1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
|
/* primegen.c - prime number generator
* Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*
* ***********************************************************************
* The algorithm used to generate practically save primes is due to
* Lim and Lee as described in the CRYPTO '97 proceedings (ISBN3540633847)
* page 260.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "util.h"
#include "mpi.h"
#include "cipher.h"
static int no_of_small_prime_numbers;
static MPI gen_prime( unsigned nbits, int mode, int randomlevel );
static int check_prime( MPI prime, MPI val_2 );
static int is_prime( MPI n, int steps, int *count );
static void m_out_of_n( char *array, int m, int n );
static void (*progress_cb) ( void *, int );
static void *progress_cb_data;
void
register_primegen_progress ( void (*cb)( void *, int), void *cb_data )
{
progress_cb = cb;
progress_cb_data = cb_data;
}
static void
progress( int c )
{
if ( progress_cb )
progress_cb ( progress_cb_data, c );
else
fputc( c, stderr );
}
/****************
* Generate a prime number (stored in secure memory)
*/
MPI
generate_secret_prime( unsigned nbits )
{
MPI prime;
prime = gen_prime( nbits, 1, 2 );
progress('\n');
return prime;
}
MPI
generate_public_prime( unsigned nbits )
{
MPI prime;
prime = gen_prime( nbits, 0, 2 );
progress('\n');
return prime;
}
/****************
* We do not need to use the strongest RNG because we gain no extra
* security from it - The prime number is public and we could also
* offer the factors for those who are willing to check that it is
* indeed a strong prime.
*
* mode 0: Standard
* 1: Make sure that at least one factor is of size qbits.
*/
MPI
generate_elg_prime( int mode, unsigned pbits, unsigned qbits,
MPI g, MPI **ret_factors )
{
int n; /* number of factors */
int m; /* number of primes in pool */
unsigned fbits; /* length of prime factors */
MPI *factors; /* current factors */
MPI *pool; /* pool of primes */
MPI q; /* first prime factor (variable)*/
MPI prime; /* prime test value */
MPI q_factor; /* used for mode 1 */
byte *perms = NULL;
int i, j;
int count1, count2;
unsigned nprime;
unsigned req_qbits = qbits; /* the requested q bits size */
MPI val_2 = mpi_alloc_set_ui( 2 );
/* find number of needed prime factors */
for(n=1; (pbits - qbits - 1) / n >= qbits; n++ )
;
n--;
if( !n || (mode==1 && n < 2) )
log_fatal("can't gen prime with pbits=%u qbits=%u\n", pbits, qbits );
if( mode == 1 ) {
n--;
fbits = (pbits - 2*req_qbits -1) / n;
qbits = pbits - req_qbits - n*fbits;
}
else {
fbits = (pbits - req_qbits -1) / n;
qbits = pbits - n*fbits;
}
if( DBG_CIPHER )
log_debug("gen prime: pbits=%u qbits=%u fbits=%u/%u n=%d\n",
pbits, req_qbits, qbits, fbits, n );
prime = mpi_alloc( (pbits + BITS_PER_MPI_LIMB - 1) / BITS_PER_MPI_LIMB );
q = gen_prime( qbits, 0, 0 );
q_factor = mode==1? gen_prime( req_qbits, 0, 0 ) : NULL;
/* allocate an array to hold the factors + 2 for later usage */
factors = m_alloc_clear( (n+2) * sizeof *factors );
/* make a pool of 3n+5 primes (this is an arbitrary value) */
m = n*3+5;
if( mode == 1 )
m += 5; /* need some more for DSA */
if( m < 25 )
m = 25;
pool = m_alloc_clear( m * sizeof *pool );
/* permutate over the pool of primes */
count1=count2=0;
do {
next_try:
if( !perms ) {
/* allocate new primes */
for(i=0; i < m; i++ ) {
mpi_free(pool[i]);
pool[i] = NULL;
}
/* init m_out_of_n() */
perms = m_alloc_clear( m );
for(i=0; i < n; i++ ) {
perms[i] = 1;
pool[i] = gen_prime( fbits, 0, 0 );
factors[i] = pool[i];
}
}
else {
m_out_of_n( perms, n, m );
for(i=j=0; i < m && j < n ; i++ )
if( perms[i] ) {
if( !pool[i] )
pool[i] = gen_prime( fbits, 0, 0 );
factors[j++] = pool[i];
}
if( i == n ) {
m_free(perms); perms = NULL;
progress('!');
goto next_try; /* allocate new primes */
}
}
mpi_set( prime, q );
mpi_mul_ui( prime, prime, 2 );
if( mode == 1 )
mpi_mul( prime, prime, q_factor );
for(i=0; i < n; i++ )
mpi_mul( prime, prime, factors[i] );
mpi_add_ui( prime, prime, 1 );
nprime = mpi_get_nbits(prime);
if( nprime < pbits ) {
if( ++count1 > 20 ) {
count1 = 0;
qbits++;
progress('>');
mpi_free (q);
q = gen_prime( qbits, 0, 0 );
goto next_try;
}
}
else
count1 = 0;
if( nprime > pbits ) {
if( ++count2 > 20 ) {
count2 = 0;
qbits--;
progress('<');
mpi_free (q);
q = gen_prime( qbits, 0, 0 );
goto next_try;
}
}
else
count2 = 0;
} while( !(nprime == pbits && check_prime( prime, val_2 )) );
if( DBG_CIPHER ) {
progress('\n');
log_mpidump( "prime : ", prime );
log_mpidump( "factor q: ", q );
if( mode == 1 )
log_mpidump( "factor q0: ", q_factor );
for(i=0; i < n; i++ )
log_mpidump( "factor pi: ", factors[i] );
log_debug("bit sizes: prime=%u, q=%u", mpi_get_nbits(prime), mpi_get_nbits(q) );
if( mode == 1 )
fprintf(stderr, ", q0=%u", mpi_get_nbits(q_factor) );
for(i=0; i < n; i++ )
fprintf(stderr, ", p%d=%u", i, mpi_get_nbits(factors[i]) );
progress('\n');
}
if( ret_factors ) { /* caller wants the factors */
*ret_factors = m_alloc_clear( (n+2) * sizeof **ret_factors);
i = 0;
if( mode == 1 ) {
(*ret_factors)[i++] = mpi_copy( q_factor );
for(; i <= n; i++ )
(*ret_factors)[i] = mpi_copy( factors[i-1] );
}
else {
for(; i < n; i++ )
(*ret_factors)[i] = mpi_copy( factors[i] );
}
}
if( g ) { /* create a generator (start with 3)*/
MPI tmp = mpi_alloc( mpi_get_nlimbs(prime) );
MPI b = mpi_alloc( mpi_get_nlimbs(prime) );
MPI pmin1 = mpi_alloc( mpi_get_nlimbs(prime) );
if( mode == 1 )
BUG(); /* not yet implemented */
factors[n] = q;
factors[n+1] = mpi_alloc_set_ui(2);
mpi_sub_ui( pmin1, prime, 1 );
mpi_set_ui(g,2);
do {
mpi_add_ui(g, g, 1);
if( DBG_CIPHER ) {
log_debug("checking g: ");
mpi_print( stderr, g, 1 );
}
else
progress('^');
for(i=0; i < n+2; i++ ) {
/*fputc('~', stderr);*/
mpi_fdiv_q(tmp, pmin1, factors[i] );
/* (no mpi_pow(), but it is okay to use this with mod prime) */
mpi_powm(b, g, tmp, prime );
if( !mpi_cmp_ui(b, 1) )
break;
}
if( DBG_CIPHER )
progress('\n');
} while( i < n+2 );
mpi_free(factors[n+1]);
mpi_free(tmp);
mpi_free(b);
mpi_free(pmin1);
}
if( !DBG_CIPHER )
progress('\n');
m_free( factors ); /* (factors are shallow copies) */
for(i=0; i < m; i++ )
mpi_free( pool[i] );
m_free( pool );
m_free(perms);
mpi_free(val_2);
mpi_free(q);
return prime;
}
static MPI
gen_prime( unsigned nbits, int secret, int randomlevel )
{
unsigned nlimbs;
MPI prime, ptest, pminus1, val_2, val_3, result;
int i;
unsigned x, step;
int count1, count2;
int *mods;
if( 0 && DBG_CIPHER )
log_debug("generate a prime of %u bits ", nbits );
if( !no_of_small_prime_numbers ) {
for(i=0; small_prime_numbers[i]; i++ )
no_of_small_prime_numbers++;
}
mods = m_alloc( no_of_small_prime_numbers * sizeof *mods );
/* make nbits fit into MPI implementation */
nlimbs = (nbits + BITS_PER_MPI_LIMB - 1) / BITS_PER_MPI_LIMB;
val_2 = mpi_alloc_set_ui( 2 );
val_3 = mpi_alloc_set_ui( 3);
prime = secret? mpi_alloc_secure( nlimbs ): mpi_alloc( nlimbs );
result = mpi_alloc_like( prime );
pminus1= mpi_alloc_like( prime );
ptest = mpi_alloc_like( prime );
count1 = count2 = 0;
for(;;) { /* try forvever */
int dotcount=0;
/* generate a random number */
{ char *p = get_random_bits( nbits, randomlevel, secret );
mpi_set_buffer( prime, p, (nbits+7)/8, 0 );
m_free(p);
}
/* Set high order bit to 1, set low order bit to 0.
If we are generating a secret prime we are most probably
doing that for RSA, to make sure that the modulus does have
the requested keysize we set the 2 high order bits */
mpi_set_highbit( prime, nbits-1 );
if (secret)
mpi_set_bit (prime, nbits-2);
mpi_set_bit( prime, 0 );
/* calculate all remainders */
for(i=0; (x = small_prime_numbers[i]); i++ )
mods[i] = mpi_fdiv_r_ui(NULL, prime, x);
/* now try some primes starting with prime */
for(step=0; step < 20000; step += 2 ) {
/* check against all the small primes we have in mods */
count1++;
for(i=0; (x = small_prime_numbers[i]); i++ ) {
while( mods[i] + step >= x )
mods[i] -= x;
if( !(mods[i] + step) )
break;
}
if( x )
continue; /* found a multiple of an already known prime */
mpi_add_ui( ptest, prime, step );
/* do a faster Fermat test */
count2++;
mpi_sub_ui( pminus1, ptest, 1);
mpi_powm( result, val_2, pminus1, ptest );
if( !mpi_cmp_ui( result, 1 ) ) { /* not composite */
/* perform stronger tests */
if( is_prime(ptest, 5, &count2 ) ) {
if( !mpi_test_bit( ptest, nbits-1 ) ) {
progress('\n');
log_debug("overflow in prime generation\n");
break; /* step loop, continue with a new prime */
}
mpi_free(val_2);
mpi_free(val_3);
mpi_free(result);
mpi_free(pminus1);
mpi_free(prime);
m_free(mods);
return ptest;
}
}
if( ++dotcount == 10 ) {
progress('.');
dotcount = 0;
}
}
progress(':'); /* restart with a new random value */
}
}
/****************
* Returns: true if this may be a prime
*/
static int
check_prime( MPI prime, MPI val_2 )
{
int i;
unsigned x;
int count=0;
/* check against small primes */
for(i=0; (x = small_prime_numbers[i]); i++ ) {
if( mpi_divisible_ui( prime, x ) )
return 0;
}
/* a quick fermat test */
{
MPI result = mpi_alloc_like( prime );
MPI pminus1 = mpi_alloc_like( prime );
mpi_sub_ui( pminus1, prime, 1);
mpi_powm( result, val_2, pminus1, prime );
mpi_free( pminus1 );
if( mpi_cmp_ui( result, 1 ) ) { /* if composite */
mpi_free( result );
progress('.');
return 0;
}
mpi_free( result );
}
/* perform stronger tests */
if( is_prime(prime, 5, &count ) )
return 1; /* is probably a prime */
progress('.');
return 0;
}
/****************
* Return true if n is probably a prime
*/
static int
is_prime( MPI n, int steps, int *count )
{
MPI x = mpi_alloc( mpi_get_nlimbs( n ) );
MPI y = mpi_alloc( mpi_get_nlimbs( n ) );
MPI z = mpi_alloc( mpi_get_nlimbs( n ) );
MPI nminus1 = mpi_alloc( mpi_get_nlimbs( n ) );
MPI a2 = mpi_alloc_set_ui( 2 );
MPI q;
unsigned i, j, k;
int rc = 0;
unsigned nbits = mpi_get_nbits( n );
mpi_sub_ui( nminus1, n, 1 );
/* find q and k, so that n = 1 + 2^k * q */
q = mpi_copy( nminus1 );
k = mpi_trailing_zeros( q );
mpi_tdiv_q_2exp(q, q, k);
for(i=0 ; i < steps; i++ ) {
++*count;
if( !i ) {
mpi_set_ui( x, 2 );
}
else {
/*mpi_set_bytes( x, nbits-1, get_random_byte, 0 );*/
{ char *p = get_random_bits( nbits, 0, 0 );
mpi_set_buffer( x, p, (nbits+7)/8, 0 );
m_free(p);
}
/* make sure that the number is smaller than the prime
* and keep the randomness of the high bit */
if( mpi_test_bit( x, nbits-2 ) ) {
mpi_set_highbit( x, nbits-2 ); /* clear all higher bits */
}
else {
mpi_set_highbit( x, nbits-2 );
mpi_clear_bit( x, nbits-2 );
}
assert( mpi_cmp( x, nminus1 ) < 0 && mpi_cmp_ui( x, 1 ) > 0 );
}
mpi_powm( y, x, q, n);
if( mpi_cmp_ui(y, 1) && mpi_cmp( y, nminus1 ) ) {
for( j=1; j < k && mpi_cmp( y, nminus1 ); j++ ) {
mpi_powm(y, y, a2, n);
if( !mpi_cmp_ui( y, 1 ) )
goto leave; /* not a prime */
}
if( mpi_cmp( y, nminus1 ) )
goto leave; /* not a prime */
}
progress('+');
}
rc = 1; /* may be a prime */
leave:
mpi_free( x );
mpi_free( y );
mpi_free( z );
mpi_free( nminus1 );
mpi_free( q );
return rc;
}
static void
m_out_of_n( char *array, int m, int n )
{
int i=0, i1=0, j=0, jp=0, j1=0, k1=0, k2=0;
if( !m || m >= n )
return;
if( m == 1 ) { /* special case */
for(i=0; i < n; i++ )
if( array[i] ) {
array[i++] = 0;
if( i >= n )
i = 0;
array[i] = 1;
return;
}
BUG();
}
for(j=1; j < n; j++ ) {
if( array[n-1] == array[n-j-1] )
continue;
j1 = j;
break;
}
if( m & 1 ) { /* m is odd */
if( array[n-1] ) {
if( j1 & 1 ) {
k1 = n - j1;
k2 = k1+2;
if( k2 > n )
k2 = n;
goto leave;
}
goto scan;
}
k2 = n - j1 - 1;
if( k2 == 0 ) {
k1 = i;
k2 = n - j1;
}
else if( array[k2] && array[k2-1] )
k1 = n;
else
k1 = k2 + 1;
}
else { /* m is even */
if( !array[n-1] ) {
k1 = n - j1;
k2 = k1 + 1;
goto leave;
}
if( !(j1 & 1) ) {
k1 = n - j1;
k2 = k1+2;
if( k2 > n )
k2 = n;
goto leave;
}
scan:
jp = n - j1 - 1;
for(i=1; i <= jp; i++ ) {
i1 = jp + 2 - i;
if( array[i1-1] ) {
if( array[i1-2] ) {
k1 = i1 - 1;
k2 = n - j1;
}
else {
k1 = i1 - 1;
k2 = n + 1 - j1;
}
goto leave;
}
}
k1 = 1;
k2 = n + 1 - m;
}
leave:
array[k1-1] = !array[k1-1];
array[k2-1] = !array[k2-1];
}
|