1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
/* rsa.c - RSA function
* Copyright (c) 1997 by Werner Koch (dd9jn)
*
* ATTENTION: This code should not be exported from the United States
* nor should it be used their without a license agreement with PKP.
* The RSA alorithm is protected by U.S. Patent #4,405,829 which
* expires on September 20, 2000!
*
* For a description of the algorithm, see:
* Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996.
* ISBN 0-471-11709-9. Pages 466 ff.
*
* This file is part of G10.
*
* G10 is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* G10 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "util.h"
#include "mpi.h"
#include "cipher.h"
void
rsa_free_public_key( RSA_public_key *pk )
{
mpi_free( pk->n ); pk->n = NULL;
mpi_free( pk->e ); pk->e = NULL;
}
void
rsa_free_secret_key( RSA_secret_key *sk )
{
mpi_free( sk->e ); sk->e = NULL;
mpi_free( sk->n ); sk->n = NULL;
mpi_free( sk->p ); sk->p = NULL;
mpi_free( sk->q ); sk->q = NULL;
mpi_free( sk->d ); sk->d = NULL;
mpi_free( sk->u ); sk->u = NULL;
}
static void
test_keys( RSA_public_key *pk, RSA_secret_key *sk, unsigned nbits )
{
MPI test = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
MPI out1 = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
MPI out2 = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
mpi_set_bytes( test, nbits, get_random_byte, 0 );
rsa_public( out1, test, pk );
rsa_secret( out2, out1, sk );
if( mpi_cmp( test, out2 ) )
log_fatal("RSA operation: public, secret failed\n");
rsa_secret( out1, test, sk );
rsa_public( out2, out1, pk );
if( mpi_cmp( test, out2 ) )
log_fatal("RSA operation: secret, public failed\n");
mpi_free( test );
mpi_free( out1 );
mpi_free( out2 );
}
/****************
* Generate a key pair with a key of size NBITS
* Returns: 2 structures filles with all needed values
*/
void
rsa_generate( RSA_public_key *pk, RSA_secret_key *sk, unsigned nbits )
{
MPI p, q; /* the two primes */
MPI d; /* the private key */
MPI u;
MPI t1, t2;
MPI n; /* the public key */
MPI e; /* the exponent */
MPI phi; /* helper: (p-a)(q-1) */
MPI g;
MPI f;
/* select two (very secret) primes */
p = generate_random_prime( nbits / 2 );
q = generate_random_prime( nbits / 2 );
if( mpi_cmp( p, q ) > 0 ) /* p shall be smaller than q (for calc of u)*/
mpi_swap(p,q);
/* calculate Euler totient: phi = (p-1)(q-1) */
t1 = mpi_alloc_secure( mpi_get_nlimbs(p) );
t2 = mpi_alloc_secure( mpi_get_nlimbs(p) );
phi = mpi_alloc_secure( nbits / BITS_PER_MPI_LIMB );
g = mpi_alloc_secure( nbits / BITS_PER_MPI_LIMB );
f = mpi_alloc_secure( nbits / BITS_PER_MPI_LIMB );
mpi_sub_ui( t1, p, 1 );
mpi_sub_ui( t2, q, 1 );
mpi_mul( phi, t1, t2 );
mpi_gcd(g, t1, t2);
mpi_fdiv_q(f, phi, g);
/* multiply them to make the private key */
n = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
mpi_mul( n, p, q );
/* find a public exponent */
e = mpi_alloc(1);
mpi_set_ui( e, 17); /* start with 17 */
while( !mpi_gcd(t1, e, phi) ) /* (while gcd is not 1) */
mpi_add_ui( e, e, 2);
/* calculate the secret key d = e^1 mod phi */
d = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
mpi_inv_mod(d, e, f );
/* calculate the inverse of p and q (used for chinese remainder theorem)*/
u = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
mpi_inv_mod(u, p, q );
if( DBG_CIPHER ) {
log_mpidump(" p= ", p );
log_mpidump(" q= ", q );
log_mpidump("phi= ", phi );
log_mpidump(" g= ", g );
log_mpidump(" f= ", f );
log_mpidump(" n= ", n );
log_mpidump(" e= ", e );
log_mpidump(" d= ", d );
log_mpidump(" u= ", u );
}
mpi_free(t1);
mpi_free(t2);
mpi_free(phi);
mpi_free(f);
mpi_free(g);
pk->n = mpi_copy(n);
pk->e = mpi_copy(e);
sk->n = n;
sk->e = e;
sk->p = p;
sk->q = q;
sk->d = d;
sk->u = u;
/* now we can test our keys (this should never fail!) */
test_keys( pk, sk, nbits - 64 );
}
/****************
* Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT.
*
* c = m^e mod n
*
* Where c is OUTPUT, m is INPUT and e,n are elements of PKEY.
*/
void
rsa_public(MPI output, MPI input, RSA_public_key *pkey )
{
if( output == input ) { /* powm doesn't like output and input the same */
MPI x = mpi_alloc( mpi_get_nlimbs(input)*2 );
mpi_powm( x, input, pkey->e, pkey->n );
mpi_set(output, x);
mpi_free(x);
}
else
mpi_powm( output, input, pkey->e, pkey->n );
}
/****************
* Secret key operation. Encrypt INPUT with SKEY and put result into OUTPUT.
*
* m = c^d mod n
*
* Where m is OUTPUT, c is INPUT and d,n are elements of PKEY.
*
* FIXME: We should better use the Chinese Remainder Theorem
*/
void
rsa_secret(MPI output, MPI input, RSA_secret_key *skey )
{
mpi_powm( output, input, skey->d, skey->n );
}
|