diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2018-12-29 19:57:20 +0100 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2018-12-29 19:57:20 +0100 |
commit | 6f9d71c9c759b1e7d31189a4de228983192c7dc7 (patch) | |
tree | b8372cc73cbac4701c85ca1d441c4ba8a53b4c1f | |
parent | Merge branch 'for-4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/denn... (diff) | |
parent | cgroup: Add named hierarchy disabling to cgroup_no_v1 boot param (diff) | |
download | linux-6f9d71c9c759b1e7d31189a4de228983192c7dc7.tar.xz linux-6f9d71c9c759b1e7d31189a4de228983192c7dc7.zip |
Merge branch 'for-4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
- Waiman's cgroup2 cpuset support has been finally merged closing one
of the last remaining feature gaps.
- cgroup.procs could show non-leader threads when cgroup2 threaded mode
was used in certain ways. I forgot to push the fix during the last
cycle.
- A patch to fix mount option parsing when all mount options have been
consumed by someone else (LSM).
- cgroup_no_v1 boot param can now block named cgroup1 hierarchies too.
* 'for-4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: Add named hierarchy disabling to cgroup_no_v1 boot param
cgroup: fix parsing empty mount option string
cpuset: Remove set but not used variable 'cs'
cgroup: fix CSS_TASK_ITER_PROCS
cgroup: Add .__DEBUG__. prefix to debug file names
cpuset: Minor cgroup2 interface updates
cpuset: Expose cpuset.cpus.subpartitions with cgroup_debug
cpuset: Add documentation about the new "cpuset.sched.partition" flag
cpuset: Use descriptive text when reading/writing cpuset.sched.partition
cpuset: Expose cpus.effective and mems.effective on cgroup v2 root
cpuset: Make generate_sched_domains() work with partition
cpuset: Make CPU hotplug work with partition
cpuset: Track cpusets that use parent's effective_cpus
cpuset: Add an error state to cpuset.sched.partition
cpuset: Add new v2 cpuset.sched.partition flag
cpuset: Simply allocation and freeing of cpumasks
cpuset: Define data structures to support scheduling partition
cpuset: Enable cpuset controller in default hierarchy
cgroup: remove unnecessary unlikely()
-rw-r--r-- | Documentation/admin-guide/cgroup-v2.rst | 182 | ||||
-rw-r--r-- | Documentation/admin-guide/kernel-parameters.txt | 8 | ||||
-rw-r--r-- | include/linux/cgroup-defs.h | 1 | ||||
-rw-r--r-- | kernel/cgroup/cgroup-internal.h | 2 | ||||
-rw-r--r-- | kernel/cgroup/cgroup-v1.c | 14 | ||||
-rw-r--r-- | kernel/cgroup/cgroup.c | 60 | ||||
-rw-r--r-- | kernel/cgroup/cpuset.c | 944 | ||||
-rw-r--r-- | kernel/cgroup/debug.c | 4 |
8 files changed, 1115 insertions, 100 deletions
diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst index baf19bf28385..7bf3f129c68b 100644 --- a/Documentation/admin-guide/cgroup-v2.rst +++ b/Documentation/admin-guide/cgroup-v2.rst @@ -56,11 +56,13 @@ v1 is available under Documentation/cgroup-v1/. 5-3-3-2. IO Latency Interface Files 5-4. PID 5-4-1. PID Interface Files - 5-5. Device - 5-6. RDMA - 5-6-1. RDMA Interface Files - 5-7. Misc - 5-7-1. perf_event + 5-5. Cpuset + 5.5-1. Cpuset Interface Files + 5-6. Device + 5-7. RDMA + 5-7-1. RDMA Interface Files + 5-8. Misc + 5-8-1. perf_event 5-N. Non-normative information 5-N-1. CPU controller root cgroup process behaviour 5-N-2. IO controller root cgroup process behaviour @@ -1610,6 +1612,176 @@ through fork() or clone(). These will return -EAGAIN if the creation of a new process would cause a cgroup policy to be violated. +Cpuset +------ + +The "cpuset" controller provides a mechanism for constraining +the CPU and memory node placement of tasks to only the resources +specified in the cpuset interface files in a task's current cgroup. +This is especially valuable on large NUMA systems where placing jobs +on properly sized subsets of the systems with careful processor and +memory placement to reduce cross-node memory access and contention +can improve overall system performance. + +The "cpuset" controller is hierarchical. That means the controller +cannot use CPUs or memory nodes not allowed in its parent. + + +Cpuset Interface Files +~~~~~~~~~~~~~~~~~~~~~~ + + cpuset.cpus + A read-write multiple values file which exists on non-root + cpuset-enabled cgroups. + + It lists the requested CPUs to be used by tasks within this + cgroup. The actual list of CPUs to be granted, however, is + subjected to constraints imposed by its parent and can differ + from the requested CPUs. + + The CPU numbers are comma-separated numbers or ranges. + For example: + + # cat cpuset.cpus + 0-4,6,8-10 + + An empty value indicates that the cgroup is using the same + setting as the nearest cgroup ancestor with a non-empty + "cpuset.cpus" or all the available CPUs if none is found. + + The value of "cpuset.cpus" stays constant until the next update + and won't be affected by any CPU hotplug events. + + cpuset.cpus.effective + A read-only multiple values file which exists on all + cpuset-enabled cgroups. + + It lists the onlined CPUs that are actually granted to this + cgroup by its parent. These CPUs are allowed to be used by + tasks within the current cgroup. + + If "cpuset.cpus" is empty, the "cpuset.cpus.effective" file shows + all the CPUs from the parent cgroup that can be available to + be used by this cgroup. Otherwise, it should be a subset of + "cpuset.cpus" unless none of the CPUs listed in "cpuset.cpus" + can be granted. In this case, it will be treated just like an + empty "cpuset.cpus". + + Its value will be affected by CPU hotplug events. + + cpuset.mems + A read-write multiple values file which exists on non-root + cpuset-enabled cgroups. + + It lists the requested memory nodes to be used by tasks within + this cgroup. The actual list of memory nodes granted, however, + is subjected to constraints imposed by its parent and can differ + from the requested memory nodes. + + The memory node numbers are comma-separated numbers or ranges. + For example: + + # cat cpuset.mems + 0-1,3 + + An empty value indicates that the cgroup is using the same + setting as the nearest cgroup ancestor with a non-empty + "cpuset.mems" or all the available memory nodes if none + is found. + + The value of "cpuset.mems" stays constant until the next update + and won't be affected by any memory nodes hotplug events. + + cpuset.mems.effective + A read-only multiple values file which exists on all + cpuset-enabled cgroups. + + It lists the onlined memory nodes that are actually granted to + this cgroup by its parent. These memory nodes are allowed to + be used by tasks within the current cgroup. + + If "cpuset.mems" is empty, it shows all the memory nodes from the + parent cgroup that will be available to be used by this cgroup. + Otherwise, it should be a subset of "cpuset.mems" unless none of + the memory nodes listed in "cpuset.mems" can be granted. In this + case, it will be treated just like an empty "cpuset.mems". + + Its value will be affected by memory nodes hotplug events. + + cpuset.cpus.partition + A read-write single value file which exists on non-root + cpuset-enabled cgroups. This flag is owned by the parent cgroup + and is not delegatable. + + It accepts only the following input values when written to. + + "root" - a paritition root + "member" - a non-root member of a partition + + When set to be a partition root, the current cgroup is the + root of a new partition or scheduling domain that comprises + itself and all its descendants except those that are separate + partition roots themselves and their descendants. The root + cgroup is always a partition root. + + There are constraints on where a partition root can be set. + It can only be set in a cgroup if all the following conditions + are true. + + 1) The "cpuset.cpus" is not empty and the list of CPUs are + exclusive, i.e. they are not shared by any of its siblings. + 2) The parent cgroup is a partition root. + 3) The "cpuset.cpus" is also a proper subset of the parent's + "cpuset.cpus.effective". + 4) There is no child cgroups with cpuset enabled. This is for + eliminating corner cases that have to be handled if such a + condition is allowed. + + Setting it to partition root will take the CPUs away from the + effective CPUs of the parent cgroup. Once it is set, this + file cannot be reverted back to "member" if there are any child + cgroups with cpuset enabled. + + A parent partition cannot distribute all its CPUs to its + child partitions. There must be at least one cpu left in the + parent partition. + + Once becoming a partition root, changes to "cpuset.cpus" is + generally allowed as long as the first condition above is true, + the change will not take away all the CPUs from the parent + partition and the new "cpuset.cpus" value is a superset of its + children's "cpuset.cpus" values. + + Sometimes, external factors like changes to ancestors' + "cpuset.cpus" or cpu hotplug can cause the state of the partition + root to change. On read, the "cpuset.sched.partition" file + can show the following values. + + "member" Non-root member of a partition + "root" Partition root + "root invalid" Invalid partition root + + It is a partition root if the first 2 partition root conditions + above are true and at least one CPU from "cpuset.cpus" is + granted by the parent cgroup. + + A partition root can become invalid if none of CPUs requested + in "cpuset.cpus" can be granted by the parent cgroup or the + parent cgroup is no longer a partition root itself. In this + case, it is not a real partition even though the restriction + of the first partition root condition above will still apply. + The cpu affinity of all the tasks in the cgroup will then be + associated with CPUs in the nearest ancestor partition. + + An invalid partition root can be transitioned back to a + real partition root if at least one of the requested CPUs + can now be granted by its parent. In this case, the cpu + affinity of all the tasks in the formerly invalid partition + will be associated to the CPUs of the newly formed partition. + Changing the partition state of an invalid partition root to + "member" is always allowed even if child cpusets are present. + + Device controller ----------------- diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt index ff4daa780ae8..b7c9040f547e 100644 --- a/Documentation/admin-guide/kernel-parameters.txt +++ b/Documentation/admin-guide/kernel-parameters.txt @@ -486,10 +486,14 @@ cut the overhead, others just disable the usage. So only cgroup_disable=memory is actually worthy} - cgroup_no_v1= [KNL] Disable one, multiple, all cgroup controllers in v1 - Format: { controller[,controller...] | "all" } + cgroup_no_v1= [KNL] Disable cgroup controllers and named hierarchies in v1 + Format: { { controller | "all" | "named" } + [,{ controller | "all" | "named" }...] } Like cgroup_disable, but only applies to cgroup v1; the blacklisted controllers remain available in cgroup2. + "all" blacklists all controllers and "named" disables + named mounts. Specifying both "all" and "named" disables + all v1 hierarchies. cgroup.memory= [KNL] Pass options to the cgroup memory controller. Format: <string> diff --git a/include/linux/cgroup-defs.h b/include/linux/cgroup-defs.h index 5e1694fe035b..8fcbae1b8db0 100644 --- a/include/linux/cgroup-defs.h +++ b/include/linux/cgroup-defs.h @@ -92,6 +92,7 @@ enum { CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */ CFTYPE_WORLD_WRITABLE = (1 << 4), /* (DON'T USE FOR NEW FILES) S_IWUGO */ + CFTYPE_DEBUG = (1 << 5), /* create when cgroup_debug */ /* internal flags, do not use outside cgroup core proper */ __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */ diff --git a/kernel/cgroup/cgroup-internal.h b/kernel/cgroup/cgroup-internal.h index 75568fcf2180..c950864016e2 100644 --- a/kernel/cgroup/cgroup-internal.h +++ b/kernel/cgroup/cgroup-internal.h @@ -11,6 +11,8 @@ #define TRACE_CGROUP_PATH_LEN 1024 extern spinlock_t trace_cgroup_path_lock; extern char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; +extern bool cgroup_debug; +extern void __init enable_debug_cgroup(void); /* * cgroup_path() takes a spin lock. It is good practice not to take diff --git a/kernel/cgroup/cgroup-v1.c b/kernel/cgroup/cgroup-v1.c index 51063e7a93c2..583b969b0c0e 100644 --- a/kernel/cgroup/cgroup-v1.c +++ b/kernel/cgroup/cgroup-v1.c @@ -27,6 +27,9 @@ /* Controllers blocked by the commandline in v1 */ static u16 cgroup_no_v1_mask; +/* disable named v1 mounts */ +static bool cgroup_no_v1_named; + /* * pidlist destructions need to be flushed on cgroup destruction. Use a * separate workqueue as flush domain. @@ -963,6 +966,10 @@ static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) } if (!strncmp(token, "name=", 5)) { const char *name = token + 5; + + /* blocked by boot param? */ + if (cgroup_no_v1_named) + return -ENOENT; /* Can't specify an empty name */ if (!strlen(name)) return -EINVAL; @@ -1292,7 +1299,12 @@ static int __init cgroup_no_v1(char *str) if (!strcmp(token, "all")) { cgroup_no_v1_mask = U16_MAX; - break; + continue; + } + + if (!strcmp(token, "named")) { + cgroup_no_v1_named = true; + continue; } for_each_subsys(ss, i) { diff --git a/kernel/cgroup/cgroup.c b/kernel/cgroup/cgroup.c index 39eb36ba36ad..f31bd61c9466 100644 --- a/kernel/cgroup/cgroup.c +++ b/kernel/cgroup/cgroup.c @@ -86,6 +86,7 @@ EXPORT_SYMBOL_GPL(css_set_lock); DEFINE_SPINLOCK(trace_cgroup_path_lock); char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; +bool cgroup_debug __read_mostly; /* * Protects cgroup_idr and css_idr so that IDs can be released without @@ -1429,12 +1430,15 @@ static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, struct cgroup_subsys *ss = cft->ss; if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && - !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) - snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", - cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, + !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { + const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; + + snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", + dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, cft->name); - else + } else { strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); + } return buf; } @@ -1774,7 +1778,7 @@ static int parse_cgroup_root_flags(char *data, unsigned int *root_flags) *root_flags = 0; - if (!data) + if (!data || *data == '\0') return 0; while ((token = strsep(&data, ",")) != NULL) { @@ -3669,7 +3673,8 @@ restart: continue; if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) continue; - + if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) + continue; if (is_add) { ret = cgroup_add_file(css, cgrp, cft); if (ret) { @@ -4232,20 +4237,25 @@ static void css_task_iter_advance(struct css_task_iter *it) lockdep_assert_held(&css_set_lock); repeat: - /* - * Advance iterator to find next entry. cset->tasks is consumed - * first and then ->mg_tasks. After ->mg_tasks, we move onto the - * next cset. - */ - next = it->task_pos->next; + if (it->task_pos) { + /* + * Advance iterator to find next entry. cset->tasks is + * consumed first and then ->mg_tasks. After ->mg_tasks, + * we move onto the next cset. + */ + next = it->task_pos->next; - if (next == it->tasks_head) - next = it->mg_tasks_head->next; + if (next == it->tasks_head) + next = it->mg_tasks_head->next; - if (next == it->mg_tasks_head) + if (next == it->mg_tasks_head) + css_task_iter_advance_css_set(it); + else + it->task_pos = next; + } else { + /* called from start, proceed to the first cset */ css_task_iter_advance_css_set(it); - else - it->task_pos = next; + } /* if PROCS, skip over tasks which aren't group leaders */ if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos && @@ -4285,7 +4295,7 @@ void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, it->cset_head = it->cset_pos; - css_task_iter_advance_css_set(it); + css_task_iter_advance(it); spin_unlock_irq(&css_set_lock); } @@ -5773,6 +5783,16 @@ static int __init cgroup_disable(char *str) } __setup("cgroup_disable=", cgroup_disable); +void __init __weak enable_debug_cgroup(void) { } + +static int __init enable_cgroup_debug(char *str) +{ + cgroup_debug = true; + enable_debug_cgroup(); + return 1; +} +__setup("cgroup_debug", enable_cgroup_debug); + /** * css_tryget_online_from_dir - get corresponding css from a cgroup dentry * @dentry: directory dentry of interest @@ -6008,10 +6028,8 @@ static ssize_t show_delegatable_files(struct cftype *files, char *buf, ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); - if (unlikely(ret >= size)) { - WARN_ON(1); + if (WARN_ON(ret >= size)) break; - } } return ret; diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c index 9510a5b32eaf..479743db6c37 100644 --- a/kernel/cgroup/cpuset.c +++ b/kernel/cgroup/cpuset.c @@ -110,6 +110,16 @@ struct cpuset { nodemask_t effective_mems; /* + * CPUs allocated to child sub-partitions (default hierarchy only) + * - CPUs granted by the parent = effective_cpus U subparts_cpus + * - effective_cpus and subparts_cpus are mutually exclusive. + * + * effective_cpus contains only onlined CPUs, but subparts_cpus + * may have offlined ones. + */ + cpumask_var_t subparts_cpus; + + /* * This is old Memory Nodes tasks took on. * * - top_cpuset.old_mems_allowed is initialized to mems_allowed. @@ -134,6 +144,47 @@ struct cpuset { /* for custom sched domain */ int relax_domain_level; + + /* number of CPUs in subparts_cpus */ + int nr_subparts_cpus; + + /* partition root state */ + int partition_root_state; + + /* + * Default hierarchy only: + * use_parent_ecpus - set if using parent's effective_cpus + * child_ecpus_count - # of children with use_parent_ecpus set + */ + int use_parent_ecpus; + int child_ecpus_count; +}; + +/* + * Partition root states: + * + * 0 - not a partition root + * + * 1 - partition root + * + * -1 - invalid partition root + * None of the cpus in cpus_allowed can be put into the parent's + * subparts_cpus. In this case, the cpuset is not a real partition + * root anymore. However, the CPU_EXCLUSIVE bit will still be set + * and the cpuset can be restored back to a partition root if the + * parent cpuset can give more CPUs back to this child cpuset. + */ +#define PRS_DISABLED 0 +#define PRS_ENABLED 1 +#define PRS_ERROR -1 + +/* + * Temporary cpumasks for working with partitions that are passed among + * functions to avoid memory allocation in inner functions. + */ +struct tmpmasks { + cpumask_var_t addmask, delmask; /* For partition root */ + cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ }; static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) @@ -218,9 +269,15 @@ static inline int is_spread_slab(const struct cpuset *cs) return test_bit(CS_SPREAD_SLAB, &cs->flags); } +static inline int is_partition_root(const struct cpuset *cs) +{ + return cs->partition_root_state > 0; +} + static struct cpuset top_cpuset = { .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), + .partition_root_state = PRS_ENABLED, }; /** @@ -419,6 +476,65 @@ static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) } /** + * alloc_cpumasks - allocate three cpumasks for cpuset + * @cs: the cpuset that have cpumasks to be allocated. + * @tmp: the tmpmasks structure pointer + * Return: 0 if successful, -ENOMEM otherwise. + * + * Only one of the two input arguments should be non-NULL. + */ +static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) +{ + cpumask_var_t *pmask1, *pmask2, *pmask3; + + if (cs) { + pmask1 = &cs->cpus_allowed; + pmask2 = &cs->effective_cpus; + pmask3 = &cs->subparts_cpus; + } else { + pmask1 = &tmp->new_cpus; + pmask2 = &tmp->addmask; + pmask3 = &tmp->delmask; + } + + if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) + return -ENOMEM; + + if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) + goto free_one; + + if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) + goto free_two; + + return 0; + +free_two: + free_cpumask_var(*pmask2); +free_one: + free_cpumask_var(*pmask1); + return -ENOMEM; +} + +/** + * free_cpumasks - free cpumasks in a tmpmasks structure + * @cs: the cpuset that have cpumasks to be free. + * @tmp: the tmpmasks structure pointer + */ +static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) +{ + if (cs) { + free_cpumask_var(cs->cpus_allowed); + free_cpumask_var(cs->effective_cpus); + free_cpumask_var(cs->subparts_cpus); + } + if (tmp) { + free_cpumask_var(tmp->new_cpus); + free_cpumask_var(tmp->addmask); + free_cpumask_var(tmp->delmask); + } +} + +/** * alloc_trial_cpuset - allocate a trial cpuset * @cs: the cpuset that the trial cpuset duplicates */ @@ -430,31 +546,24 @@ static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) if (!trial) return NULL; - if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) - goto free_cs; - if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL)) - goto free_cpus; + if (alloc_cpumasks(trial, NULL)) { + kfree(trial); + return NULL; + } cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); cpumask_copy(trial->effective_cpus, cs->effective_cpus); return trial; - -free_cpus: - free_cpumask_var(trial->cpus_allowed); -free_cs: - kfree(trial); - return NULL; } /** - * free_trial_cpuset - free the trial cpuset - * @trial: the trial cpuset to be freed + * free_cpuset - free the cpuset + * @cs: the cpuset to be freed */ -static void free_trial_cpuset(struct cpuset *trial) +static inline void free_cpuset(struct cpuset *cs) { - free_cpumask_var(trial->effective_cpus); - free_cpumask_var(trial->cpus_allowed); - kfree(trial); + free_cpumasks(cs, NULL); + kfree(cs); } /* @@ -660,13 +769,14 @@ static int generate_sched_domains(cpumask_var_t **domains, int ndoms = 0; /* number of sched domains in result */ int nslot; /* next empty doms[] struct cpumask slot */ struct cgroup_subsys_state *pos_css; + bool root_load_balance = is_sched_load_balance(&top_cpuset); doms = NULL; dattr = NULL; csa = NULL; /* Special case for the 99% of systems with one, full, sched domain */ - if (is_sched_load_balance(&top_cpuset)) { + if (root_load_balance && !top_cpuset.nr_subparts_cpus) { ndoms = 1; doms = alloc_sched_domains(ndoms); if (!doms) @@ -689,6 +799,8 @@ static int generate_sched_domains(cpumask_var_t **domains, csn = 0; rcu_read_lock(); + if (root_load_balance) + csa[csn++] = &top_cpuset; cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { if (cp == &top_cpuset) continue; @@ -699,6 +811,9 @@ static int generate_sched_domains(cpumask_var_t **domains, * parent's cpus, so just skip them, and then we call * update_domain_attr_tree() to calc relax_domain_level of * the corresponding sched domain. + * + * If root is load-balancing, we can skip @cp if it + * is a subset of the root's effective_cpus. */ if (!cpumask_empty(cp->cpus_allowed) && !(is_sched_load_balance(cp) && @@ -706,11 +821,16 @@ static int generate_sched_domains(cpumask_var_t **domains, housekeeping_cpumask(HK_FLAG_DOMAIN)))) continue; + if (root_load_balance && + cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) + continue; + if (is_sched_load_balance(cp)) csa[csn++] = cp; - /* skip @cp's subtree */ - pos_css = css_rightmost_descendant(pos_css); + /* skip @cp's subtree if not a partition root */ + if (!is_partition_root(cp)) + pos_css = css_rightmost_descendant(pos_css); } rcu_read_unlock(); @@ -838,7 +958,12 @@ static void rebuild_sched_domains_locked(void) * passing doms with offlined cpu to partition_sched_domains(). * Anyways, hotplug work item will rebuild sched domains. */ - if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) + if (!top_cpuset.nr_subparts_cpus && + !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) + goto out; + + if (top_cpuset.nr_subparts_cpus && + !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask)) goto out; /* Generate domain masks and attrs */ @@ -881,10 +1006,248 @@ static void update_tasks_cpumask(struct cpuset *cs) css_task_iter_end(&it); } +/** + * compute_effective_cpumask - Compute the effective cpumask of the cpuset + * @new_cpus: the temp variable for the new effective_cpus mask + * @cs: the cpuset the need to recompute the new effective_cpus mask + * @parent: the parent cpuset + * + * If the parent has subpartition CPUs, include them in the list of + * allowable CPUs in computing the new effective_cpus mask. Since offlined + * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask + * to mask those out. + */ +static void compute_effective_cpumask(struct cpumask *new_cpus, + struct cpuset *cs, struct cpuset *parent) +{ + if (parent->nr_subparts_cpus) { + cpumask_or(new_cpus, parent->effective_cpus, + parent->subparts_cpus); + cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); + cpumask_and(new_cpus, new_cpus, cpu_active_mask); + } else { + cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); + } +} + +/* + * Commands for update_parent_subparts_cpumask + */ +enum subparts_cmd { + partcmd_enable, /* Enable partition root */ + partcmd_disable, /* Disable partition root */ + partcmd_update, /* Update parent's subparts_cpus */ +}; + +/** + * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset + * @cpuset: The cpuset that requests change in partition root state + * @cmd: Partition root state change command + * @newmask: Optional new cpumask for partcmd_update + * @tmp: Temporary addmask and delmask + * Return: 0, 1 or an error code + * + * For partcmd_enable, the cpuset is being transformed from a non-partition + * root to a partition root. The cpus_allowed mask of the given cpuset will + * be put into parent's subparts_cpus and taken away from parent's + * effective_cpus. The function will return 0 if all the CPUs listed in + * cpus_allowed can be granted or an error code will be returned. + * + * For partcmd_disable, the cpuset is being transofrmed from a partition + * root back to a non-partition root. any CPUs in cpus_allowed that are in + * parent's subparts_cpus will be taken away from that cpumask and put back + * into parent's effective_cpus. 0 should always be returned. + * + * For partcmd_update, if the optional newmask is specified, the cpu + * list is to be changed from cpus_allowed to newmask. Otherwise, + * cpus_allowed is assumed to remain the same. The cpuset should either + * be a partition root or an invalid partition root. The partition root + * state may change if newmask is NULL and none of the requested CPUs can + * be granted by the parent. The function will return 1 if changes to + * parent's subparts_cpus and effective_cpus happen or 0 otherwise. + * Error code should only be returned when newmask is non-NULL. + * + * The partcmd_enable and partcmd_disable commands are used by + * update_prstate(). The partcmd_update command is used by + * update_cpumasks_hier() with newmask NULL and update_cpumask() with + * newmask set. + * + * The checking is more strict when enabling partition root than the + * other two commands. + * + * Because of the implicit cpu exclusive nature of a partition root, + * cpumask changes that violates the cpu exclusivity rule will not be + * permitted when checked by validate_change(). The validate_change() + * function will also prevent any changes to the cpu list if it is not + * a superset of children's cpu lists. + */ +static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd, + struct cpumask *newmask, + struct tmpmasks *tmp) +{ + struct cpuset *parent = parent_cs(cpuset); + int adding; /* Moving cpus from effective_cpus to subparts_cpus */ + int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ + bool part_error = false; /* Partition error? */ + + lockdep_assert_held(&cpuset_mutex); + + /* + * The parent must be a partition root. + * The new cpumask, if present, or the current cpus_allowed must + * not be empty. + */ + if (!is_partition_root(parent) || + (newmask && cpumask_empty(newmask)) || + (!newmask && cpumask_empty(cpuset->cpus_allowed))) + return -EINVAL; + + /* + * Enabling/disabling partition root is not allowed if there are + * online children. + */ + if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css)) + return -EBUSY; + + /* + * Enabling partition root is not allowed if not all the CPUs + * can be granted from parent's effective_cpus or at least one + * CPU will be left after that. + */ + if ((cmd == partcmd_enable) && + (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) || + cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus))) + return -EINVAL; + + /* + * A cpumask update cannot make parent's effective_cpus become empty. + */ + adding = deleting = false; + if (cmd == partcmd_enable) { + cpumask_copy(tmp->addmask, cpuset->cpus_allowed); + adding = true; + } else if (cmd == partcmd_disable) { + deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, + parent->subparts_cpus); + } else if (newmask) { + /* + * partcmd_update with newmask: + * + * delmask = cpus_allowed & ~newmask & parent->subparts_cpus + * addmask = newmask & parent->effective_cpus + * & ~parent->subparts_cpus + */ + cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask); + deleting = cpumask_and(tmp->delmask, tmp->delmask, + parent->subparts_cpus); + + cpumask_and(tmp->addmask, newmask, parent->effective_cpus); + adding = cpumask_andnot(tmp->addmask, tmp->addmask, + parent->subparts_cpus); + /* + * Return error if the new effective_cpus could become empty. + */ + if (adding && + cpumask_equal(parent->effective_cpus, tmp->addmask)) { + if (!deleting) + return -EINVAL; + /* + * As some of the CPUs in subparts_cpus might have + * been offlined, we need to compute the real delmask + * to confirm that. + */ + if (!cpumask_and(tmp->addmask, tmp->delmask, + cpu_active_mask)) + return -EINVAL; + cpumask_copy(tmp->addmask, parent->effective_cpus); + } + } else { + /* + * partcmd_update w/o newmask: + * + * addmask = cpus_allowed & parent->effectiveb_cpus + * + * Note that parent's subparts_cpus may have been + * pre-shrunk in case there is a change in the cpu list. + * So no deletion is needed. + */ + adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed, + parent->effective_cpus); + part_error = cpumask_equal(tmp->addmask, + parent->effective_cpus); + } + + if (cmd == partcmd_update) { + int prev_prs = cpuset->partition_root_state; + + /* + * Check for possible transition between PRS_ENABLED + * and PRS_ERROR. + */ + switch (cpuset->partition_root_state) { + case PRS_ENABLED: + if (part_error) + cpuset->partition_root_state = PRS_ERROR; + break; + case PRS_ERROR: + if (!part_error) + cpuset->partition_root_state = PRS_ENABLED; + break; + } + /* + * Set part_error if previously in invalid state. + */ + part_error = (prev_prs == PRS_ERROR); + } + + if (!part_error && (cpuset->partition_root_state == PRS_ERROR)) + return 0; /* Nothing need to be done */ + + if (cpuset->partition_root_state == PRS_ERROR) { + /* + * Remove all its cpus from parent's subparts_cpus. + */ + adding = false; + deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, + parent->subparts_cpus); + } + + if (!adding && !deleting) + return 0; + + /* + * Change the parent's subparts_cpus. + * Newly added CPUs will be removed from effective_cpus and + * newly deleted ones will be added back to effective_cpus. + */ + spin_lock_irq(&callback_lock); + if (adding) { + cpumask_or(parent->subparts_cpus, + parent->subparts_cpus, tmp->addmask); + cpumask_andnot(parent->effective_cpus, + parent->effective_cpus, tmp->addmask); + } + if (deleting) { + cpumask_andnot(parent->subparts_cpus, + parent->subparts_cpus, tmp->delmask); + /* + * Some of the CPUs in subparts_cpus might have been offlined. + */ + cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); + cpumask_or(parent->effective_cpus, + parent->effective_cpus, tmp->delmask); + } + + parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); + spin_unlock_irq(&callback_lock); + + return cmd == partcmd_update; +} + /* * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree - * @cs: the cpuset to consider - * @new_cpus: temp variable for calculating new effective_cpus + * @cs: the cpuset to consider + * @tmp: temp variables for calculating effective_cpus & partition setup * * When congifured cpumask is changed, the effective cpumasks of this cpuset * and all its descendants need to be updated. @@ -893,7 +1256,7 @@ static void update_tasks_cpumask(struct cpuset *cs) * * Called with cpuset_mutex held */ -static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus) +static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp) { struct cpuset *cp; struct cgroup_subsys_state *pos_css; @@ -903,27 +1266,115 @@ static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus) cpuset_for_each_descendant_pre(cp, pos_css, cs) { struct cpuset *parent = parent_cs(cp); - cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus); + compute_effective_cpumask(tmp->new_cpus, cp, parent); /* * If it becomes empty, inherit the effective mask of the * parent, which is guaranteed to have some CPUs. */ - if (is_in_v2_mode() && cpumask_empty(new_cpus)) - cpumask_copy(new_cpus, parent->effective_cpus); + if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { + cpumask_copy(tmp->new_cpus, parent->effective_cpus); + if (!cp->use_parent_ecpus) { + cp->use_parent_ecpus = true; + parent->child_ecpus_count++; + } + } else if (cp->use_parent_ecpus) { + cp->use_parent_ecpus = false; + WARN_ON_ONCE(!parent->child_ecpus_count); + parent->child_ecpus_count--; + } - /* Skip the whole subtree if the cpumask remains the same. */ - if (cpumask_equal(new_cpus, cp->effective_cpus)) { + /* + * Skip the whole subtree if the cpumask remains the same + * and has no partition root state. + */ + if (!cp->partition_root_state && + cpumask_equal(tmp->new_cpus, cp->effective_cpus)) { pos_css = css_rightmost_descendant(pos_css); continue; } + /* + * update_parent_subparts_cpumask() should have been called + * for cs already in update_cpumask(). We should also call + * update_tasks_cpumask() again for tasks in the parent + * cpuset if the parent's subparts_cpus changes. + */ + if ((cp != cs) && cp->partition_root_state) { + switch (parent->partition_root_state) { + case PRS_DISABLED: + /* + * If parent is not a partition root or an + * invalid partition root, clear the state + * state and the CS_CPU_EXCLUSIVE flag. + */ + WARN_ON_ONCE(cp->partition_root_state + != PRS_ERROR); + cp->partition_root_state = 0; + + /* + * clear_bit() is an atomic operation and + * readers aren't interested in the state + * of CS_CPU_EXCLUSIVE anyway. So we can + * just update the flag without holding + * the callback_lock. + */ + clear_bit(CS_CPU_EXCLUSIVE, &cp->flags); + break; + + case PRS_ENABLED: + if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp)) + update_tasks_cpumask(parent); + break; + + case PRS_ERROR: + /* + * When parent is invalid, it has to be too. + */ + cp->partition_root_state = PRS_ERROR; + if (cp->nr_subparts_cpus) { + cp->nr_subparts_cpus = 0; + cpumask_clear(cp->subparts_cpus); + } + break; + } + } + if (!css_tryget_online(&cp->css)) continue; rcu_read_unlock(); spin_lock_irq(&callback_lock); - cpumask_copy(cp->effective_cpus, new_cpus); + + cpumask_copy(cp->effective_cpus, tmp->new_cpus); + if (cp->nr_subparts_cpus && + (cp->partition_root_state != PRS_ENABLED)) { + cp->nr_subparts_cpus = 0; + cpumask_clear(cp->subparts_cpus); + } else if (cp->nr_subparts_cpus) { + /* + * Make sure that effective_cpus & subparts_cpus + * are mutually exclusive. + * + * In the unlikely event that effective_cpus + * becomes empty. we clear cp->nr_subparts_cpus and + * let its child partition roots to compete for + * CPUs again. + */ + cpumask_andnot(cp->effective_cpus, cp->effective_cpus, + cp->subparts_cpus); + if (cpumask_empty(cp->effective_cpus)) { + cpumask_copy(cp->effective_cpus, tmp->new_cpus); + cpumask_clear(cp->subparts_cpus); + cp->nr_subparts_cpus = 0; + } else if (!cpumask_subset(cp->subparts_cpus, + tmp->new_cpus)) { + cpumask_andnot(cp->subparts_cpus, + cp->subparts_cpus, tmp->new_cpus); + cp->nr_subparts_cpus + = cpumask_weight(cp->subparts_cpus); + } + } spin_unlock_irq(&callback_lock); WARN_ON(!is_in_v2_mode() && @@ -932,11 +1383,15 @@ static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus) update_tasks_cpumask(cp); /* - * If the effective cpumask of any non-empty cpuset is changed, - * we need to rebuild sched domains. + * On legacy hierarchy, if the effective cpumask of any non- + * empty cpuset is changed, we need to rebuild sched domains. + * On default hierarchy, the cpuset needs to be a partition + * root as well. */ if (!cpumask_empty(cp->cpus_allowed) && - is_sched_load_balance(cp)) + is_sched_load_balance(cp) && + (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || + is_partition_root(cp))) need_rebuild_sched_domains = true; rcu_read_lock(); @@ -949,6 +1404,35 @@ static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus) } /** + * update_sibling_cpumasks - Update siblings cpumasks + * @parent: Parent cpuset + * @cs: Current cpuset + * @tmp: Temp variables + */ +static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, + struct tmpmasks *tmp) +{ + struct cpuset *sibling; + struct cgroup_subsys_state *pos_css; + + /* + * Check all its siblings and call update_cpumasks_hier() + * if their use_parent_ecpus flag is set in order for them + * to use the right effective_cpus value. + */ + rcu_read_lock(); + cpuset_for_each_child(sibling, pos_css, parent) { + if (sibling == cs) + continue; + if (!sibling->use_parent_ecpus) + continue; + + update_cpumasks_hier(sibling, tmp); + } + rcu_read_unlock(); +} + +/** * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it * @cs: the cpuset to consider * @trialcs: trial cpuset @@ -958,6 +1442,7 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, const char *buf) { int retval; + struct tmpmasks tmp; /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ if (cs == &top_cpuset) @@ -989,12 +1474,50 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, if (retval < 0) return retval; +#ifdef CONFIG_CPUMASK_OFFSTACK + /* + * Use the cpumasks in trialcs for tmpmasks when they are pointers + * to allocated cpumasks. + */ + tmp.addmask = trialcs->subparts_cpus; + tmp.delmask = trialcs->effective_cpus; + tmp.new_cpus = trialcs->cpus_allowed; +#endif + + if (cs->partition_root_state) { + /* Cpumask of a partition root cannot be empty */ + if (cpumask_empty(trialcs->cpus_allowed)) + return -EINVAL; + if (update_parent_subparts_cpumask(cs, partcmd_update, + trialcs->cpus_allowed, &tmp) < 0) + return -EINVAL; + } + spin_lock_irq(&callback_lock); cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); + + /* + * Make sure that subparts_cpus is a subset of cpus_allowed. + */ + if (cs->nr_subparts_cpus) { + cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus, + cs->cpus_allowed); + cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); + } spin_unlock_irq(&callback_lock); - /* use trialcs->cpus_allowed as a temp variable */ - update_cpumasks_hier(cs, trialcs->cpus_allowed); + update_cpumasks_hier(cs, &tmp); + + if (cs->partition_root_state) { + struct cpuset *parent = parent_cs(cs); + + /* + * For partition root, update the cpumasks of sibling + * cpusets if they use parent's effective_cpus. + */ + if (parent->child_ecpus_count) + update_sibling_cpumasks(parent, cs, &tmp); + } return 0; } @@ -1348,7 +1871,95 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, if (spread_flag_changed) update_tasks_flags(cs); out: - free_trial_cpuset(trialcs); + free_cpuset(trialcs); + return err; +} + +/* + * update_prstate - update partititon_root_state + * cs: the cpuset to update + * val: 0 - disabled, 1 - enabled + * + * Call with cpuset_mutex held. + */ +static int update_prstate(struct cpuset *cs, int val) +{ + int err; + struct cpuset *parent = parent_cs(cs); + struct tmpmasks tmp; + + if ((val != 0) && (val != 1)) + return -EINVAL; + if (val == cs->partition_root_state) + return 0; + + /* + * Cannot force a partial or invalid partition root to a full + * partition root. + */ + if (val && cs->partition_root_state) + return -EINVAL; + + if (alloc_cpumasks(NULL, &tmp)) + return -ENOMEM; + + err = -EINVAL; + if (!cs->partition_root_state) { + /* + * Turning on partition root requires setting the + * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed + * cannot be NULL. + */ + if (cpumask_empty(cs->cpus_allowed)) + goto out; + + err = update_flag(CS_CPU_EXCLUSIVE, cs, 1); + if (err) + goto out; + + err = update_parent_subparts_cpumask(cs, partcmd_enable, + NULL, &tmp); + if (err) { + update_flag(CS_CPU_EXCLUSIVE, cs, 0); + goto out; + } + cs->partition_root_state = PRS_ENABLED; + } else { + /* + * Turning off partition root will clear the + * CS_CPU_EXCLUSIVE bit. + */ + if (cs->partition_root_state == PRS_ERROR) { + cs->partition_root_state = 0; + update_flag(CS_CPU_EXCLUSIVE, cs, 0); + err = 0; + goto out; + } + + err = update_parent_subparts_cpumask(cs, partcmd_disable, + NULL, &tmp); + if (err) + goto out; + + cs->partition_root_state = 0; + + /* Turning off CS_CPU_EXCLUSIVE will not return error */ + update_flag(CS_CPU_EXCLUSIVE, cs, 0); + } + + /* + * Update cpumask of parent's tasks except when it is the top + * cpuset as some system daemons cannot be mapped to other CPUs. + */ + if (parent != &top_cpuset) + update_tasks_cpumask(parent); + + if (parent->child_ecpus_count) + update_sibling_cpumasks(parent, cs, &tmp); + + rebuild_sched_domains_locked(); +out: + free_cpumasks(NULL, &tmp); return err; } @@ -1498,10 +2109,8 @@ out_unlock: static void cpuset_cancel_attach(struct cgroup_taskset *tset) { struct cgroup_subsys_state *css; - struct cpuset *cs; cgroup_taskset_first(tset, &css); - cs = css_cs(css); mutex_lock(&cpuset_mutex); css_cs(css)->attach_in_progress--; @@ -1593,10 +2202,12 @@ typedef enum { FILE_MEMLIST, FILE_EFFECTIVE_CPULIST, FILE_EFFECTIVE_MEMLIST, + FILE_SUBPARTS_CPULIST, FILE_CPU_EXCLUSIVE, FILE_MEM_EXCLUSIVE, FILE_MEM_HARDWALL, FILE_SCHED_LOAD_BALANCE, + FILE_PARTITION_ROOT, FILE_SCHED_RELAX_DOMAIN_LEVEL, FILE_MEMORY_PRESSURE_ENABLED, FILE_MEMORY_PRESSURE, @@ -1732,7 +2343,7 @@ static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, break; } - free_trial_cpuset(trialcs); + free_cpuset(trialcs); out_unlock: mutex_unlock(&cpuset_mutex); kernfs_unbreak_active_protection(of->kn); @@ -1770,6 +2381,9 @@ static int cpuset_common_seq_show(struct seq_file *sf, void *v) case FILE_EFFECTIVE_MEMLIST: seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); break; + case FILE_SUBPARTS_CPULIST: + seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); + break; default: ret = -EINVAL; } @@ -1824,12 +2438,60 @@ static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) return 0; } +static int sched_partition_show(struct seq_file *seq, void *v) +{ + struct cpuset *cs = css_cs(seq_css(seq)); + + switch (cs->partition_root_state) { + case PRS_ENABLED: + seq_puts(seq, "root\n"); + break; + case PRS_DISABLED: + seq_puts(seq, "member\n"); + break; + case PRS_ERROR: + seq_puts(seq, "root invalid\n"); + break; + } + return 0; +} + +static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off) +{ + struct cpuset *cs = css_cs(of_css(of)); + int val; + int retval = -ENODEV; + + buf = strstrip(buf); + + /* + * Convert "root" to ENABLED, and convert "member" to DISABLED. + */ + if (!strcmp(buf, "root")) + val = PRS_ENABLED; + else if (!strcmp(buf, "member")) + val = PRS_DISABLED; + else + return -EINVAL; + + css_get(&cs->css); + mutex_lock(&cpuset_mutex); + if (!is_cpuset_online(cs)) + goto out_unlock; + + retval = update_prstate(cs, val); +out_unlock: + mutex_unlock(&cpuset_mutex); + css_put(&cs->css); + return retval ?: nbytes; +} /* * for the common functions, 'private' gives the type of file */ -static struct cftype files[] = { +static struct cftype legacy_files[] = { { .name = "cpus", .seq_show = cpuset_common_seq_show, @@ -1932,6 +2594,60 @@ static struct cftype files[] = { }; /* + * This is currently a minimal set for the default hierarchy. It can be + * expanded later on by migrating more features and control files from v1. + */ +static struct cftype dfl_files[] = { + { + .name = "cpus", + .seq_show = cpuset_common_seq_show, + .write = cpuset_write_resmask, + .max_write_len = (100U + 6 * NR_CPUS), + .private = FILE_CPULIST, + .flags = CFTYPE_NOT_ON_ROOT, + }, + + { + .name = "mems", + .seq_show = cpuset_common_seq_show, + .write = cpuset_write_resmask, + .max_write_len = (100U + 6 * MAX_NUMNODES), + .private = FILE_MEMLIST, + .flags = CFTYPE_NOT_ON_ROOT, + }, + + { + .name = "cpus.effective", + .seq_show = cpuset_common_seq_show, + .private = FILE_EFFECTIVE_CPULIST, + }, + + { + .name = "mems.effective", + .seq_show = cpuset_common_seq_show, + .private = FILE_EFFECTIVE_MEMLIST, + }, + + { + .name = "cpus.partition", + .seq_show = sched_partition_show, + .write = sched_partition_write, + .private = FILE_PARTITION_ROOT, + .flags = CFTYPE_NOT_ON_ROOT, + }, + + { + .name = "cpus.subpartitions", + .seq_show = cpuset_common_seq_show, + .private = FILE_SUBPARTS_CPULIST, + .flags = CFTYPE_DEBUG, + }, + + { } /* terminate */ +}; + + +/* * cpuset_css_alloc - allocate a cpuset css * cgrp: control group that the new cpuset will be part of */ @@ -1947,26 +2663,19 @@ cpuset_css_alloc(struct cgroup_subsys_state *parent_css) cs = kzalloc(sizeof(*cs), GFP_KERNEL); if (!cs) return ERR_PTR(-ENOMEM); - if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) - goto free_cs; - if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL)) - goto free_cpus; + + if (alloc_cpumasks(cs, NULL)) { + kfree(cs); + return ERR_PTR(-ENOMEM); + } set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); - cpumask_clear(cs->cpus_allowed); nodes_clear(cs->mems_allowed); - cpumask_clear(cs->effective_cpus); nodes_clear(cs->effective_mems); fmeter_init(&cs->fmeter); cs->relax_domain_level = -1; return &cs->css; - -free_cpus: - free_cpumask_var(cs->cpus_allowed); -free_cs: - kfree(cs); - return ERR_PTR(-ENOMEM); } static int cpuset_css_online(struct cgroup_subsys_state *css) @@ -1993,6 +2702,8 @@ static int cpuset_css_online(struct cgroup_subsys_state *css) if (is_in_v2_mode()) { cpumask_copy(cs->effective_cpus, parent->effective_cpus); cs->effective_mems = parent->effective_mems; + cs->use_parent_ecpus = true; + parent->child_ecpus_count++; } spin_unlock_irq(&callback_lock); @@ -2035,7 +2746,12 @@ out_unlock: /* * If the cpuset being removed has its flag 'sched_load_balance' * enabled, then simulate turning sched_load_balance off, which - * will call rebuild_sched_domains_locked(). + * will call rebuild_sched_domains_locked(). That is not needed + * in the default hierarchy where only changes in partition + * will cause repartitioning. + * + * If the cpuset has the 'sched.partition' flag enabled, simulate + * turning 'sched.partition" off. */ static void cpuset_css_offline(struct cgroup_subsys_state *css) @@ -2044,9 +2760,20 @@ static void cpuset_css_offline(struct cgroup_subsys_state *css) mutex_lock(&cpuset_mutex); - if (is_sched_load_balance(cs)) + if (is_partition_root(cs)) + update_prstate(cs, 0); + + if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && + is_sched_load_balance(cs)) update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); + if (cs->use_parent_ecpus) { + struct cpuset *parent = parent_cs(cs); + + cs->use_parent_ecpus = false; + parent->child_ecpus_count--; + } + cpuset_dec(); clear_bit(CS_ONLINE, &cs->flags); @@ -2057,9 +2784,7 @@ static void cpuset_css_free(struct cgroup_subsys_state *css) { struct cpuset *cs = css_cs(css); - free_cpumask_var(cs->effective_cpus); - free_cpumask_var(cs->cpus_allowed); - kfree(cs); + free_cpuset(cs); } static void cpuset_bind(struct cgroup_subsys_state *root_css) @@ -2105,8 +2830,10 @@ struct cgroup_subsys cpuset_cgrp_subsys = { .post_attach = cpuset_post_attach, .bind = cpuset_bind, .fork = cpuset_fork, - .legacy_cftypes = files, + .legacy_cftypes = legacy_files, + .dfl_cftypes = dfl_files, .early_init = true, + .threaded = true, }; /** @@ -2121,6 +2848,7 @@ int __init cpuset_init(void) BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); + BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); cpumask_setall(top_cpuset.cpus_allowed); nodes_setall(top_cpuset.mems_allowed); @@ -2227,20 +2955,29 @@ hotplug_update_tasks(struct cpuset *cs, update_tasks_nodemask(cs); } +static bool force_rebuild; + +void cpuset_force_rebuild(void) +{ + force_rebuild = true; +} + /** * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug * @cs: cpuset in interest + * @tmp: the tmpmasks structure pointer * * Compare @cs's cpu and mem masks against top_cpuset and if some have gone * offline, update @cs accordingly. If @cs ends up with no CPU or memory, * all its tasks are moved to the nearest ancestor with both resources. */ -static void cpuset_hotplug_update_tasks(struct cpuset *cs) +static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) { static cpumask_t new_cpus; static nodemask_t new_mems; bool cpus_updated; bool mems_updated; + struct cpuset *parent; retry: wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); @@ -2255,9 +2992,60 @@ retry: goto retry; } - cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus); - nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems); + parent = parent_cs(cs); + compute_effective_cpumask(&new_cpus, cs, parent); + nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); + + if (cs->nr_subparts_cpus) + /* + * Make sure that CPUs allocated to child partitions + * do not show up in effective_cpus. + */ + cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); + + if (!tmp || !cs->partition_root_state) + goto update_tasks; + + /* + * In the unlikely event that a partition root has empty + * effective_cpus or its parent becomes erroneous, we have to + * transition it to the erroneous state. + */ + if (is_partition_root(cs) && (cpumask_empty(&new_cpus) || + (parent->partition_root_state == PRS_ERROR))) { + if (cs->nr_subparts_cpus) { + cs->nr_subparts_cpus = 0; + cpumask_clear(cs->subparts_cpus); + compute_effective_cpumask(&new_cpus, cs, parent); + } + + /* + * If the effective_cpus is empty because the child + * partitions take away all the CPUs, we can keep + * the current partition and let the child partitions + * fight for available CPUs. + */ + if ((parent->partition_root_state == PRS_ERROR) || + cpumask_empty(&new_cpus)) { + update_parent_subparts_cpumask(cs, partcmd_disable, + NULL, tmp); + cs->partition_root_state = PRS_ERROR; + } + cpuset_force_rebuild(); + } + + /* + * On the other hand, an erroneous partition root may be transitioned + * back to a regular one or a partition root with no CPU allocated + * from the parent may change to erroneous. + */ + if (is_partition_root(parent) && + ((cs->partition_root_state == PRS_ERROR) || + !cpumask_intersects(&new_cpus, parent->subparts_cpus)) && + update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp)) + cpuset_force_rebuild(); +update_tasks: cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); mems_updated = !nodes_equal(new_mems, cs->effective_mems); @@ -2271,13 +3059,6 @@ retry: mutex_unlock(&cpuset_mutex); } -static bool force_rebuild; - -void cpuset_force_rebuild(void) -{ - force_rebuild = true; -} - /** * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset * @@ -2300,6 +3081,10 @@ static void cpuset_hotplug_workfn(struct work_struct *work) static nodemask_t new_mems; bool cpus_updated, mems_updated; bool on_dfl = is_in_v2_mode(); + struct tmpmasks tmp, *ptmp = NULL; + + if (on_dfl && !alloc_cpumasks(NULL, &tmp)) + ptmp = &tmp; mutex_lock(&cpuset_mutex); @@ -2307,6 +3092,11 @@ static void cpuset_hotplug_workfn(struct work_struct *work) cpumask_copy(&new_cpus, cpu_active_mask); new_mems = node_states[N_MEMORY]; + /* + * If subparts_cpus is populated, it is likely that the check below + * will produce a false positive on cpus_updated when the cpu list + * isn't changed. It is extra work, but it is better to be safe. + */ cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); @@ -2315,6 +3105,22 @@ static void cpuset_hotplug_workfn(struct work_struct *work) spin_lock_irq(&callback_lock); if (!on_dfl) cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); + /* + * Make sure that CPUs allocated to child partitions + * do not show up in effective_cpus. If no CPU is left, + * we clear the subparts_cpus & let the child partitions + * fight for the CPUs again. + */ + if (top_cpuset.nr_subparts_cpus) { + if (cpumask_subset(&new_cpus, + top_cpuset.subparts_cpus)) { + top_cpuset.nr_subparts_cpus = 0; + cpumask_clear(top_cpuset.subparts_cpus); + } else { + cpumask_andnot(&new_cpus, &new_cpus, + top_cpuset.subparts_cpus); + } + } cpumask_copy(top_cpuset.effective_cpus, &new_cpus); spin_unlock_irq(&callback_lock); /* we don't mess with cpumasks of tasks in top_cpuset */ @@ -2343,7 +3149,7 @@ static void cpuset_hotplug_workfn(struct work_struct *work) continue; rcu_read_unlock(); - cpuset_hotplug_update_tasks(cs); + cpuset_hotplug_update_tasks(cs, ptmp); rcu_read_lock(); css_put(&cs->css); @@ -2356,6 +3162,8 @@ static void cpuset_hotplug_workfn(struct work_struct *work) force_rebuild = false; rebuild_sched_domains(); } + + free_cpumasks(NULL, ptmp); } void cpuset_update_active_cpus(void) diff --git a/kernel/cgroup/debug.c b/kernel/cgroup/debug.c index 9caeda610249..5f1b87330bee 100644 --- a/kernel/cgroup/debug.c +++ b/kernel/cgroup/debug.c @@ -373,11 +373,9 @@ struct cgroup_subsys debug_cgrp_subsys = { * On v2, debug is an implicit controller enabled by "cgroup_debug" boot * parameter. */ -static int __init enable_cgroup_debug(char *str) +void __init enable_debug_cgroup(void) { debug_cgrp_subsys.dfl_cftypes = debug_files; debug_cgrp_subsys.implicit_on_dfl = true; debug_cgrp_subsys.threaded = true; - return 1; } -__setup("cgroup_debug", enable_cgroup_debug); |