1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
// Copyright (C) 2010-2024 Internet Systems Consortium, Inc. ("ISC")
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <config.h>
#include <iostream>
#include <string>
#include <sstream>
#include <vector>
#include <boost/lexical_cast.hpp>
#include <util/encode/base64.h>
#include <util/buffer.h>
#include <dns/messagerenderer.h>
#include <dns/name.h>
#include <dns/rdata.h>
#include <dns/rdataclass.h>
#include <memory>
#include <stdio.h>
#include <time.h>
using namespace std;
using namespace isc::util;
using namespace isc::util::encode;
// BEGIN_ISC_NAMESPACE
// BEGIN_RDATA_NAMESPACE
struct DNSKEYImpl {
// straightforward representation of DNSKEY RDATA fields
DNSKEYImpl(uint16_t flags, uint8_t protocol, uint8_t algorithm,
const vector<uint8_t>& keydata) :
flags_(flags), protocol_(protocol), algorithm_(algorithm),
keydata_(keydata)
{}
uint16_t flags_;
uint8_t protocol_;
uint8_t algorithm_;
const vector<uint8_t> keydata_;
};
/// \brief Constructor from string.
///
/// The given string must represent a valid DNSKEY RDATA. There can be
/// extra space characters at the beginning or end of the text (which
/// are simply ignored), but other extra text, including a new line,
/// will make the construction fail with an exception.
///
/// The Protocol and Algorithm fields must be within their valid
/// ranges. The Public Key field must be present and must contain a
/// Base64 encoding of the public key. Whitespace is allowed within the
/// Base64 text.
///
/// It is okay for the key data to be missing. Note: BIND 9 also accepts
/// DNSKEY missing key data. While the RFC is silent in this case, and it
/// may be debatable what an implementation should do, but since this field
/// is algorithm dependent and this implementations doesn't reject unknown
/// algorithms, it's lenient here.
///
/// \throw InvalidRdataText if any fields are out of their valid range,
/// or are incorrect.
///
/// \param dnskey_str A string containing the RDATA to be created
DNSKEY::DNSKEY(const std::string& dnskey_str) :
impl_(NULL)
{
// We use unique_ptr here because if there is an exception in this
// constructor, the destructor is not called and there could be a
// leak of the DNSKEYImpl that constructFromLexer() returns.
std::unique_ptr<DNSKEYImpl> impl_ptr;
try {
std::istringstream ss(dnskey_str);
MasterLexer lexer;
lexer.pushSource(ss);
impl_ptr.reset(constructFromLexer(lexer));
if (lexer.getNextToken().getType() != MasterToken::END_OF_FILE) {
isc_throw(InvalidRdataText,
"Extra input text for DNSKEY: " << dnskey_str);
}
} catch (const MasterLexer::LexerError& ex) {
isc_throw(InvalidRdataText,
"Failed to construct DNSKEY from '" << dnskey_str << "': "
<< ex.what());
}
impl_ = impl_ptr.release();
}
/// \brief Constructor from InputBuffer.
///
/// The passed buffer must contain a valid DNSKEY RDATA.
///
/// The Protocol and Algorithm fields are not checked for unknown
/// values. It is okay for the key data to be missing (see the description
/// of the constructor from string).
DNSKEY::DNSKEY(InputBuffer& buffer, size_t rdata_len) :
impl_(NULL)
{
if (rdata_len < 4) {
isc_throw(InvalidRdataLength, "DNSKEY too short: " << rdata_len);
}
const uint16_t flags = buffer.readUint16();
const uint16_t protocol = buffer.readUint8();
const uint16_t algorithm = buffer.readUint8();
rdata_len -= 4;
vector<uint8_t> keydata;
// If key data is missing, it's OK. See the API documentation of the
// constructor.
if (rdata_len > 0) {
keydata.resize(rdata_len);
buffer.readData(&keydata[0], rdata_len);
}
impl_ = new DNSKEYImpl(flags, protocol, algorithm, keydata);
}
/// \brief Constructor with a context of MasterLexer.
///
/// The \c lexer should point to the beginning of valid textual
/// representation of an DNSKEY RDATA.
///
/// See \c DNSKEY::DNSKEY(const std::string&) for description of the
/// expected RDATA fields.
///
/// \throw MasterLexer::LexerError General parsing error such as
/// missing field.
/// \throw InvalidRdataText if any fields are out of their valid range,
/// or are incorrect.
///
/// \param lexer A \c MasterLexer object parsing a master file for the
/// RDATA to be created
DNSKEY::DNSKEY(MasterLexer& lexer, const Name*,
MasterLoader::Options, MasterLoaderCallbacks&) :
impl_(NULL)
{
impl_ = constructFromLexer(lexer);
}
DNSKEYImpl*
DNSKEY::constructFromLexer(MasterLexer& lexer) {
const uint32_t flags = lexer.getNextToken(MasterToken::NUMBER).getNumber();
if (flags > 0xffff) {
isc_throw(InvalidRdataText,
"DNSKEY flags out of range: " << flags);
}
const uint32_t protocol =
lexer.getNextToken(MasterToken::NUMBER).getNumber();
if (protocol > 0xff) {
isc_throw(InvalidRdataText,
"DNSKEY protocol out of range: " << protocol);
}
const uint32_t algorithm =
lexer.getNextToken(MasterToken::NUMBER).getNumber();
if (algorithm > 0xff) {
isc_throw(InvalidRdataText,
"DNSKEY algorithm out of range: " << algorithm);
}
std::string keydata_str;
std::string keydata_substr;
while (true) {
const MasterToken& token =
lexer.getNextToken(MasterToken::STRING, true);
if ((token.getType() == MasterToken::END_OF_FILE) ||
(token.getType() == MasterToken::END_OF_LINE)) {
break;
}
// token is now assured to be of type STRING.
token.getString(keydata_substr);
keydata_str.append(keydata_substr);
}
lexer.ungetToken();
vector<uint8_t> keydata;
// If key data is missing, it's OK. See the API documentation of the
// constructor.
if (keydata_str.size() > 0) {
decodeBase64(keydata_str, keydata);
}
return (new DNSKEYImpl(flags, protocol, algorithm, keydata));
}
DNSKEY::DNSKEY(const DNSKEY& source) :
Rdata(), impl_(new DNSKEYImpl(*source.impl_))
{}
DNSKEY&
DNSKEY::operator=(const DNSKEY& source) {
if (this == &source) {
return (*this);
}
DNSKEYImpl* newimpl = new DNSKEYImpl(*source.impl_);
delete impl_;
impl_ = newimpl;
return (*this);
}
DNSKEY::~DNSKEY() {
delete impl_;
}
string
DNSKEY::toText() const {
return (boost::lexical_cast<string>(static_cast<int>(impl_->flags_)) +
" " + boost::lexical_cast<string>(static_cast<int>(impl_->protocol_)) +
" " + boost::lexical_cast<string>(static_cast<int>(impl_->algorithm_)) +
" " + encodeBase64(impl_->keydata_));
}
void
DNSKEY::toWire(OutputBuffer& buffer) const {
buffer.writeUint16(impl_->flags_);
buffer.writeUint8(impl_->protocol_);
buffer.writeUint8(impl_->algorithm_);
buffer.writeData(&impl_->keydata_[0], impl_->keydata_.size());
}
void
DNSKEY::toWire(AbstractMessageRenderer& renderer) const {
renderer.writeUint16(impl_->flags_);
renderer.writeUint8(impl_->protocol_);
renderer.writeUint8(impl_->algorithm_);
renderer.writeData(&impl_->keydata_[0], impl_->keydata_.size());
}
int
DNSKEY::compare(const Rdata& other) const {
const DNSKEY& other_dnskey = dynamic_cast<const DNSKEY&>(other);
if (impl_->flags_ != other_dnskey.impl_->flags_) {
return (impl_->flags_ < other_dnskey.impl_->flags_ ? -1 : 1);
}
if (impl_->protocol_ != other_dnskey.impl_->protocol_) {
return (impl_->protocol_ < other_dnskey.impl_->protocol_ ? -1 : 1);
}
if (impl_->algorithm_ != other_dnskey.impl_->algorithm_) {
return (impl_->algorithm_ < other_dnskey.impl_->algorithm_ ? -1 : 1);
}
const size_t this_len = impl_->keydata_.size();
const size_t other_len = other_dnskey.impl_->keydata_.size();
const size_t cmplen = min(this_len, other_len);
if (cmplen == 0) {
return ((this_len == other_len) ? 0 : (this_len < other_len) ? -1 : 1);
}
const int cmp = memcmp(&impl_->keydata_[0],
&other_dnskey.impl_->keydata_[0], cmplen);
if (cmp != 0) {
return (cmp);
} else {
return ((this_len == other_len) ? 0 : (this_len < other_len) ? -1 : 1);
}
}
uint16_t
DNSKEY::getTag() const {
if (impl_->algorithm_ == 1) {
// See RFC 4034 appendix B.1 for why the key data must contain
// at least 4 bytes with RSA/MD5: 3 trailing bytes to extract
// the tag from, and 1 byte of exponent length subfield before
// modulus.
const int len = impl_->keydata_.size();
if (len < 4) {
isc_throw(isc::OutOfRange,
"DNSKEY keydata too short for tag extraction");
}
return ((impl_->keydata_[len - 3] << 8) + impl_->keydata_[len - 2]);
}
uint32_t ac = impl_->flags_;
ac += (impl_->protocol_ << 8);
ac += impl_->algorithm_;
const size_t size = impl_->keydata_.size();
for (size_t i = 0; i < size; i ++) {
ac += (i & 1) ? impl_->keydata_[i] : (impl_->keydata_[i] << 8);
}
ac += (ac >> 16) & 0xffff;
return (ac & 0xffff);
}
uint16_t
DNSKEY::getFlags() const {
return (impl_->flags_);
}
uint8_t
DNSKEY::getAlgorithm() const {
return (impl_->algorithm_);
}
// END_RDATA_NAMESPACE
// END_ISC_NAMESPACE
|