// Copyright (C) 2012-2013,2015 Internet Systems Consortium, Inc. ("ISC") // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this // file, You can obtain one at http://mozilla.org/MPL/2.0/. #include #include #include #include #include namespace isc { namespace dhcp { OptionCustom::OptionCustom(const OptionDefinition& def, Universe u) : Option(u, def.getCode(), OptionBuffer()), definition_(def) { setEncapsulatedSpace(def.getEncapsulatedSpace()); createBuffers(); } OptionCustom::OptionCustom(const OptionDefinition& def, Universe u, const OptionBuffer& data) : Option(u, def.getCode(), data.begin(), data.end()), definition_(def) { setEncapsulatedSpace(def.getEncapsulatedSpace()); createBuffers(getData()); } OptionCustom::OptionCustom(const OptionDefinition& def, Universe u, OptionBufferConstIter first, OptionBufferConstIter last) : Option(u, def.getCode(), first, last), definition_(def) { setEncapsulatedSpace(def.getEncapsulatedSpace()); createBuffers(getData()); } void OptionCustom::addArrayDataField(const asiolink::IOAddress& address) { checkArrayType(); if ((address.isV4() && definition_.getType() != OPT_IPV4_ADDRESS_TYPE) || (address.isV6() && definition_.getType() != OPT_IPV6_ADDRESS_TYPE)) { isc_throw(BadDataTypeCast, "invalid address specified " << address << ". Expected a valid IPv" << (definition_.getType() == OPT_IPV4_ADDRESS_TYPE ? "4" : "6") << " address."); } OptionBuffer buf; OptionDataTypeUtil::writeAddress(address, buf); buffers_.push_back(buf); } void OptionCustom::addArrayDataField(const bool value) { checkArrayType(); OptionBuffer buf; OptionDataTypeUtil::writeBool(value, buf); buffers_.push_back(buf); } void OptionCustom::checkIndex(const uint32_t index) const { if (index >= buffers_.size()) { isc_throw(isc::OutOfRange, "specified data field index " << index << " is out of range."); } } void OptionCustom::createBuffers() { definition_.validate(); std::vector buffers; OptionDataType data_type = definition_.getType(); // This function is called when an empty data buffer has been // passed to the constructor. In such cases values for particular // data fields will be set using modifier functions but for now // we need to initialize a set of buffers that are specified // for an option by its definition. Since there is no data yet, // we are going to fill these buffers with default values. if (data_type == OPT_RECORD_TYPE) { // For record types we need to iterate over all data fields // specified in option definition and create corresponding // buffers for each of them. const OptionDefinition::RecordFieldsCollection fields = definition_.getRecordFields(); for (OptionDefinition::RecordFieldsConstIter field = fields.begin(); field != fields.end(); ++field) { OptionBuffer buf; // For data types that have a fixed size we can use the // utility function to get the buffer's size. size_t data_size = OptionDataTypeUtil::getDataTypeLen(*field); // For variable data sizes the utility function returns zero. // It is ok for string values because the default string // is 'empty'. However for FQDN the empty value is not valid // so we initialize it to '.'. if (data_size == 0 && *field == OPT_FQDN_TYPE) { OptionDataTypeUtil::writeFqdn(".", buf); } else { // At this point we can resize the buffer. Note that // for string values we are setting the empty buffer // here. buf.resize(data_size); } // We have the buffer with default value prepared so we // add it to the set of buffers. buffers.push_back(buf); } } else if (!definition_.getArrayType() && data_type != OPT_EMPTY_TYPE) { // For either 'empty' options we don't have to create any buffers // for obvious reason. For arrays we also don't create any buffers // yet because the set of fields that belong to the array is open // ended so we can't allocate required buffers until we know how // many of them are needed. // For non-arrays we have a single value being held by the option // so we have to allocate exactly one buffer. OptionBuffer buf; size_t data_size = OptionDataTypeUtil::getDataTypeLen(data_type); if (data_size == 0 && data_type == OPT_FQDN_TYPE) { OptionDataTypeUtil::writeFqdn(".", buf); } else { // Note that if our option holds a string value then // we are making empty buffer here. buf.resize(data_size); } // Add a buffer that we have created and leave. buffers.push_back(buf); } // The 'swap' is used here because we want to make sure that we // don't touch buffers_ until we successfully allocate all // buffers to be stored there. std::swap(buffers, buffers_); } void OptionCustom::createBuffers(const OptionBuffer& data_buf) { // Check that the option definition is correct as we are going // to use it to split the data_ buffer into set of sub buffers. definition_.validate(); std::vector buffers; OptionBuffer::const_iterator data = data_buf.begin(); OptionDataType data_type = definition_.getType(); if (data_type == OPT_RECORD_TYPE) { // An option comprises a record of data fields. We need to // get types of these data fields to allocate enough space // for each buffer. const OptionDefinition::RecordFieldsCollection& fields = definition_.getRecordFields(); // Go over all data fields within a record. for (OptionDefinition::RecordFieldsConstIter field = fields.begin(); field != fields.end(); ++field) { // For fixed-size data type such as boolean, integer, even // IP address we can use the utility function to get the required // buffer size. size_t data_size = OptionDataTypeUtil::getDataTypeLen(*field); // For variable size types (e.g. string) the function above will // return 0 so we need to do a runtime check of the length. if (data_size == 0) { // FQDN is a special data type as it stores variable length data // but the data length is encoded in the buffer. The easiest way // to obtain the length of the data is to read the FQDN. The // utility function will return the size of the buffer on success. if (*field == OPT_FQDN_TYPE) { std::string fqdn = OptionDataTypeUtil::readFqdn(OptionBuffer(data, data_buf.end())); // The size of the buffer holding an FQDN is always // 1 byte larger than the size of the string // representation of this FQDN. data_size = fqdn.size() + 1; } else if ( (*field == OPT_BINARY_TYPE) || (*field == OPT_STRING_TYPE) ) { // In other case we are dealing with string or binary value // which size can't be determined. Thus we consume the // remaining part of the buffer for it. Note that variable // size data can be laid at the end of the option only and // that the validate() function in OptionDefinition object // should have checked wheter it is a case for this option. data_size = std::distance(data, data_buf.end()); } else { // If we reached the end of buffer we assume that this option is // truncated because there is no remaining data to initialize // an option field. isc_throw(OutOfRange, "option buffer truncated"); } } else { // Our data field requires that there is a certain chunk of // data left in the buffer. If not, option is truncated. if (std::distance(data, data_buf.end()) < data_size) { isc_throw(OutOfRange, "option buffer truncated"); } } // Store the created buffer. buffers.push_back(OptionBuffer(data, data + data_size)); // Proceed to the next data field. data += data_size; } // Unpack suboptions if any. if (data != data_buf.end() && !getEncapsulatedSpace().empty()) { unpackOptions(OptionBuffer(data, data_buf.end())); } } else if (data_type != OPT_EMPTY_TYPE) { // If data_type value is other than OPT_RECORD_TYPE, our option is // empty (have no data at all) or it comprises one or more // data fields of the same type. The type of those fields // is held in the data_type variable so let's use it to determine // a size of buffers. size_t data_size = OptionDataTypeUtil::getDataTypeLen(data_type); // The check below will fail if the input buffer is too short // for the data size being held by this option. // Note that data_size returned by getDataTypeLen may be zero // if variable length data is being held by the option but // this will not cause this check to throw exception. if (std::distance(data, data_buf.end()) < data_size) { isc_throw(OutOfRange, "option buffer truncated"); } // For an array of values we are taking different path because // we have to handle multiple buffers. if (definition_.getArrayType()) { while (data != data_buf.end()) { // FQDN is a special case because it is of a variable length. // The actual length for a particular FQDN is encoded within // a buffer so we have to actually read the FQDN from a buffer // to get it. if (data_type == OPT_FQDN_TYPE) { std::string fqdn = OptionDataTypeUtil::readFqdn(OptionBuffer(data, data_buf.end())); // The size of the buffer holding an FQDN is always // 1 byte larger than the size of the string // representation of this FQDN. data_size = fqdn.size() + 1; } // We don't perform other checks for data types that can't be // used together with array indicator such as strings, empty field // etc. This is because OptionDefinition::validate function should // have checked this already. Thus data_size must be greater than // zero. assert(data_size > 0); // Get chunks of data and store as a collection of buffers. // Truncate any remaining part which length is not divisible by // data_size. Note that it is ok to truncate the data if and only // if the data buffer is long enough to keep at least one value. // This has been checked above already. if (std::distance(data, data_buf.end()) < data_size) { break; } buffers.push_back(OptionBuffer(data, data + data_size)); data += data_size; } } else { // For non-arrays the data_size can be zero because // getDataTypeLen returns zero for variable size data types // such as strings. Simply take whole buffer. if (data_size == 0) { // For FQDN we get the size by actually reading the FQDN. if (data_type == OPT_FQDN_TYPE) { std::string fqdn = OptionDataTypeUtil::readFqdn(OptionBuffer(data, data_buf.end())); // The size of the buffer holding an FQDN is always // 1 bytes larger than the size of the string // representation of this FQDN. data_size = fqdn.size() + 1; } else { data_size = std::distance(data, data_buf.end()); } } if (data_size > 0) { buffers.push_back(OptionBuffer(data, data + data_size)); data += data_size; } else { isc_throw(OutOfRange, "option buffer truncated"); } // Unpack suboptions if any. if (data != data_buf.end() && !getEncapsulatedSpace().empty()) { unpackOptions(OptionBuffer(data, data_buf.end())); } } } else if (data_type == OPT_EMPTY_TYPE) { // Unpack suboptions if any. if (data != data_buf.end() && !getEncapsulatedSpace().empty()) { unpackOptions(OptionBuffer(data, data_buf.end())); } } // If everything went ok we can replace old buffer set with new ones. std::swap(buffers_, buffers); } std::string OptionCustom::dataFieldToText(const OptionDataType data_type, const uint32_t index) const { std::ostringstream text; // Get the value of the data field. switch (data_type) { case OPT_BINARY_TYPE: text << util::encode::encodeHex(readBinary(index)); break; case OPT_BOOLEAN_TYPE: text << (readBoolean(index) ? "true" : "false"); break; case OPT_INT8_TYPE: text << static_cast(readInteger(index)); break; case OPT_INT16_TYPE: text << readInteger(index); break; case OPT_INT32_TYPE: text << readInteger(index); break; case OPT_UINT8_TYPE: text << static_cast(readInteger(index)); break; case OPT_UINT16_TYPE: text << readInteger(index); break; case OPT_UINT32_TYPE: text << readInteger(index); break; case OPT_IPV4_ADDRESS_TYPE: case OPT_IPV6_ADDRESS_TYPE: text << readAddress(index); break; case OPT_FQDN_TYPE: text << "\"" << readFqdn(index) << "\""; break; case OPT_STRING_TYPE: text << "\"" << readString(index) << "\""; break; default: ; } // Append data field type in brackets. text << " (" << OptionDataTypeUtil::getDataTypeName(data_type) << ")"; return (text.str()); } void OptionCustom::pack(isc::util::OutputBuffer& buf) { // Pack DHCP header (V4 or V6). packHeader(buf); // Write data from buffers. for (std::vector::const_iterator it = buffers_.begin(); it != buffers_.end(); ++it) { // In theory the createBuffers function should have taken // care that there are no empty buffers added to the // collection but it is almost always good to make sure. if (!it->empty()) { buf.writeData(&(*it)[0], it->size()); } } // Write suboptions. packOptions(buf); } asiolink::IOAddress OptionCustom::readAddress(const uint32_t index) const { checkIndex(index); // The address being read can be either IPv4 or IPv6. The decision // is made based on the buffer length. If it holds 4 bytes it is IPv4 // address, if it holds 16 bytes it is IPv6. if (buffers_[index].size() == asiolink::V4ADDRESS_LEN) { return (OptionDataTypeUtil::readAddress(buffers_[index], AF_INET)); } else if (buffers_[index].size() == asiolink::V6ADDRESS_LEN) { return (OptionDataTypeUtil::readAddress(buffers_[index], AF_INET6)); } else { isc_throw(BadDataTypeCast, "unable to read data from the buffer as" << " IP address. Invalid buffer length " << buffers_[index].size() << "."); } } void OptionCustom::writeAddress(const asiolink::IOAddress& address, const uint32_t index) { using namespace isc::asiolink; checkIndex(index); if ((address.isV4() && buffers_[index].size() != V4ADDRESS_LEN) || (address.isV6() && buffers_[index].size() != V6ADDRESS_LEN)) { isc_throw(BadDataTypeCast, "invalid address specified " << address << ". Expected a valid IPv" << (buffers_[index].size() == V4ADDRESS_LEN ? "4" : "6") << " address."); } OptionBuffer buf; OptionDataTypeUtil::writeAddress(address, buf); std::swap(buf, buffers_[index]); } const OptionBuffer& OptionCustom::readBinary(const uint32_t index) const { checkIndex(index); return (buffers_[index]); } void OptionCustom::writeBinary(const OptionBuffer& buf, const uint32_t index) { checkIndex(index); buffers_[index] = buf; } bool OptionCustom::readBoolean(const uint32_t index) const { checkIndex(index); return (OptionDataTypeUtil::readBool(buffers_[index])); } void OptionCustom::writeBoolean(const bool value, const uint32_t index) { checkIndex(index); buffers_[index].clear(); OptionDataTypeUtil::writeBool(value, buffers_[index]); } std::string OptionCustom::readFqdn(const uint32_t index) const { checkIndex(index); return (OptionDataTypeUtil::readFqdn(buffers_[index])); } void OptionCustom::writeFqdn(const std::string& fqdn, const uint32_t index) { checkIndex(index); // Create a temporay buffer where the FQDN will be written. OptionBuffer buf; // Try to write to the temporary buffer rather than to the // buffers_ member directly guarantees that we don't modify // (clear) buffers_ until we are sure that the provided FQDN // is valid. OptionDataTypeUtil::writeFqdn(fqdn, buf); // If we got to this point it means that the FQDN is valid. // We can move the contents of the teporary buffer to the // target buffer. std::swap(buffers_[index], buf); } std::string OptionCustom::readString(const uint32_t index) const { checkIndex(index); return (OptionDataTypeUtil::readString(buffers_[index])); } void OptionCustom::writeString(const std::string& text, const uint32_t index) { checkIndex(index); // Let's clear a buffer as we want to replace the value of the // whole buffer. If we fail to clear the buffer the data will // be appended. buffers_[index].clear(); // If the text value is empty we can leave because the buffer // is already empty. if (!text.empty()) { OptionDataTypeUtil::writeString(text, buffers_[index]); } } void OptionCustom::unpack(OptionBufferConstIter begin, OptionBufferConstIter end) { initialize(begin, end); } uint16_t OptionCustom::len() { // The length of the option is a sum of option header ... size_t length = getHeaderLen(); // ... lengths of all buffers that hold option data ... for (std::vector::const_iterator buf = buffers_.begin(); buf != buffers_.end(); ++buf) { length += buf->size(); } // ... and lengths of all suboptions for (OptionCollection::iterator it = options_.begin(); it != options_.end(); ++it) { length += (*it).second->len(); } return (static_cast(length)); } void OptionCustom::initialize(const OptionBufferConstIter first, const OptionBufferConstIter last) { setData(first, last); // Chop the data_ buffer into set of buffers that represent // option fields data. createBuffers(getData()); } std::string OptionCustom::toText(int indent) { std::stringstream output; output << headerToText(indent) << ":"; OptionDataType data_type = definition_.getType(); if (data_type == OPT_RECORD_TYPE) { const OptionDefinition::RecordFieldsCollection& fields = definition_.getRecordFields(); // For record types we iterate over fields defined in // option definition and match the appropriate buffer // with them. for (OptionDefinition::RecordFieldsConstIter field = fields.begin(); field != fields.end(); ++field) { output << " " << dataFieldToText(*field, std::distance(fields.begin(), field)); } } else { // For non-record types we iterate over all buffers // and print the data type set globally for an option // definition. We take the same code path for arrays // and non-arrays as they only differ in such a way that // non-arrays have just single data field. for (unsigned int i = 0; i < getDataFieldsNum(); ++i) { output << " " << dataFieldToText(definition_.getType(), i); } } // Append suboptions. output << suboptionsToText(indent + 2); return (output.str()); } } // end of isc::dhcp namespace } // end of isc namespace