblocks; n++ ) {
	(*c->encrypt)( &c->context, outbuf, inbuf );
	inbuf  += STD_BLOCKSIZE;;
	outbuf += STD_BLOCKSIZE;
    }
}

static void
do_ecb_decrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nblocks )
{
    unsigned n;

    for(n=0; n < nblocks; n++ ) {
	(*c->decrypt)( &c->context, outbuf, inbuf );
	inbuf  += STD_BLOCKSIZE;;
	outbuf += STD_BLOCKSIZE;
    }
}


static void
do_cfb_encrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nbytes )
{
    byte *ivp;

    if( nbytes <= c->unused ) {
	/* short enough to be encoded by the remaining XOR mask */
	/* XOR the input with the IV and store input into IV */
	for(ivp=c->iv+STD_BLOCKSIZE - c->unused; nbytes; nbytes--, c->unused-- )
	    *outbuf++ = (*ivp++ ^= *inbuf++);
	return;
    }

    if( c->unused ) {
	/* XOR the input with the IV and store input into IV */
	nbytes -= c->unused;
	for(ivp=c->iv+STD_BLOCKSIZE - c->unused; c->unused; c->unused-- )
	    *outbuf++ = (*ivp++ ^= *inbuf++);
    }

    /* now we can process complete blocks */
    while( nbytes >= STD_BLOCKSIZE ) {
	int i;
	/* encrypt the IV (and save the current one) */
	memcpy( c->lastiv, c->iv, STD_BLOCKSIZE );
	(*c->encrypt)( &c->context, c->iv, c->iv );
	/* XOR the input with the IV and store input into IV */
	for(ivp=c->iv,i=0; i < STD_BLOCKSIZE; i++ )
	    *outbuf++ = (*ivp++ ^= *inbuf++);
	nbytes -= STD_BLOCKSIZE;
    }
    if( nbytes ) { /* process the remaining bytes */
	/* encrypt the IV (and save the current one) */
	memcpy( c->lastiv, c->iv, STD_BLOCKSIZE );
	(*c->encrypt)( &c->context, c->iv, c->iv );
	c->unused = STD_BLOCKSIZE;
	/* and apply the xor */
	c->unused -= nbytes;
	for(ivp=c->iv; nbytes; nbytes-- )
	    *outbuf++ = (*ivp++ ^= *inbuf++);
    }
}

static void
do_cfb_decrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nbytes )
{
    byte *ivp;
    ulong temp;

    if( nbytes <= c->unused ) {
	/* short enough to be encoded by the remaining XOR mask */
	/* XOR the input with the IV and store input into IV */
	for(ivp=c->iv+STD_BLOCKSIZE - c->unused; nbytes; nbytes--,c->unused--){
	    temp = *inbuf++;
	    *outbuf++ = *ivp ^ temp;
	    *ivp++ = temp;
	}
	return;
    }

    if( c->unused ) {
	/* XOR the input with the IV and store input into IV */
	nbytes -= c->unused;
	for(ivp=c->iv+STD_BLOCKSIZE - c->unused; c->unused; c->unused-- ) {
	    temp = *inbuf++;
	    *outbuf++ = *ivp ^ temp;
	    *ivp++ = temp;
	}
    }

    /* now we can process complete blocks */
  #ifdef BIG_ENDIAN_HOST
    /* This does only make sense for big endian hosts, due to ... ivp = temp*/
    if( !((ulong)inbuf % SIZEOF_UNSIGNED_LONG) ) {
	while( nbytes >= STD_BLOCKSIZE ) {
	    /* encrypt the IV (and save the current one) */
	    memcpy( c->lastiv, c->iv, STD_BLOCKSIZE );
	    (*c->encrypt)( &c->context, c->iv, c->iv );
	    ivp = c->iv;
	    /* XOR the input with the IV and store input into IV */
	  #if SIZEOF_UNSIGNED_LONG == STD_BLOCKSIZE
	    temp = *(ulong*)inbuf;
	    *(ulong*)outbuf = *(ulong*)c->iv ^ temp;
	    *(ulong*)ivp    = temp;
	  #elif (2*SIZEOF_UNSIGNED_LONG) == STD_BLOCKSIZE
	    temp = ((ulong*)inbuf)[0];
	    ((ulong*)outbuf)[0] = ((ulong*)c->iv)[0] ^ temp;
	    ((ulong*)ivp)[0] = temp;
	    temp = ((ulong*)inbuf)[1];
	    ((ulong*)outbuf)[1] = ((ulong*)c->iv)[1] ^ temp;
	    ((ulong*)ivp)[1] = temp;
	  #elif (4*SIZEOF_UNSIGNED_LONG) == STD_BLOCKSIZE
	    temp = ((ulong*)inbuf)[0];
	    ((ulong*)outbuf)[0] = ((ulong*)c->iv)[0] ^ temp;
	    ((ulong*)ivp)[0] = temp;
	    temp = ((ulong*)inbuf)[1];
	    ((ulong*)outbuf)[1] = ((ulong*)c->iv)[1] ^ temp;
	    ((ulong*)ivp)[1] = temp;
	    temp = ((ulong*)inbuf)[2];
	    ((ulong*)outbuf)[2] = ((ulong*)c->iv)[2] ^ temp;
	    ((ulong*)ivp)[2] = temp;
	    temp = ((ulong*)inbuf)[3];
	    ((ulong*)outbuf)[3] = ((ulong*)c->iv)[3] ^ temp;
	    ((ulong*)ivp)[3] = temp;
	  #else
	    #error Please disable the align test.
	  #endif
	    nbytes -= STD_BLOCKSIZE;
	    inbuf  += STD_BLOCKSIZE;
	    outbuf += STD_BLOCKSIZE;
	}
    }
    else { /* non aligned version */
  #endif /* BIG_ENDIAN_HOST */
	while( nbytes >= STD_BLOCKSIZE ) {
	    int i;
	    /* encrypt the IV (and save the current one) */
	    memcpy( c->lastiv, c->iv, STD_BLOCKSIZE );
	    (*c->encrypt)( &c->context, c->iv, c->iv );
	    /* XOR the input with the IV and store input into IV */
	    for(ivp=c->iv,i=0; i < STD_BLOCKSIZE; i++ ) {
		temp = *inbuf++;
		*outbuf++ = *ivp ^ temp;
		*ivp++ = temp;
	    }
	    nbytes -= STD_BLOCKSIZE;
	}
   #ifdef BIG_ENDIAN_HOST
    }
   #endif
    if( nbytes ) { /* process the remaining bytes */
	/* encrypt the IV (and save the current one) */
	memcpy( c->lastiv, c->iv, STD_BLOCKSIZE );
	(*c->encrypt)( &c->context, c->iv, c->iv );
	c->unused = STD_BLOCKSIZE;
	/* and apply the xor */
	c->unused -= nbytes;
	for(ivp=c->iv; nbytes; nbytes-- ) {
	    temp = *inbuf++;
	    *outbuf++ = *ivp ^ temp;
	    *ivp++ = temp;
	}
    }
}


/****************
 * Encrypt INBUF to OUTBUF with the mode selected at open.
 * inbuf and outbuf may overlap or be the same.
 * Depending on the mode some some contraints apply to NBYTES.
 */
void
cipher_encrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nbytes )
{
    switch( c->mode ) {
      case CIPHER_MODE_ECB:
	assert(!(nbytes%8));
	do_ecb_encrypt(c, outbuf, inbuf, nbytes/8 );
	break;
      case CIPHER_MODE_CFB:
      case CIPHER_MODE_PHILS_CFB:
	do_cfb_encrypt(c, outbuf, inbuf, nbytes );
	break;
      case CIPHER_MODE_DUMMY:
	if( inbuf != outbuf )
	    memmove( outbuf, inbuf, nbytes );
	break;
      default: log_fatal("cipher_encrypt: invalid mode %d\n", c->mode );
    }
}


/****************
 * Decrypt INBUF to OUTBUF with the mode selected at open.
 * inbuf and outbuf may overlap or be the same.
 * Depending on the mode some some contraints apply to NBYTES.
 */
void
cipher_decrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nbytes )
{
    switch( c->mode ) {
      case CIPHER_MODE_ECB:
	assert(!(nbytes%8));
	do_ecb_decrypt(c, outbuf, inbuf, nbytes/8 );
	break;
      case CIPHER_MODE_CFB:
      case CIPHER_MODE_PHILS_CFB:
	do_cfb_decrypt(c, outbuf, inbuf, nbytes );
	break;
      case CIPHER_MODE_DUMMY:
	if( inbuf != outbuf )
	    memmove( outbuf, inbuf, nbytes );
	break;
      default: log_fatal("cipher_decrypt: invalid mode %d\n", c->mode );
    }
}



/****************
 * Used for PGP's somewhat strange CFB mode. Only works if
 * the handle is in PHILS_CFB mode
 */
void
cipher_sync( CIPHER_HANDLE c )
{
    if( c->mode == CIPHER_MODE_PHILS_CFB && c->unused ) {
	memmove(c->iv + c->unused, c->iv, STD_BLOCKSIZE - c->unused );
	memcpy(c->iv, c->lastiv + STD_BLOCKSIZE - c->unused, c->unused);
	c->unused = 0;
    }
}