1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
|
/* elgamal.c - ElGamal Public Key encryption
* Copyright (C) 1998 Free Software Foundation, Inc.
*
* For a description of the algorithm, see:
* Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996.
* ISBN 0-471-11709-9. Pages 476 ff.
*
* This file is part of GNUPG.
*
* GNUPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* GNUPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "util.h"
#include "mpi.h"
#include "cipher.h"
#include "elgamal.h"
void
elg_free_public_key( ELG_public_key *pk )
{
mpi_free( pk->p ); pk->p = NULL;
mpi_free( pk->g ); pk->g = NULL;
mpi_free( pk->y ); pk->y = NULL;
}
void
elg_free_secret_key( ELG_secret_key *sk )
{
mpi_free( sk->p ); sk->p = NULL;
mpi_free( sk->g ); sk->g = NULL;
mpi_free( sk->y ); sk->y = NULL;
mpi_free( sk->x ); sk->x = NULL;
}
static void
test_keys( ELG_public_key *pk, ELG_secret_key *sk, unsigned nbits )
{
MPI test = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
MPI out1_a = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
MPI out1_b = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
MPI out2 = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
mpi_set_bytes( test, nbits, get_random_byte, 0 );
elg_encrypt( out1_a, out1_b, test, pk );
elg_decrypt( out2, out1_a, out1_b, sk );
if( mpi_cmp( test, out2 ) )
log_fatal("ElGamal operation: encrypt, decrypt failed\n");
elg_sign( out1_a, out1_b, test, sk );
if( !elg_verify( out1_a, out1_b, test, pk ) )
log_fatal("ElGamal operation: sign, verify failed\n");
mpi_free( test );
mpi_free( out1_a );
mpi_free( out1_b );
mpi_free( out2 );
}
/****************
* generate a random secret exponent k from prime p, so
* that k is relatively prime to p-1
*/
static MPI
gen_k( MPI p )
{
MPI k = mpi_alloc_secure( mpi_get_nlimbs(p) );
MPI temp = mpi_alloc( mpi_get_nlimbs(p) );
MPI p_1 = mpi_copy(p);
unsigned nbits = mpi_get_nbits(p);
if( DBG_CIPHER )
log_debug("choosing a random k ");
mpi_sub_ui( p_1, p, 1);
for(;;) {
if( DBG_CIPHER )
fputc('.', stderr);
mpi_set_bytes( k, nbits , get_random_byte, 1 );
if( !(mpi_cmp( k, p_1 ) < 0) ) /* check: k < (p-1) */
continue; /* no */
if( !(mpi_cmp_ui( k, 0 ) > 0) ) /* check: k > 0 */
continue; /* no */
if( mpi_gcd( temp, k, p_1 ) )
break; /* okay, k is relatively prime to (p-1) */
}
if( DBG_CIPHER )
fputc('\n', stderr);
mpi_free(p_1);
mpi_free(temp);
return k;
}
/****************
* Generate a key pair with a key of size NBITS
* Returns: 2 structures filles with all needed values
* and an array with n-1 factors of (p-1)
*/
void
elg_generate( ELG_public_key *pk, ELG_secret_key *sk,
unsigned nbits, MPI **ret_factors )
{
MPI p; /* the prime */
MPI p_min1;
MPI g;
MPI x; /* the secret exponent */
MPI y;
MPI temp;
unsigned qbits;
byte *rndbuf;
p_min1 = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
temp = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
if( nbits < 512 )
qbits = 120;
else if( nbits <= 1024 )
qbits = 160;
else if( nbits <= 2048 )
qbits = 200;
else
qbits = 240;
g = mpi_alloc(1);
p = generate_elg_prime( nbits, qbits, g, ret_factors );
mpi_sub_ui(p_min1, p, 1);
/* select a random number which has these properties:
* 0 < x < p-1
* This must be a very good random number because this is the
* secret part. The prime is public and may be shared anyway,
* so a random generator level of 1 is used for the prime.
*/
x = mpi_alloc_secure( nbits/BITS_PER_MPI_LIMB );
if( DBG_CIPHER )
log_debug("choosing a random x ");
rndbuf = NULL;
do {
if( DBG_CIPHER )
fputc('.', stderr);
if( rndbuf ) { /* change only some of the higher bits */
if( nbits < 16 ) {/* should never happen ... */
m_free(rndbuf);
rndbuf = get_random_bits( nbits, 2, 1 );
}
else {
char *r = get_random_bits( 16, 2, 1 );
memcpy(rndbuf, r, 16 );
m_free(r);
}
}
else
rndbuf = get_random_bits( nbits, 2, 1 );
mpi_set_buffer( x, rndbuf, (nbits+7)/8, 0 );
mpi_clear_highbit( x, nbits+1 );
} while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, p_min1 )<0 ) );
m_free(rndbuf);
y = mpi_alloc(nbits/BITS_PER_MPI_LIMB);
mpi_powm( y, g, x, p );
if( DBG_CIPHER ) {
fputc('\n', stderr);
log_mpidump("elg p= ", p );
log_mpidump("elg g= ", g );
log_mpidump("elg y= ", y );
log_mpidump("elg x= ", x );
}
/* copy the stuff to the key structures */
pk->p = mpi_copy(p);
pk->g = mpi_copy(g);
pk->y = mpi_copy(y);
sk->p = p;
sk->g = g;
sk->y = y;
sk->x = x;
/* now we can test our keys (this should never fail!) */
test_keys( pk, sk, nbits - 64 );
mpi_free( p_min1 );
mpi_free( temp );
}
/****************
* Test whether the secret key is valid.
* Returns: if this is a valid key.
*/
int
elg_check_secret_key( ELG_secret_key *sk )
{
int rc;
MPI y = mpi_alloc( mpi_get_nlimbs(sk->y) );
mpi_powm( y, sk->g, sk->x, sk->p );
rc = !mpi_cmp( y, sk->y );
mpi_free( y );
return rc;
}
void
elg_encrypt(MPI a, MPI b, MPI input, ELG_public_key *pkey )
{
MPI k;
k = gen_k( pkey->p );
mpi_powm( a, pkey->g, k, pkey->p );
/* b = (y^k * input) mod p
* = ((y^k mod p) * (input mod p)) mod p
* and because input is < p (FIXME: check this!)
* = ((y^k mod p) * input) mod p
*/
mpi_powm( b, pkey->y, k, pkey->p );
mpi_mulm( b, b, input, pkey->p );
#if 0
if( DBG_CIPHER ) {
log_mpidump("elg encrypted y= ", pkey->y);
log_mpidump("elg encrypted p= ", pkey->p);
log_mpidump("elg encrypted k= ", k);
log_mpidump("elg encrypted M= ", input);
log_mpidump("elg encrypted a= ", a);
log_mpidump("elg encrypted b= ", b);
}
#endif
mpi_free(k);
}
void
elg_decrypt(MPI output, MPI a, MPI b, ELG_secret_key *skey )
{
MPI t1 = mpi_alloc_secure( mpi_get_nlimbs( skey->p ) );
/* output = b/(a^x) mod p */
mpi_powm( t1, a, skey->x, skey->p );
mpi_invm( t1, t1, skey->p );
mpi_mulm( output, b, t1, skey->p );
#if 0
if( DBG_CIPHER ) {
log_mpidump("elg decrypted x= ", skey->x);
log_mpidump("elg decrypted p= ", skey->p);
log_mpidump("elg decrypted a= ", a);
log_mpidump("elg decrypted b= ", b);
log_mpidump("elg decrypted M= ", output);
}
#endif
mpi_free(t1);
}
/****************
* Make an Elgamal signature out of INPUT
*/
void
elg_sign(MPI a, MPI b, MPI input, ELG_secret_key *skey )
{
MPI k;
MPI t = mpi_alloc( mpi_get_nlimbs(a) );
MPI inv = mpi_alloc( mpi_get_nlimbs(a) );
MPI p_1 = mpi_copy(skey->p);
/*
* b = (t * inv) mod (p-1)
* b = (t * inv(k,(p-1),(p-1)) mod (p-1)
* b = (((M-x*a) mod (p-1)) * inv(k,(p-1),(p-1))) mod (p-1)
*
*/
mpi_sub_ui(p_1, p_1, 1);
k = gen_k( skey->p );
mpi_powm( a, skey->g, k, skey->p );
mpi_mul(t, skey->x, a );
mpi_subm(t, input, t, p_1 );
while( mpi_is_neg(t) )
mpi_add(t, t, p_1);
mpi_invm(inv, k, p_1 );
mpi_mulm(b, t, inv, p_1 );
#if 0
if( DBG_CIPHER ) {
log_mpidump("elg sign p= ", skey->p);
log_mpidump("elg sign g= ", skey->g);
log_mpidump("elg sign y= ", skey->y);
log_mpidump("elg sign x= ", skey->x);
log_mpidump("elg sign k= ", k);
log_mpidump("elg sign M= ", input);
log_mpidump("elg sign a= ", a);
log_mpidump("elg sign b= ", b);
}
#endif
mpi_free(k);
mpi_free(t);
mpi_free(inv);
mpi_free(p_1);
}
/****************
* Returns true if the signature composed of A and B is valid.
*/
int
elg_verify(MPI a, MPI b, MPI input, ELG_public_key *pkey )
{
int rc;
MPI t1;
MPI t2;
MPI base[4];
MPI exp[4];
if( !(mpi_cmp_ui( a, 0 ) > 0 && mpi_cmp( a, pkey->p ) < 0) )
return 0; /* assertion 0 < a < p failed */
t1 = mpi_alloc( mpi_get_nlimbs(a) );
t2 = mpi_alloc( mpi_get_nlimbs(a) );
#if 0
/* t1 = (y^a mod p) * (a^b mod p) mod p */
mpi_powm( t1, pkey->y, a, pkey->p );
mpi_powm( t2, a, b, pkey->p );
mpi_mulm( t1, t1, t2, pkey->p );
/* t2 = g ^ input mod p */
mpi_powm( t2, pkey->g, input, pkey->p );
rc = !mpi_cmp( t1, t2 );
#elif 0
/* t1 = (y^a mod p) * (a^b mod p) mod p */
base[0] = pkey->y; exp[0] = a;
base[1] = a; exp[1] = b;
base[2] = NULL; exp[2] = NULL;
mpi_mulpowm( t1, base, exp, pkey->p );
/* t2 = g ^ input mod p */
mpi_powm( t2, pkey->g, input, pkey->p );
rc = !mpi_cmp( t1, t2 );
#else
/* t1 = g ^ - input * y ^ a * a ^ b mod p */
mpi_invm(t2, pkey->g, pkey->p );
base[0] = t2 ; exp[0] = input;
base[1] = pkey->y; exp[1] = a;
base[2] = a; exp[2] = b;
base[3] = NULL; exp[3] = NULL;
mpi_mulpowm( t1, base, exp, pkey->p );
rc = !mpi_cmp_ui( t1, 1 );
#endif
mpi_free(t1);
mpi_free(t2);
return rc;
}
|