// Copyright (C) 2012-2013 Internet Systems Consortium, Inc. ("ISC") // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH // REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY // AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, // INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM // LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE // OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR // PERFORMANCE OF THIS SOFTWARE. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace isc::util; namespace isc { namespace dhcp { OptionDefinition::OptionDefinition(const std::string& name, const uint16_t code, const std::string& type, const bool array_type /* = false */) : name_(name), code_(code), type_(OPT_UNKNOWN_TYPE), array_type_(array_type), encapsulated_space_("") { // Data type is held as enum value by this class. // Use the provided option type string to get the // corresponding enum value. type_ = OptionDataTypeUtil::getDataType(type); } OptionDefinition::OptionDefinition(const std::string& name, const uint16_t code, const OptionDataType type, const bool array_type /* = false */) : name_(name), code_(code), type_(type), array_type_(array_type), encapsulated_space_("") { } OptionDefinition::OptionDefinition(const std::string& name, const uint16_t code, const std::string& type, const char* encapsulated_space) : name_(name), code_(code), // Data type is held as enum value by this class. // Use the provided option type string to get the // corresponding enum value. type_(OptionDataTypeUtil::getDataType(type)), array_type_(false), encapsulated_space_(encapsulated_space) { } OptionDefinition::OptionDefinition(const std::string& name, const uint16_t code, const OptionDataType type, const char* encapsulated_space) : name_(name), code_(code), type_(type), array_type_(false), encapsulated_space_(encapsulated_space) { } void OptionDefinition::addRecordField(const std::string& data_type_name) { OptionDataType data_type = OptionDataTypeUtil::getDataType(data_type_name); addRecordField(data_type); } void OptionDefinition::addRecordField(const OptionDataType data_type) { if (type_ != OPT_RECORD_TYPE) { isc_throw(isc::InvalidOperation, "'record' option type must be used" " to add data fields to the record"); } if (data_type >= OPT_RECORD_TYPE || data_type == OPT_ANY_ADDRESS_TYPE || data_type == OPT_EMPTY_TYPE) { isc_throw(isc::BadValue, "attempted to add invalid data type to the record."); } record_fields_.push_back(data_type); } OptionPtr OptionDefinition::optionFactory(Option::Universe u, uint16_t type, OptionBufferConstIter begin, OptionBufferConstIter end, UnpackOptionsCallback callback) const { try { // Some of the options are represented by the specialized classes derived // from Option class (e.g. IA_NA, IAADDR). Although, they can be also // represented by the generic classes, we want the object of the specialized // type to be returned. Therefore, we first check that if we are dealing // with such an option. If the instance is returned we just exit at this // point. If not, we will search for a generic option type to return. OptionPtr option = factorySpecialFormatOption(u, begin, end, callback); if (option) { return (option); } switch(type_) { case OPT_EMPTY_TYPE: if (getEncapsulatedSpace().empty()) { return (factoryEmpty(u, type)); } else { return (OptionPtr(new OptionCustom(*this, u, begin, end))); } case OPT_BINARY_TYPE: return (factoryGeneric(u, type, begin, end)); case OPT_UINT8_TYPE: return (array_type_ ? factoryIntegerArray(u, type, begin, end) : factoryInteger(u, type, getEncapsulatedSpace(), begin, end, callback)); case OPT_INT8_TYPE: return (array_type_ ? factoryIntegerArray(u, type, begin, end) : factoryInteger(u, type, getEncapsulatedSpace(), begin, end, callback)); case OPT_UINT16_TYPE: return (array_type_ ? factoryIntegerArray(u, type, begin, end) : factoryInteger(u, type, getEncapsulatedSpace(), begin, end, callback)); case OPT_INT16_TYPE: return (array_type_ ? factoryIntegerArray(u, type, begin, end) : factoryInteger(u, type, getEncapsulatedSpace(), begin, end, callback)); case OPT_UINT32_TYPE: return (array_type_ ? factoryIntegerArray(u, type, begin, end) : factoryInteger(u, type, getEncapsulatedSpace(), begin, end, callback)); case OPT_INT32_TYPE: return (array_type_ ? factoryIntegerArray(u, type, begin, end) : factoryInteger(u, type, getEncapsulatedSpace(), begin, end, callback)); case OPT_IPV4_ADDRESS_TYPE: // If definition specifies that an option is an array // of IPv4 addresses we return an instance of specialized // class (OptionAddrLst4). For non-array types there is no // specialized class yet implemented so we drop through // to return an instance of OptionCustom. if (array_type_) { return (factoryAddrList4(type, begin, end)); } break; case OPT_IPV6_ADDRESS_TYPE: // Handle array type only here (see comments for // OPT_IPV4_ADDRESS_TYPE case). if (array_type_) { return (factoryAddrList6(type, begin, end)); } break; case OPT_STRING_TYPE: return (OptionPtr(new OptionString(u, type, begin, end))); default: // Do nothing. We will return generic option a few lines down. ; } return (OptionPtr(new OptionCustom(*this, u, begin, end))); } catch (const Exception& ex) { isc_throw(InvalidOptionValue, ex.what()); } } OptionPtr OptionDefinition::optionFactory(Option::Universe u, uint16_t type, const OptionBuffer& buf, UnpackOptionsCallback callback) const { return (optionFactory(u, type, buf.begin(), buf.end(), callback)); } OptionPtr OptionDefinition::optionFactory(Option::Universe u, uint16_t type, const std::vector& values) const { OptionBuffer buf; if (!array_type_ && type_ != OPT_RECORD_TYPE) { if (values.empty()) { isc_throw(InvalidOptionValue, "no option value specified"); } writeToBuffer(util::str::trim(values[0]), type_, buf); } else if (array_type_ && type_ != OPT_RECORD_TYPE) { for (size_t i = 0; i < values.size(); ++i) { writeToBuffer(util::str::trim(values[i]), type_, buf); } } else if (type_ == OPT_RECORD_TYPE) { const RecordFieldsCollection& records = getRecordFields(); if (records.size() > values.size()) { isc_throw(InvalidOptionValue, "number of data fields for the option" << " type '" << getCode() << "' is greater than number" << " of values provided."); } for (size_t i = 0; i < records.size(); ++i) { writeToBuffer(util::str::trim(values[i]), records[i], buf); } } return (optionFactory(u, type, buf.begin(), buf.end())); } void OptionDefinition::validate() const { using namespace boost::algorithm; std::ostringstream err_str; // Allowed characters in the option name are: lower or // upper case letters, digits, underscores and hyphens. // Empty option spaces are not allowed. if (!all(name_, boost::is_from_range('a', 'z') || boost::is_from_range('A', 'Z') || boost::is_digit() || boost::is_any_of(std::string("-_"))) || name_.empty() || // Hyphens and underscores are not allowed at the beginning // and at the end of the option name. all(find_head(name_, 1), boost::is_any_of(std::string("-_"))) || all(find_tail(name_, 1), boost::is_any_of(std::string("-_")))) { err_str << "invalid option name '" << name_ << "'"; } else if (!encapsulated_space_.empty() && !OptionSpace::validateName(encapsulated_space_)) { err_str << "invalid encapsulated option space name: '" << encapsulated_space_ << "'"; } else if (type_ >= OPT_UNKNOWN_TYPE) { // Option definition must be of a known type. err_str << "option type value " << type_ << " is out of range."; } else if (array_type_) { if (type_ == OPT_STRING_TYPE) { // Array of strings is not allowed because there is no way // to determine the size of a particular string and thus there // it no way to tell when other data fields begin. err_str << "array of strings is not a valid option definition."; } else if (type_ == OPT_BINARY_TYPE) { err_str << "array of binary values is not" << " a valid option definition."; } else if (type_ == OPT_EMPTY_TYPE) { err_str << "array of empty value is not" << " a valid option definition."; } } else if (type_ == OPT_RECORD_TYPE) { // At least two data fields should be added to the record. Otherwise // non-record option definition could be used. if (getRecordFields().size() < 2) { err_str << "invalid number of data fields: " << getRecordFields().size() << " specified for the option of type 'record'. Expected at" << " least 2 fields."; } else { // If the number of fields is valid we have to check if their order // is valid too. We check that string or binary data fields are not // laid before other fields. But we allow that they are laid at the // end of an option. const RecordFieldsCollection& fields = getRecordFields(); for (RecordFieldsConstIter it = fields.begin(); it != fields.end(); ++it) { if (*it == OPT_STRING_TYPE && it < fields.end() - 1) { err_str << "string data field can't be laid before data" << " fields of other types."; break; } if (*it == OPT_BINARY_TYPE && it < fields.end() - 1) { err_str << "binary data field can't be laid before data" << " fields of other types."; } /// Empty type is not allowed within a record. if (*it == OPT_EMPTY_TYPE) { err_str << "empty data type can't be stored as a field in" << " an option record."; break; } } } } // Non-empty error string means that we have hit the error. We throw // exception and include error string. if (!err_str.str().empty()) { isc_throw(MalformedOptionDefinition, err_str.str()); } } bool OptionDefinition::haveIAx6Format(OptionDataType first_type) const { return (haveType(OPT_RECORD_TYPE) && record_fields_.size() == 3 && record_fields_[0] == first_type && record_fields_[1] == OPT_UINT32_TYPE && record_fields_[2] == OPT_UINT32_TYPE); } bool OptionDefinition::haveIA6Format() const { // Expect that IA_NA option format is defined as record. // Although it consists of 3 elements of the same (uint32) // type it can't be defined as array of uint32 elements because // arrays do not impose limitations on number of elements in // the array while this limitation is needed for IA_NA - need // exactly 3 elements. return (haveIAx6Format(OPT_UINT32_TYPE)); } bool OptionDefinition::haveIAAddr6Format() const { return (haveIAx6Format(OPT_IPV6_ADDRESS_TYPE)); } bool OptionDefinition::haveIAPrefix6Format() const { return (haveType(OPT_RECORD_TYPE) && record_fields_.size() == 4 && record_fields_[0] == OPT_UINT32_TYPE && record_fields_[1] == OPT_UINT32_TYPE && record_fields_[2] == OPT_UINT8_TYPE && record_fields_[3] == OPT_IPV6_ADDRESS_TYPE); } bool OptionDefinition::haveFqdn4Format() const { return (haveType(OPT_RECORD_TYPE) && record_fields_.size() == 4 && record_fields_[0] == OPT_UINT8_TYPE && record_fields_[1] == OPT_UINT8_TYPE && record_fields_[2] == OPT_UINT8_TYPE && record_fields_[3] == OPT_FQDN_TYPE); } bool OptionDefinition::haveClientFqdnFormat() const { return (haveType(OPT_RECORD_TYPE) && (record_fields_.size() == 2) && (record_fields_[0] == OPT_UINT8_TYPE) && (record_fields_[1] == OPT_FQDN_TYPE)); } bool OptionDefinition::haveVendor4Format() const { return (true); } bool OptionDefinition::haveVendor6Format() const { return (getType() == OPT_UINT32_TYPE && !getEncapsulatedSpace().empty()); } template T OptionDefinition::lexicalCastWithRangeCheck(const std::string& value_str) const { // Lexical cast in case of our data types make sense only // for uintX_t, intX_t and bool type. if (!OptionDataTypeTraits::integer_type && OptionDataTypeTraits::type != OPT_BOOLEAN_TYPE) { isc_throw(BadDataTypeCast, "unable to do lexical cast to non-integer and" << " non-boolean data type"); } // We use the 64-bit value here because it has wider range than // any other type we use here and it allows to detect out of // bounds conditions e.g. negative value specified for uintX_t // data type. Obviously if the value exceeds the limits of int64 // this function will not handle that properly. int64_t result = 0; try { result = boost::lexical_cast(value_str); } catch (const boost::bad_lexical_cast& ex) { // Prepare error message here. std::string data_type_str = "boolean"; if (OptionDataTypeTraits::integer_type) { data_type_str = "integer"; } isc_throw(BadDataTypeCast, "unable to do lexical cast to " << data_type_str << " data type for value " << value_str << ": " << ex.what()); } // Perform range checks for integer values only (exclude bool values). if (OptionDataTypeTraits::integer_type) { if (result > numeric_limits::max() || result < numeric_limits::min()) { isc_throw(BadDataTypeCast, "unable to do lexical cast for value " << value_str << ". This value is expected to be" << " in the range of " << numeric_limits::min() << ".." << numeric_limits::max()); } } return (static_cast(result)); } void OptionDefinition::writeToBuffer(const std::string& value, const OptionDataType type, OptionBuffer& buf) const { // We are going to write value given by value argument to the buffer. // The actual type of the value is given by second argument. Check // this argument to determine how to write this value to the buffer. switch (type) { case OPT_BINARY_TYPE: OptionDataTypeUtil::writeBinary(value, buf); return; case OPT_BOOLEAN_TYPE: // We encode the true value as 1 and false as 0 on 8 bits. // That way we actually waste 7 bits but it seems to be the // simpler way to encode boolean. // @todo Consider if any other encode methods can be used. OptionDataTypeUtil::writeBool(lexicalCastWithRangeCheck(value), buf); return; case OPT_INT8_TYPE: OptionDataTypeUtil::writeInt (lexicalCastWithRangeCheck(value), buf); return; case OPT_INT16_TYPE: OptionDataTypeUtil::writeInt (lexicalCastWithRangeCheck(value), buf); return; case OPT_INT32_TYPE: OptionDataTypeUtil::writeInt (lexicalCastWithRangeCheck(value), buf); return; case OPT_UINT8_TYPE: OptionDataTypeUtil::writeInt (lexicalCastWithRangeCheck(value), buf); return; case OPT_UINT16_TYPE: OptionDataTypeUtil::writeInt (lexicalCastWithRangeCheck(value), buf); return; case OPT_UINT32_TYPE: OptionDataTypeUtil::writeInt (lexicalCastWithRangeCheck(value), buf); return; case OPT_IPV4_ADDRESS_TYPE: case OPT_IPV6_ADDRESS_TYPE: { asiolink::IOAddress address(value); if (!address.isV4() && !address.isV6()) { isc_throw(BadDataTypeCast, "provided address " << address.toText() << " is not a valid IPv4 or IPv6 address."); } OptionDataTypeUtil::writeAddress(address, buf); return; } case OPT_STRING_TYPE: OptionDataTypeUtil::writeString(value, buf); return; case OPT_FQDN_TYPE: OptionDataTypeUtil::writeFqdn(value, buf); return; default: // We hit this point because invalid option data type has been specified // This may be the case because 'empty' or 'record' data type has been // specified. We don't throw exception here because it will be thrown // at the exit point from this function. ; } isc_throw(isc::BadValue, "attempt to write invalid option data field type" " into the option buffer: " << type); } OptionPtr OptionDefinition::factoryAddrList4(uint16_t type, OptionBufferConstIter begin, OptionBufferConstIter end) { boost::shared_ptr option(new Option4AddrLst(type, begin, end)); return (option); } OptionPtr OptionDefinition::factoryAddrList6(uint16_t type, OptionBufferConstIter begin, OptionBufferConstIter end) { boost::shared_ptr option(new Option6AddrLst(type, begin, end)); return (option); } OptionPtr OptionDefinition::factoryEmpty(Option::Universe u, uint16_t type) { OptionPtr option(new Option(u, type)); return (option); } OptionPtr OptionDefinition::factoryGeneric(Option::Universe u, uint16_t type, OptionBufferConstIter begin, OptionBufferConstIter end) { OptionPtr option(new Option(u, type, begin, end)); return (option); } OptionPtr OptionDefinition::factoryIA6(uint16_t type, OptionBufferConstIter begin, OptionBufferConstIter end) { if (std::distance(begin, end) < Option6IA::OPTION6_IA_LEN) { isc_throw(isc::OutOfRange, "input option buffer has invalid size," << " expected at least " << Option6IA::OPTION6_IA_LEN << " bytes"); } boost::shared_ptr option(new Option6IA(type, begin, end)); return (option); } OptionPtr OptionDefinition::factoryIAAddr6(uint16_t type, OptionBufferConstIter begin, OptionBufferConstIter end) { if (std::distance(begin, end) < Option6IAAddr::OPTION6_IAADDR_LEN) { isc_throw(isc::OutOfRange, "input option buffer has invalid size, expected at least " << Option6IAAddr::OPTION6_IAADDR_LEN << " bytes"); } boost::shared_ptr option(new Option6IAAddr(type, begin, end)); return (option); } OptionPtr OptionDefinition::factoryIAPrefix6(uint16_t type, OptionBufferConstIter begin, OptionBufferConstIter end) { if (std::distance(begin, end) < Option6IAPrefix::OPTION6_IAPREFIX_LEN) { isc_throw(isc::OutOfRange, "input option buffer has invalid size, expected at least " << Option6IAPrefix::OPTION6_IAPREFIX_LEN << " bytes"); } boost::shared_ptr option(new Option6IAPrefix(type, begin, end)); return (option); } OptionPtr OptionDefinition::factorySpecialFormatOption(Option::Universe u, OptionBufferConstIter begin, OptionBufferConstIter end, UnpackOptionsCallback) const { if (u == Option::V6) { if ((getCode() == D6O_IA_NA || getCode() == D6O_IA_PD) && haveIA6Format()) { // Return Option6IA instance for IA_PD and IA_NA option // types only. We don't want to return Option6IA for other // options that comprise 3 UINT32 data fields because // Option6IA accessors' and modifiers' names are derived // from the IA_NA and IA_PD options' field names: IAID, // T1, T2. Using functions such as getIAID, getT1 etc. for // options other than IA_NA and IA_PD would be bad practice // and cause confusion. return (factoryIA6(getCode(), begin, end)); } else if (getCode() == D6O_IAADDR && haveIAAddr6Format()) { // Rerurn Option6IAAddr option instance for the IAADDR // option only for the same reasons as described in // for IA_NA and IA_PD above. return (factoryIAAddr6(getCode(), begin, end)); } else if (getCode() == D6O_IAPREFIX && haveIAPrefix6Format()) { return (factoryIAPrefix6(getCode(), begin, end)); } else if (getCode() == D6O_CLIENT_FQDN && haveClientFqdnFormat()) { // FQDN option requires special processing. Thus, there is // a specialized class to handle it. return (OptionPtr(new Option6ClientFqdn(begin, end))); } else if (getCode() == D6O_VENDOR_OPTS && haveVendor6Format()) { // Vendor-Specific Information. return (OptionPtr(new OptionVendor(Option::V6, begin, end))); } } else { if ((getCode() == DHO_FQDN) && haveFqdn4Format()) { return (OptionPtr(new Option4ClientFqdn(begin, end))); } else if (getCode() == DHO_VIVSO_SUBOPTIONS && haveVendor4Format()) { // Vendor-Specific Information. return (OptionPtr(new OptionVendor(Option::V4, begin, end))); } } return (OptionPtr()); } } // end of isc::dhcp namespace } // end of isc namespace