summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorPaolo Bonzini <pbonzini@redhat.com>2015-01-23 13:39:51 +0100
committerPaolo Bonzini <pbonzini@redhat.com>2015-01-23 13:39:51 +0100
commit1c6007d59a20762052cc92c0a2889ff11030d23a (patch)
tree40bd72fe4e4d38a811312e5ae35bafd04c995d40
parentMerge branch 'arm64/common-esr-macros' of git://git.kernel.org/pub/scm/linux/... (diff)
parentKVM: Remove unused config symbol (diff)
downloadlinux-1c6007d59a20762052cc92c0a2889ff11030d23a.tar.xz
linux-1c6007d59a20762052cc92c0a2889ff11030d23a.zip
Merge tag 'kvm-arm-for-3.20' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-next
KVM/ARM changes for v3.20 including GICv3 emulation, dirty page logging, added trace symbols, and adding an explicit VGIC init device control IOCTL. Conflicts: arch/arm64/include/asm/kvm_arm.h arch/arm64/kvm/handle_exit.c
-rw-r--r--Documentation/virtual/kvm/api.txt13
-rw-r--r--Documentation/virtual/kvm/devices/arm-vgic.txt37
-rw-r--r--arch/arm/include/asm/kvm_asm.h1
-rw-r--r--arch/arm/include/asm/kvm_emulate.h5
-rw-r--r--arch/arm/include/asm/kvm_host.h5
-rw-r--r--arch/arm/include/asm/kvm_mmio.h1
-rw-r--r--arch/arm/include/asm/kvm_mmu.h21
-rw-r--r--arch/arm/include/asm/pgtable-3level.h1
-rw-r--r--arch/arm/include/uapi/asm/kvm.h2
-rw-r--r--arch/arm/kvm/Kconfig2
-rw-r--r--arch/arm/kvm/Makefile1
-rw-r--r--arch/arm/kvm/arm.c55
-rw-r--r--arch/arm/kvm/handle_exit.c8
-rw-r--r--arch/arm/kvm/interrupts.S11
-rw-r--r--arch/arm/kvm/mmu.c257
-rw-r--r--arch/arm/kvm/psci.c17
-rw-r--r--arch/arm/kvm/trace.h11
-rw-r--r--arch/arm64/include/asm/esr.h1
-rw-r--r--arch/arm64/include/asm/kvm_asm.h1
-rw-r--r--arch/arm64/include/asm/kvm_emulate.h10
-rw-r--r--arch/arm64/include/asm/kvm_host.h6
-rw-r--r--arch/arm64/include/asm/kvm_mmio.h1
-rw-r--r--arch/arm64/include/asm/kvm_mmu.h21
-rw-r--r--arch/arm64/include/asm/pgtable-hwdef.h1
-rw-r--r--arch/arm64/include/uapi/asm/kvm.h9
-rw-r--r--arch/arm64/kernel/asm-offsets.c1
-rw-r--r--arch/arm64/kvm/Kconfig2
-rw-r--r--arch/arm64/kvm/Makefile2
-rw-r--r--arch/arm64/kvm/handle_exit.c13
-rw-r--r--arch/arm64/kvm/hyp.S22
-rw-r--r--arch/arm64/kvm/sys_regs.c40
-rw-r--r--arch/arm64/kvm/trace.h55
-rw-r--r--arch/arm64/kvm/vgic-v3-switch.S14
-rw-r--r--arch/x86/include/asm/kvm_host.h3
-rw-r--r--arch/x86/kvm/Kconfig1
-rw-r--r--arch/x86/kvm/mmu.c4
-rw-r--r--arch/x86/kvm/x86.c72
-rw-r--r--drivers/irqchip/irq-gic-v3.c14
-rw-r--r--include/kvm/arm_vgic.h43
-rw-r--r--include/linux/irqchip/arm-gic-v3.h44
-rw-r--r--include/linux/kvm_host.h11
-rw-r--r--include/uapi/linux/kvm.h2
-rw-r--r--virt/kvm/Kconfig6
-rw-r--r--virt/kvm/arm/vgic-v2-emul.c847
-rw-r--r--virt/kvm/arm/vgic-v2.c4
-rw-r--r--virt/kvm/arm/vgic-v3-emul.c1036
-rw-r--r--virt/kvm/arm/vgic-v3.c82
-rw-r--r--virt/kvm/arm/vgic.c1127
-rw-r--r--virt/kvm/arm/vgic.h123
-rw-r--r--virt/kvm/kvm_main.c82
50 files changed, 3152 insertions, 996 deletions
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt
index 0007fef4ed81..f4b19d78782b 100644
--- a/Documentation/virtual/kvm/api.txt
+++ b/Documentation/virtual/kvm/api.txt
@@ -612,11 +612,14 @@ Type: vm ioctl
Parameters: none
Returns: 0 on success, -1 on error
-Creates an interrupt controller model in the kernel. On x86, creates a virtual
-ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a
-local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23
-only go to the IOAPIC. On ARM/arm64, a GIC is
-created. On s390, a dummy irq routing table is created.
+Creates an interrupt controller model in the kernel.
+On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
+future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both
+PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
+On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
+KVM_CREATE_DEVICE, which also supports creating a GICv2. Using
+KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
+On s390, a dummy irq routing table is created.
Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
before KVM_CREATE_IRQCHIP can be used.
diff --git a/Documentation/virtual/kvm/devices/arm-vgic.txt b/Documentation/virtual/kvm/devices/arm-vgic.txt
index df8b0c7540b6..3fb905429e8a 100644
--- a/Documentation/virtual/kvm/devices/arm-vgic.txt
+++ b/Documentation/virtual/kvm/devices/arm-vgic.txt
@@ -3,22 +3,42 @@ ARM Virtual Generic Interrupt Controller (VGIC)
Device types supported:
KVM_DEV_TYPE_ARM_VGIC_V2 ARM Generic Interrupt Controller v2.0
+ KVM_DEV_TYPE_ARM_VGIC_V3 ARM Generic Interrupt Controller v3.0
Only one VGIC instance may be instantiated through either this API or the
legacy KVM_CREATE_IRQCHIP api. The created VGIC will act as the VM interrupt
controller, requiring emulated user-space devices to inject interrupts to the
VGIC instead of directly to CPUs.
+Creating a guest GICv3 device requires a host GICv3 as well.
+GICv3 implementations with hardware compatibility support allow a guest GICv2
+as well.
+
Groups:
KVM_DEV_ARM_VGIC_GRP_ADDR
Attributes:
KVM_VGIC_V2_ADDR_TYPE_DIST (rw, 64-bit)
Base address in the guest physical address space of the GIC distributor
- register mappings.
+ register mappings. Only valid for KVM_DEV_TYPE_ARM_VGIC_V2.
+ This address needs to be 4K aligned and the region covers 4 KByte.
KVM_VGIC_V2_ADDR_TYPE_CPU (rw, 64-bit)
Base address in the guest physical address space of the GIC virtual cpu
- interface register mappings.
+ interface register mappings. Only valid for KVM_DEV_TYPE_ARM_VGIC_V2.
+ This address needs to be 4K aligned and the region covers 4 KByte.
+
+ KVM_VGIC_V3_ADDR_TYPE_DIST (rw, 64-bit)
+ Base address in the guest physical address space of the GICv3 distributor
+ register mappings. Only valid for KVM_DEV_TYPE_ARM_VGIC_V3.
+ This address needs to be 64K aligned and the region covers 64 KByte.
+
+ KVM_VGIC_V3_ADDR_TYPE_REDIST (rw, 64-bit)
+ Base address in the guest physical address space of the GICv3
+ redistributor register mappings. There are two 64K pages for each
+ VCPU and all of the redistributor pages are contiguous.
+ Only valid for KVM_DEV_TYPE_ARM_VGIC_V3.
+ This address needs to be 64K aligned.
+
KVM_DEV_ARM_VGIC_GRP_DIST_REGS
Attributes:
@@ -36,6 +56,7 @@ Groups:
the register.
Limitations:
- Priorities are not implemented, and registers are RAZ/WI
+ - Currently only implemented for KVM_DEV_TYPE_ARM_VGIC_V2.
Errors:
-ENODEV: Getting or setting this register is not yet supported
-EBUSY: One or more VCPUs are running
@@ -68,6 +89,7 @@ Groups:
Limitations:
- Priorities are not implemented, and registers are RAZ/WI
+ - Currently only implemented for KVM_DEV_TYPE_ARM_VGIC_V2.
Errors:
-ENODEV: Getting or setting this register is not yet supported
-EBUSY: One or more VCPUs are running
@@ -81,3 +103,14 @@ Groups:
-EINVAL: Value set is out of the expected range
-EBUSY: Value has already be set, or GIC has already been initialized
with default values.
+
+ KVM_DEV_ARM_VGIC_GRP_CTRL
+ Attributes:
+ KVM_DEV_ARM_VGIC_CTRL_INIT
+ request the initialization of the VGIC, no additional parameter in
+ kvm_device_attr.addr.
+ Errors:
+ -ENXIO: VGIC not properly configured as required prior to calling
+ this attribute
+ -ENODEV: no online VCPU
+ -ENOMEM: memory shortage when allocating vgic internal data
diff --git a/arch/arm/include/asm/kvm_asm.h b/arch/arm/include/asm/kvm_asm.h
index 3a67bec72d0c..25410b2d8bc1 100644
--- a/arch/arm/include/asm/kvm_asm.h
+++ b/arch/arm/include/asm/kvm_asm.h
@@ -96,6 +96,7 @@ extern char __kvm_hyp_code_end[];
extern void __kvm_flush_vm_context(void);
extern void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa);
+extern void __kvm_tlb_flush_vmid(struct kvm *kvm);
extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu);
#endif
diff --git a/arch/arm/include/asm/kvm_emulate.h b/arch/arm/include/asm/kvm_emulate.h
index 66ce17655bb9..c52861577567 100644
--- a/arch/arm/include/asm/kvm_emulate.h
+++ b/arch/arm/include/asm/kvm_emulate.h
@@ -23,6 +23,7 @@
#include <asm/kvm_asm.h>
#include <asm/kvm_mmio.h>
#include <asm/kvm_arm.h>
+#include <asm/cputype.h>
unsigned long *vcpu_reg(struct kvm_vcpu *vcpu, u8 reg_num);
unsigned long *vcpu_spsr(struct kvm_vcpu *vcpu);
@@ -167,9 +168,9 @@ static inline u32 kvm_vcpu_hvc_get_imm(struct kvm_vcpu *vcpu)
return kvm_vcpu_get_hsr(vcpu) & HSR_HVC_IMM_MASK;
}
-static inline unsigned long kvm_vcpu_get_mpidr(struct kvm_vcpu *vcpu)
+static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu)
{
- return vcpu->arch.cp15[c0_MPIDR];
+ return vcpu->arch.cp15[c0_MPIDR] & MPIDR_HWID_BITMASK;
}
static inline void kvm_vcpu_set_be(struct kvm_vcpu *vcpu)
diff --git a/arch/arm/include/asm/kvm_host.h b/arch/arm/include/asm/kvm_host.h
index 254e0650e48b..bde494654bcc 100644
--- a/arch/arm/include/asm/kvm_host.h
+++ b/arch/arm/include/asm/kvm_host.h
@@ -68,6 +68,7 @@ struct kvm_arch {
/* Interrupt controller */
struct vgic_dist vgic;
+ int max_vcpus;
};
#define KVM_NR_MEM_OBJS 40
@@ -234,6 +235,10 @@ static inline void vgic_arch_setup(const struct vgic_params *vgic)
int kvm_perf_init(void);
int kvm_perf_teardown(void);
+void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
+
+struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
+
static inline void kvm_arch_hardware_disable(void) {}
static inline void kvm_arch_hardware_unsetup(void) {}
static inline void kvm_arch_sync_events(struct kvm *kvm) {}
diff --git a/arch/arm/include/asm/kvm_mmio.h b/arch/arm/include/asm/kvm_mmio.h
index adcc0d7d3175..3f83db2f6cf0 100644
--- a/arch/arm/include/asm/kvm_mmio.h
+++ b/arch/arm/include/asm/kvm_mmio.h
@@ -37,6 +37,7 @@ struct kvm_exit_mmio {
u8 data[8];
u32 len;
bool is_write;
+ void *private;
};
static inline void kvm_prepare_mmio(struct kvm_run *run,
diff --git a/arch/arm/include/asm/kvm_mmu.h b/arch/arm/include/asm/kvm_mmu.h
index 63e0ecc04901..2672cf84afd1 100644
--- a/arch/arm/include/asm/kvm_mmu.h
+++ b/arch/arm/include/asm/kvm_mmu.h
@@ -114,6 +114,27 @@ static inline void kvm_set_s2pmd_writable(pmd_t *pmd)
pmd_val(*pmd) |= L_PMD_S2_RDWR;
}
+static inline void kvm_set_s2pte_readonly(pte_t *pte)
+{
+ pte_val(*pte) = (pte_val(*pte) & ~L_PTE_S2_RDWR) | L_PTE_S2_RDONLY;
+}
+
+static inline bool kvm_s2pte_readonly(pte_t *pte)
+{
+ return (pte_val(*pte) & L_PTE_S2_RDWR) == L_PTE_S2_RDONLY;
+}
+
+static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
+{
+ pmd_val(*pmd) = (pmd_val(*pmd) & ~L_PMD_S2_RDWR) | L_PMD_S2_RDONLY;
+}
+
+static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
+{
+ return (pmd_val(*pmd) & L_PMD_S2_RDWR) == L_PMD_S2_RDONLY;
+}
+
+
/* Open coded p*d_addr_end that can deal with 64bit addresses */
#define kvm_pgd_addr_end(addr, end) \
({ u64 __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
diff --git a/arch/arm/include/asm/pgtable-3level.h b/arch/arm/include/asm/pgtable-3level.h
index a31ecdad4b59..ae1d30a1aaae 100644
--- a/arch/arm/include/asm/pgtable-3level.h
+++ b/arch/arm/include/asm/pgtable-3level.h
@@ -130,6 +130,7 @@
#define L_PTE_S2_RDONLY (_AT(pteval_t, 1) << 6) /* HAP[1] */
#define L_PTE_S2_RDWR (_AT(pteval_t, 3) << 6) /* HAP[2:1] */
+#define L_PMD_S2_RDONLY (_AT(pmdval_t, 1) << 6) /* HAP[1] */
#define L_PMD_S2_RDWR (_AT(pmdval_t, 3) << 6) /* HAP[2:1] */
/*
diff --git a/arch/arm/include/uapi/asm/kvm.h b/arch/arm/include/uapi/asm/kvm.h
index 09ee408c1a67..0db25bc32864 100644
--- a/arch/arm/include/uapi/asm/kvm.h
+++ b/arch/arm/include/uapi/asm/kvm.h
@@ -175,6 +175,8 @@ struct kvm_arch_memory_slot {
#define KVM_DEV_ARM_VGIC_OFFSET_SHIFT 0
#define KVM_DEV_ARM_VGIC_OFFSET_MASK (0xffffffffULL << KVM_DEV_ARM_VGIC_OFFSET_SHIFT)
#define KVM_DEV_ARM_VGIC_GRP_NR_IRQS 3
+#define KVM_DEV_ARM_VGIC_GRP_CTRL 4
+#define KVM_DEV_ARM_VGIC_CTRL_INIT 0
/* KVM_IRQ_LINE irq field index values */
#define KVM_ARM_IRQ_TYPE_SHIFT 24
diff --git a/arch/arm/kvm/Kconfig b/arch/arm/kvm/Kconfig
index 466bd299b1a8..a8d1ace3ea51 100644
--- a/arch/arm/kvm/Kconfig
+++ b/arch/arm/kvm/Kconfig
@@ -21,8 +21,10 @@ config KVM
select PREEMPT_NOTIFIERS
select ANON_INODES
select HAVE_KVM_CPU_RELAX_INTERCEPT
+ select HAVE_KVM_ARCH_TLB_FLUSH_ALL
select KVM_MMIO
select KVM_ARM_HOST
+ select KVM_GENERIC_DIRTYLOG_READ_PROTECT
depends on ARM_VIRT_EXT && ARM_LPAE
---help---
Support hosting virtualized guest machines. You will also
diff --git a/arch/arm/kvm/Makefile b/arch/arm/kvm/Makefile
index f7057ed045b6..443b8bea43e9 100644
--- a/arch/arm/kvm/Makefile
+++ b/arch/arm/kvm/Makefile
@@ -22,4 +22,5 @@ obj-y += arm.o handle_exit.o guest.o mmu.o emulate.o reset.o
obj-y += coproc.o coproc_a15.o coproc_a7.o mmio.o psci.o perf.o
obj-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic.o
obj-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic-v2.o
+obj-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic-v2-emul.o
obj-$(CONFIG_KVM_ARM_TIMER) += $(KVM)/arm/arch_timer.o
diff --git a/arch/arm/kvm/arm.c b/arch/arm/kvm/arm.c
index 2d6d91001062..6fbfa5fff05d 100644
--- a/arch/arm/kvm/arm.c
+++ b/arch/arm/kvm/arm.c
@@ -132,6 +132,9 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
/* Mark the initial VMID generation invalid */
kvm->arch.vmid_gen = 0;
+ /* The maximum number of VCPUs is limited by the host's GIC model */
+ kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
+
return ret;
out_free_stage2_pgd:
kvm_free_stage2_pgd(kvm);
@@ -218,6 +221,11 @@ struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
goto out;
}
+ if (id >= kvm->arch.max_vcpus) {
+ err = -EINVAL;
+ goto out;
+ }
+
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
if (!vcpu) {
err = -ENOMEM;
@@ -787,9 +795,39 @@ long kvm_arch_vcpu_ioctl(struct file *filp,
}
}
+/**
+ * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
+ * @kvm: kvm instance
+ * @log: slot id and address to which we copy the log
+ *
+ * Steps 1-4 below provide general overview of dirty page logging. See
+ * kvm_get_dirty_log_protect() function description for additional details.
+ *
+ * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
+ * always flush the TLB (step 4) even if previous step failed and the dirty
+ * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
+ * does not preclude user space subsequent dirty log read. Flushing TLB ensures
+ * writes will be marked dirty for next log read.
+ *
+ * 1. Take a snapshot of the bit and clear it if needed.
+ * 2. Write protect the corresponding page.
+ * 3. Copy the snapshot to the userspace.
+ * 4. Flush TLB's if needed.
+ */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
- return -EINVAL;
+ bool is_dirty = false;
+ int r;
+
+ mutex_lock(&kvm->slots_lock);
+
+ r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
+
+ if (is_dirty)
+ kvm_flush_remote_tlbs(kvm);
+
+ mutex_unlock(&kvm->slots_lock);
+ return r;
}
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
@@ -821,7 +859,7 @@ long kvm_arch_vm_ioctl(struct file *filp,
switch (ioctl) {
case KVM_CREATE_IRQCHIP: {
if (vgic_present)
- return kvm_vgic_create(kvm);
+ return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
else
return -ENXIO;
}
@@ -1045,6 +1083,19 @@ static void check_kvm_target_cpu(void *ret)
*(int *)ret = kvm_target_cpu();
}
+struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
+{
+ struct kvm_vcpu *vcpu;
+ int i;
+
+ mpidr &= MPIDR_HWID_BITMASK;
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
+ return vcpu;
+ }
+ return NULL;
+}
+
/**
* Initialize Hyp-mode and memory mappings on all CPUs.
*/
diff --git a/arch/arm/kvm/handle_exit.c b/arch/arm/kvm/handle_exit.c
index a96a8043277c..95f12b2ccdcb 100644
--- a/arch/arm/kvm/handle_exit.c
+++ b/arch/arm/kvm/handle_exit.c
@@ -87,11 +87,13 @@ static int handle_dabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
*/
static int kvm_handle_wfx(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
- trace_kvm_wfi(*vcpu_pc(vcpu));
- if (kvm_vcpu_get_hsr(vcpu) & HSR_WFI_IS_WFE)
+ if (kvm_vcpu_get_hsr(vcpu) & HSR_WFI_IS_WFE) {
+ trace_kvm_wfx(*vcpu_pc(vcpu), true);
kvm_vcpu_on_spin(vcpu);
- else
+ } else {
+ trace_kvm_wfx(*vcpu_pc(vcpu), false);
kvm_vcpu_block(vcpu);
+ }
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
diff --git a/arch/arm/kvm/interrupts.S b/arch/arm/kvm/interrupts.S
index 01dcb0e752d9..79caf79b304a 100644
--- a/arch/arm/kvm/interrupts.S
+++ b/arch/arm/kvm/interrupts.S
@@ -66,6 +66,17 @@ ENTRY(__kvm_tlb_flush_vmid_ipa)
bx lr
ENDPROC(__kvm_tlb_flush_vmid_ipa)
+/**
+ * void __kvm_tlb_flush_vmid(struct kvm *kvm) - Flush per-VMID TLBs
+ *
+ * Reuses __kvm_tlb_flush_vmid_ipa() for ARMv7, without passing address
+ * parameter
+ */
+
+ENTRY(__kvm_tlb_flush_vmid)
+ b __kvm_tlb_flush_vmid_ipa
+ENDPROC(__kvm_tlb_flush_vmid)
+
/********************************************************************
* Flush TLBs and instruction caches of all CPUs inside the inner-shareable
* domain, for all VMIDs
diff --git a/arch/arm/kvm/mmu.c b/arch/arm/kvm/mmu.c
index 1dc9778a00af..74aeabaa3c4d 100644
--- a/arch/arm/kvm/mmu.c
+++ b/arch/arm/kvm/mmu.c
@@ -45,6 +45,26 @@ static phys_addr_t hyp_idmap_vector;
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
#define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
+#define kvm_pud_huge(_x) pud_huge(_x)
+
+#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
+#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
+
+static bool memslot_is_logging(struct kvm_memory_slot *memslot)
+{
+ return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
+}
+
+/**
+ * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
+ * @kvm: pointer to kvm structure.
+ *
+ * Interface to HYP function to flush all VM TLB entries
+ */
+void kvm_flush_remote_tlbs(struct kvm *kvm)
+{
+ kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
+}
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
{
@@ -58,6 +78,25 @@ static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
}
+/**
+ * stage2_dissolve_pmd() - clear and flush huge PMD entry
+ * @kvm: pointer to kvm structure.
+ * @addr: IPA
+ * @pmd: pmd pointer for IPA
+ *
+ * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
+ * pages in the range dirty.
+ */
+static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
+{
+ if (!kvm_pmd_huge(*pmd))
+ return;
+
+ pmd_clear(pmd);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ put_page(virt_to_page(pmd));
+}
+
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
int min, int max)
{
@@ -767,10 +806,15 @@ static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
}
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
- phys_addr_t addr, const pte_t *new_pte, bool iomap)
+ phys_addr_t addr, const pte_t *new_pte,
+ unsigned long flags)
{
pmd_t *pmd;
pte_t *pte, old_pte;
+ bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
+ bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
+
+ VM_BUG_ON(logging_active && !cache);
/* Create stage-2 page table mapping - Levels 0 and 1 */
pmd = stage2_get_pmd(kvm, cache, addr);
@@ -782,6 +826,13 @@ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
return 0;
}
+ /*
+ * While dirty page logging - dissolve huge PMD, then continue on to
+ * allocate page.
+ */
+ if (logging_active)
+ stage2_dissolve_pmd(kvm, addr, pmd);
+
/* Create stage-2 page mappings - Level 2 */
if (pmd_none(*pmd)) {
if (!cache)
@@ -838,7 +889,8 @@ int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
if (ret)
goto out;
spin_lock(&kvm->mmu_lock);
- ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
+ ret = stage2_set_pte(kvm, &cache, addr, &pte,
+ KVM_S2PTE_FLAG_IS_IOMAP);
spin_unlock(&kvm->mmu_lock);
if (ret)
goto out;
@@ -905,6 +957,151 @@ static bool kvm_is_device_pfn(unsigned long pfn)
return !pfn_valid(pfn);
}
+/**
+ * stage2_wp_ptes - write protect PMD range
+ * @pmd: pointer to pmd entry
+ * @addr: range start address
+ * @end: range end address
+ */
+static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
+{
+ pte_t *pte;
+
+ pte = pte_offset_kernel(pmd, addr);
+ do {
+ if (!pte_none(*pte)) {
+ if (!kvm_s2pte_readonly(pte))
+ kvm_set_s2pte_readonly(pte);
+ }
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+}
+
+/**
+ * stage2_wp_pmds - write protect PUD range
+ * @pud: pointer to pud entry
+ * @addr: range start address
+ * @end: range end address
+ */
+static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
+{
+ pmd_t *pmd;
+ phys_addr_t next;
+
+ pmd = pmd_offset(pud, addr);
+
+ do {
+ next = kvm_pmd_addr_end(addr, end);
+ if (!pmd_none(*pmd)) {
+ if (kvm_pmd_huge(*pmd)) {
+ if (!kvm_s2pmd_readonly(pmd))
+ kvm_set_s2pmd_readonly(pmd);
+ } else {
+ stage2_wp_ptes(pmd, addr, next);
+ }
+ }
+ } while (pmd++, addr = next, addr != end);
+}
+
+/**
+ * stage2_wp_puds - write protect PGD range
+ * @pgd: pointer to pgd entry
+ * @addr: range start address
+ * @end: range end address
+ *
+ * Process PUD entries, for a huge PUD we cause a panic.
+ */
+static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
+{
+ pud_t *pud;
+ phys_addr_t next;
+
+ pud = pud_offset(pgd, addr);
+ do {
+ next = kvm_pud_addr_end(addr, end);
+ if (!pud_none(*pud)) {
+ /* TODO:PUD not supported, revisit later if supported */
+ BUG_ON(kvm_pud_huge(*pud));
+ stage2_wp_pmds(pud, addr, next);
+ }
+ } while (pud++, addr = next, addr != end);
+}
+
+/**
+ * stage2_wp_range() - write protect stage2 memory region range
+ * @kvm: The KVM pointer
+ * @addr: Start address of range
+ * @end: End address of range
+ */
+static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
+{
+ pgd_t *pgd;
+ phys_addr_t next;
+
+ pgd = kvm->arch.pgd + pgd_index(addr);
+ do {
+ /*
+ * Release kvm_mmu_lock periodically if the memory region is
+ * large. Otherwise, we may see kernel panics with
+ * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
+ * CONFIG_LOCKDEP. Additionally, holding the lock too long
+ * will also starve other vCPUs.
+ */
+ if (need_resched() || spin_needbreak(&kvm->mmu_lock))
+ cond_resched_lock(&kvm->mmu_lock);
+
+ next = kvm_pgd_addr_end(addr, end);
+ if (pgd_present(*pgd))
+ stage2_wp_puds(pgd, addr, next);
+ } while (pgd++, addr = next, addr != end);
+}
+
+/**
+ * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
+ * @kvm: The KVM pointer
+ * @slot: The memory slot to write protect
+ *
+ * Called to start logging dirty pages after memory region
+ * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
+ * all present PMD and PTEs are write protected in the memory region.
+ * Afterwards read of dirty page log can be called.
+ *
+ * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
+ * serializing operations for VM memory regions.
+ */
+void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
+{
+ struct kvm_memory_slot *memslot = id_to_memslot(kvm->memslots, slot);
+ phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
+ phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
+
+ spin_lock(&kvm->mmu_lock);
+ stage2_wp_range(kvm, start, end);
+ spin_unlock(&kvm->mmu_lock);
+ kvm_flush_remote_tlbs(kvm);
+}
+
+/**
+ * kvm_arch_mmu_write_protect_pt_masked() - write protect dirty pages
+ * @kvm: The KVM pointer
+ * @slot: The memory slot associated with mask
+ * @gfn_offset: The gfn offset in memory slot
+ * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
+ * slot to be write protected
+ *
+ * Walks bits set in mask write protects the associated pte's. Caller must
+ * acquire kvm_mmu_lock.
+ */
+void kvm_arch_mmu_write_protect_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn_offset, unsigned long mask)
+{
+ phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
+ phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
+ phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
+
+ stage2_wp_range(kvm, start, end);
+}
+
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
struct kvm_memory_slot *memslot, unsigned long hva,
unsigned long fault_status)
@@ -919,6 +1116,8 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
pfn_t pfn;
pgprot_t mem_type = PAGE_S2;
bool fault_ipa_uncached;
+ bool logging_active = memslot_is_logging(memslot);
+ unsigned long flags = 0;
write_fault = kvm_is_write_fault(vcpu);
if (fault_status == FSC_PERM && !write_fault) {
@@ -935,7 +1134,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
return -EFAULT;
}
- if (is_vm_hugetlb_page(vma)) {
+ if (is_vm_hugetlb_page(vma) && !logging_active) {
hugetlb = true;
gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
} else {
@@ -976,12 +1175,30 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
if (is_error_pfn(pfn))
return -EFAULT;
- if (kvm_is_device_pfn(pfn))
+ if (kvm_is_device_pfn(pfn)) {
mem_type = PAGE_S2_DEVICE;
+ flags |= KVM_S2PTE_FLAG_IS_IOMAP;
+ } else if (logging_active) {
+ /*
+ * Faults on pages in a memslot with logging enabled
+ * should not be mapped with huge pages (it introduces churn
+ * and performance degradation), so force a pte mapping.
+ */
+ force_pte = true;
+ flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
+
+ /*
+ * Only actually map the page as writable if this was a write
+ * fault.
+ */
+ if (!write_fault)
+ writable = false;
+ }
spin_lock(&kvm->mmu_lock);
if (mmu_notifier_retry(kvm, mmu_seq))
goto out_unlock;
+
if (!hugetlb && !force_pte)
hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
@@ -999,17 +1216,17 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
} else {
pte_t new_pte = pfn_pte(pfn, mem_type);
+
if (writable) {
kvm_set_s2pte_writable(&new_pte);
kvm_set_pfn_dirty(pfn);
+ mark_page_dirty(kvm, gfn);
}
coherent_cache_guest_page(vcpu, hva, PAGE_SIZE,
fault_ipa_uncached);
- ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte,
- pgprot_val(mem_type) == pgprot_val(PAGE_S2_DEVICE));
+ ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
}
-
out_unlock:
spin_unlock(&kvm->mmu_lock);
kvm_release_pfn_clean(pfn);
@@ -1159,7 +1376,14 @@ static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
pte_t *pte = (pte_t *)data;
- stage2_set_pte(kvm, NULL, gpa, pte, false);
+ /*
+ * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
+ * flag clear because MMU notifiers will have unmapped a huge PMD before
+ * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
+ * therefore stage2_set_pte() never needs to clear out a huge PMD
+ * through this calling path.
+ */
+ stage2_set_pte(kvm, NULL, gpa, pte, 0);
}
@@ -1292,6 +1516,13 @@ void kvm_arch_commit_memory_region(struct kvm *kvm,
const struct kvm_memory_slot *old,
enum kvm_mr_change change)
{
+ /*
+ * At this point memslot has been committed and there is an
+ * allocated dirty_bitmap[], dirty pages will be be tracked while the
+ * memory slot is write protected.
+ */
+ if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
+ kvm_mmu_wp_memory_region(kvm, mem->slot);
}
int kvm_arch_prepare_memory_region(struct kvm *kvm,
@@ -1304,7 +1535,8 @@ int kvm_arch_prepare_memory_region(struct kvm *kvm,
bool writable = !(mem->flags & KVM_MEM_READONLY);
int ret = 0;
- if (change != KVM_MR_CREATE && change != KVM_MR_MOVE)
+ if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
+ change != KVM_MR_FLAGS_ONLY)
return 0;
/*
@@ -1355,6 +1587,10 @@ int kvm_arch_prepare_memory_region(struct kvm *kvm,
phys_addr_t pa = (vma->vm_pgoff << PAGE_SHIFT) +
vm_start - vma->vm_start;
+ /* IO region dirty page logging not allowed */
+ if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
+ return -EINVAL;
+
ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
vm_end - vm_start,
writable);
@@ -1364,6 +1600,9 @@ int kvm_arch_prepare_memory_region(struct kvm *kvm,
hva = vm_end;
} while (hva < reg_end);
+ if (change == KVM_MR_FLAGS_ONLY)
+ return ret;
+
spin_lock(&kvm->mmu_lock);
if (ret)
unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
diff --git a/arch/arm/kvm/psci.c b/arch/arm/kvm/psci.c
index 58cb3248d277..02fa8eff6ae1 100644
--- a/arch/arm/kvm/psci.c
+++ b/arch/arm/kvm/psci.c
@@ -22,6 +22,7 @@
#include <asm/cputype.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_psci.h>
+#include <asm/kvm_host.h>
/*
* This is an implementation of the Power State Coordination Interface
@@ -66,25 +67,17 @@ static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu)
static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
{
struct kvm *kvm = source_vcpu->kvm;
- struct kvm_vcpu *vcpu = NULL, *tmp;
+ struct kvm_vcpu *vcpu = NULL;
wait_queue_head_t *wq;
unsigned long cpu_id;
unsigned long context_id;
- unsigned long mpidr;
phys_addr_t target_pc;
- int i;
- cpu_id = *vcpu_reg(source_vcpu, 1);
+ cpu_id = *vcpu_reg(source_vcpu, 1) & MPIDR_HWID_BITMASK;
if (vcpu_mode_is_32bit(source_vcpu))
cpu_id &= ~((u32) 0);
- kvm_for_each_vcpu(i, tmp, kvm) {
- mpidr = kvm_vcpu_get_mpidr(tmp);
- if ((mpidr & MPIDR_HWID_BITMASK) == (cpu_id & MPIDR_HWID_BITMASK)) {
- vcpu = tmp;
- break;
- }
- }
+ vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id);
/*
* Make sure the caller requested a valid CPU and that the CPU is
@@ -155,7 +148,7 @@ static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu)
* then ON else OFF
*/
kvm_for_each_vcpu(i, tmp, kvm) {
- mpidr = kvm_vcpu_get_mpidr(tmp);
+ mpidr = kvm_vcpu_get_mpidr_aff(tmp);
if (((mpidr & target_affinity_mask) == target_affinity) &&
!tmp->arch.pause) {
return PSCI_0_2_AFFINITY_LEVEL_ON;
diff --git a/arch/arm/kvm/trace.h b/arch/arm/kvm/trace.h
index b1d640f78623..f741449121f3 100644
--- a/arch/arm/kvm/trace.h
+++ b/arch/arm/kvm/trace.h
@@ -140,19 +140,22 @@ TRACE_EVENT(kvm_emulate_cp15_imp,
__entry->CRm, __entry->Op2)
);
-TRACE_EVENT(kvm_wfi,
- TP_PROTO(unsigned long vcpu_pc),
- TP_ARGS(vcpu_pc),
+TRACE_EVENT(kvm_wfx,
+ TP_PROTO(unsigned long vcpu_pc, bool is_wfe),
+ TP_ARGS(vcpu_pc, is_wfe),
TP_STRUCT__entry(
__field( unsigned long, vcpu_pc )
+ __field( bool, is_wfe )
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
+ __entry->is_wfe = is_wfe;
),
- TP_printk("guest executed wfi at: 0x%08lx", __entry->vcpu_pc)
+ TP_printk("guest executed wf%c at: 0x%08lx",
+ __entry->is_wfe ? 'e' : 'i', __entry->vcpu_pc)
);
TRACE_EVENT(kvm_unmap_hva,
diff --git a/arch/arm64/include/asm/esr.h b/arch/arm64/include/asm/esr.h
index 62167090937d..92bbae381598 100644
--- a/arch/arm64/include/asm/esr.h
+++ b/arch/arm64/include/asm/esr.h
@@ -96,6 +96,7 @@
#define ESR_ELx_COND_SHIFT (20)
#define ESR_ELx_COND_MASK (UL(0xF) << ESR_ELx_COND_SHIFT)
#define ESR_ELx_WFx_ISS_WFE (UL(1) << 0)
+#define ESR_ELx_xVC_IMM_MASK ((1UL << 16) - 1)
#ifndef __ASSEMBLY__
#include <asm/types.h>
diff --git a/arch/arm64/include/asm/kvm_asm.h b/arch/arm64/include/asm/kvm_asm.h
index 483842180f8f..4f7310fa77f0 100644
--- a/arch/arm64/include/asm/kvm_asm.h
+++ b/arch/arm64/include/asm/kvm_asm.h
@@ -126,6 +126,7 @@ extern char __kvm_hyp_vector[];
extern void __kvm_flush_vm_context(void);
extern void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa);
+extern void __kvm_tlb_flush_vmid(struct kvm *kvm);
extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu);
diff --git a/arch/arm64/include/asm/kvm_emulate.h b/arch/arm64/include/asm/kvm_emulate.h
index 5c56c0d2cef1..c3baa971edab 100644
--- a/arch/arm64/include/asm/kvm_emulate.h
+++ b/arch/arm64/include/asm/kvm_emulate.h
@@ -29,6 +29,7 @@
#include <asm/kvm_asm.h>
#include <asm/kvm_mmio.h>
#include <asm/ptrace.h>
+#include <asm/cputype.h>
unsigned long *vcpu_reg32(const struct kvm_vcpu *vcpu, u8 reg_num);
unsigned long *vcpu_spsr32(const struct kvm_vcpu *vcpu);
@@ -128,6 +129,11 @@ static inline phys_addr_t kvm_vcpu_get_fault_ipa(const struct kvm_vcpu *vcpu)
return ((phys_addr_t)vcpu->arch.fault.hpfar_el2 & HPFAR_MASK) << 8;
}
+static inline u32 kvm_vcpu_hvc_get_imm(const struct kvm_vcpu *vcpu)
+{
+ return kvm_vcpu_get_hsr(vcpu) & ESR_ELx_xVC_IMM_MASK;
+}
+
static inline bool kvm_vcpu_dabt_isvalid(const struct kvm_vcpu *vcpu)
{
return !!(kvm_vcpu_get_hsr(vcpu) & ESR_ELx_ISV);
@@ -189,9 +195,9 @@ static inline u8 kvm_vcpu_trap_get_fault_type(const struct kvm_vcpu *vcpu)
return kvm_vcpu_get_hsr(vcpu) & ESR_ELx_FSC_TYPE;
}
-static inline unsigned long kvm_vcpu_get_mpidr(struct kvm_vcpu *vcpu)
+static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu)
{
- return vcpu_sys_reg(vcpu, MPIDR_EL1);
+ return vcpu_sys_reg(vcpu, MPIDR_EL1) & MPIDR_HWID_BITMASK;
}
static inline void kvm_vcpu_set_be(struct kvm_vcpu *vcpu)
diff --git a/arch/arm64/include/asm/kvm_host.h b/arch/arm64/include/asm/kvm_host.h
index 0b7dfdb931df..2c49aa4ac818 100644
--- a/arch/arm64/include/asm/kvm_host.h
+++ b/arch/arm64/include/asm/kvm_host.h
@@ -59,6 +59,9 @@ struct kvm_arch {
/* VTTBR value associated with above pgd and vmid */
u64 vttbr;
+ /* The maximum number of vCPUs depends on the used GIC model */
+ int max_vcpus;
+
/* Interrupt controller */
struct vgic_dist vgic;
@@ -199,6 +202,7 @@ struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
u64 kvm_call_hyp(void *hypfn, ...);
void force_vm_exit(const cpumask_t *mask);
+void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
int exception_index);
@@ -206,6 +210,8 @@ int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
int kvm_perf_init(void);
int kvm_perf_teardown(void);
+struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
+
static inline void __cpu_init_hyp_mode(phys_addr_t boot_pgd_ptr,
phys_addr_t pgd_ptr,
unsigned long hyp_stack_ptr,
diff --git a/arch/arm64/include/asm/kvm_mmio.h b/arch/arm64/include/asm/kvm_mmio.h
index fc2f689c0694..9f52beb7cb13 100644
--- a/arch/arm64/include/asm/kvm_mmio.h
+++ b/arch/arm64/include/asm/kvm_mmio.h
@@ -40,6 +40,7 @@ struct kvm_exit_mmio {
u8 data[8];
u32 len;
bool is_write;
+ void *private;
};
static inline void kvm_prepare_mmio(struct kvm_run *run,
diff --git a/arch/arm64/include/asm/kvm_mmu.h b/arch/arm64/include/asm/kvm_mmu.h
index 14a74f136272..66577581ce68 100644
--- a/arch/arm64/include/asm/kvm_mmu.h
+++ b/arch/arm64/include/asm/kvm_mmu.h
@@ -118,6 +118,27 @@ static inline void kvm_set_s2pmd_writable(pmd_t *pmd)
pmd_val(*pmd) |= PMD_S2_RDWR;
}
+static inline void kvm_set_s2pte_readonly(pte_t *pte)
+{
+ pte_val(*pte) = (pte_val(*pte) & ~PTE_S2_RDWR) | PTE_S2_RDONLY;
+}
+
+static inline bool kvm_s2pte_readonly(pte_t *pte)
+{
+ return (pte_val(*pte) & PTE_S2_RDWR) == PTE_S2_RDONLY;
+}
+
+static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
+{
+ pmd_val(*pmd) = (pmd_val(*pmd) & ~PMD_S2_RDWR) | PMD_S2_RDONLY;
+}
+
+static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
+{
+ return (pmd_val(*pmd) & PMD_S2_RDWR) == PMD_S2_RDONLY;
+}
+
+
#define kvm_pgd_addr_end(addr, end) pgd_addr_end(addr, end)
#define kvm_pud_addr_end(addr, end) pud_addr_end(addr, end)
#define kvm_pmd_addr_end(addr, end) pmd_addr_end(addr, end)
diff --git a/arch/arm64/include/asm/pgtable-hwdef.h b/arch/arm64/include/asm/pgtable-hwdef.h
index 88174e0bfafe..5f930cc9ea83 100644
--- a/arch/arm64/include/asm/pgtable-hwdef.h
+++ b/arch/arm64/include/asm/pgtable-hwdef.h
@@ -119,6 +119,7 @@
#define PTE_S2_RDONLY (_AT(pteval_t, 1) << 6) /* HAP[2:1] */
#define PTE_S2_RDWR (_AT(pteval_t, 3) << 6) /* HAP[2:1] */
+#define PMD_S2_RDONLY (_AT(pmdval_t, 1) << 6) /* HAP[2:1] */
#define PMD_S2_RDWR (_AT(pmdval_t, 3) << 6) /* HAP[2:1] */
/*
diff --git a/arch/arm64/include/uapi/asm/kvm.h b/arch/arm64/include/uapi/asm/kvm.h
index 8e38878c87c6..3ef77a466018 100644
--- a/arch/arm64/include/uapi/asm/kvm.h
+++ b/arch/arm64/include/uapi/asm/kvm.h
@@ -78,6 +78,13 @@ struct kvm_regs {
#define KVM_VGIC_V2_DIST_SIZE 0x1000
#define KVM_VGIC_V2_CPU_SIZE 0x2000
+/* Supported VGICv3 address types */
+#define KVM_VGIC_V3_ADDR_TYPE_DIST 2
+#define KVM_VGIC_V3_ADDR_TYPE_REDIST 3
+
+#define KVM_VGIC_V3_DIST_SIZE SZ_64K
+#define KVM_VGIC_V3_REDIST_SIZE (2 * SZ_64K)
+
#define KVM_ARM_VCPU_POWER_OFF 0 /* CPU is started in OFF state */
#define KVM_ARM_VCPU_EL1_32BIT 1 /* CPU running a 32bit VM */
#define KVM_ARM_VCPU_PSCI_0_2 2 /* CPU uses PSCI v0.2 */
@@ -161,6 +168,8 @@ struct kvm_arch_memory_slot {
#define KVM_DEV_ARM_VGIC_OFFSET_SHIFT 0
#define KVM_DEV_ARM_VGIC_OFFSET_MASK (0xffffffffULL << KVM_DEV_ARM_VGIC_OFFSET_SHIFT)
#define KVM_DEV_ARM_VGIC_GRP_NR_IRQS 3
+#define KVM_DEV_ARM_VGIC_GRP_CTRL 4
+#define KVM_DEV_ARM_VGIC_CTRL_INIT 0
/* KVM_IRQ_LINE irq field index values */
#define KVM_ARM_IRQ_TYPE_SHIFT 24
diff --git a/arch/arm64/kernel/asm-offsets.c b/arch/arm64/kernel/asm-offsets.c
index 9a9fce090d58..9d34486985fd 100644
--- a/arch/arm64/kernel/asm-offsets.c
+++ b/arch/arm64/kernel/asm-offsets.c
@@ -140,6 +140,7 @@ int main(void)
DEFINE(VGIC_V2_CPU_ELRSR, offsetof(struct vgic_cpu, vgic_v2.vgic_elrsr));
DEFINE(VGIC_V2_CPU_APR, offsetof(struct vgic_cpu, vgic_v2.vgic_apr));
DEFINE(VGIC_V2_CPU_LR, offsetof(struct vgic_cpu, vgic_v2.vgic_lr));
+ DEFINE(VGIC_V3_CPU_SRE, offsetof(struct vgic_cpu, vgic_v3.vgic_sre));
DEFINE(VGIC_V3_CPU_HCR, offsetof(struct vgic_cpu, vgic_v3.vgic_hcr));
DEFINE(VGIC_V3_CPU_VMCR, offsetof(struct vgic_cpu, vgic_v3.vgic_vmcr));
DEFINE(VGIC_V3_CPU_MISR, offsetof(struct vgic_cpu, vgic_v3.vgic_misr));
diff --git a/arch/arm64/kvm/Kconfig b/arch/arm64/kvm/Kconfig
index 8ba85e9ea388..3ce389b3c21c 100644
--- a/arch/arm64/kvm/Kconfig
+++ b/arch/arm64/kvm/Kconfig
@@ -22,10 +22,12 @@ config KVM
select PREEMPT_NOTIFIERS
select ANON_INODES
select HAVE_KVM_CPU_RELAX_INTERCEPT
+ select HAVE_KVM_ARCH_TLB_FLUSH_ALL
select KVM_MMIO
select KVM_ARM_HOST
select KVM_ARM_VGIC
select KVM_ARM_TIMER
+ select KVM_GENERIC_DIRTYLOG_READ_PROTECT
---help---
Support hosting virtualized guest machines.
diff --git a/arch/arm64/kvm/Makefile b/arch/arm64/kvm/Makefile
index 32a096174b94..4e6e09ee4033 100644
--- a/arch/arm64/kvm/Makefile
+++ b/arch/arm64/kvm/Makefile
@@ -21,7 +21,9 @@ kvm-$(CONFIG_KVM_ARM_HOST) += guest.o reset.o sys_regs.o sys_regs_generic_v8.o
kvm-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic.o
kvm-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic-v2.o
+kvm-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic-v2-emul.o
kvm-$(CONFIG_KVM_ARM_VGIC) += vgic-v2-switch.o
kvm-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic-v3.o
+kvm-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic-v3-emul.o
kvm-$(CONFIG_KVM_ARM_VGIC) += vgic-v3-switch.o
kvm-$(CONFIG_KVM_ARM_TIMER) += $(KVM)/arm/arch_timer.o
diff --git a/arch/arm64/kvm/handle_exit.c b/arch/arm64/kvm/handle_exit.c
index 29b184a8f3f8..524fa25671fc 100644
--- a/arch/arm64/kvm/handle_exit.c
+++ b/arch/arm64/kvm/handle_exit.c
@@ -28,12 +28,18 @@
#include <asm/kvm_mmu.h>
#include <asm/kvm_psci.h>
+#define CREATE_TRACE_POINTS
+#include "trace.h"
+
typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *);
static int handle_hvc(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
int ret;
+ trace_kvm_hvc_arm64(*vcpu_pc(vcpu), *vcpu_reg(vcpu, 0),
+ kvm_vcpu_hvc_get_imm(vcpu));
+
ret = kvm_psci_call(vcpu);
if (ret < 0) {
kvm_inject_undefined(vcpu);
@@ -63,10 +69,13 @@ static int handle_smc(struct kvm_vcpu *vcpu, struct kvm_run *run)
*/
static int kvm_handle_wfx(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
- if (kvm_vcpu_get_hsr(vcpu) & ESR_ELx_WFx_ISS_WFE)
+ if (kvm_vcpu_get_hsr(vcpu) & ESR_ELx_WFx_ISS_WFE) {
+ trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true);
kvm_vcpu_on_spin(vcpu);
- else
+ } else {
+ trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false);
kvm_vcpu_block(vcpu);
+ }
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
diff --git a/arch/arm64/kvm/hyp.S b/arch/arm64/kvm/hyp.S
index c0d820280a5e..31b4911b8522 100644
--- a/arch/arm64/kvm/hyp.S
+++ b/arch/arm64/kvm/hyp.S
@@ -1031,6 +1031,28 @@ ENTRY(__kvm_tlb_flush_vmid_ipa)
ret
ENDPROC(__kvm_tlb_flush_vmid_ipa)
+/**
+ * void __kvm_tlb_flush_vmid(struct kvm *kvm) - Flush per-VMID TLBs
+ * @struct kvm *kvm - pointer to kvm structure
+ *
+ * Invalidates all Stage 1 and 2 TLB entries for current VMID.
+ */
+ENTRY(__kvm_tlb_flush_vmid)
+ dsb ishst
+
+ kern_hyp_va x0
+ ldr x2, [x0, #KVM_VTTBR]
+ msr vttbr_el2, x2
+ isb
+
+ tlbi vmalls12e1is
+ dsb ish
+ isb
+
+ msr vttbr_el2, xzr
+ ret
+ENDPROC(__kvm_tlb_flush_vmid)
+
ENTRY(__kvm_flush_vm_context)
dsb ishst
tlbi alle1is
diff --git a/arch/arm64/kvm/sys_regs.c b/arch/arm64/kvm/sys_regs.c
index 6b859d7a48e7..7ad7af51856f 100644
--- a/arch/arm64/kvm/sys_regs.c
+++ b/arch/arm64/kvm/sys_regs.c
@@ -168,6 +168,27 @@ static bool access_sctlr(struct kvm_vcpu *vcpu,
return true;
}
+/*
+ * Trap handler for the GICv3 SGI generation system register.
+ * Forward the request to the VGIC emulation.
+ * The cp15_64 code makes sure this automatically works
+ * for both AArch64 and AArch32 accesses.
+ */
+static bool access_gic_sgi(struct kvm_vcpu *vcpu,
+ const struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 val;
+
+ if (!p->is_write)
+ return read_from_write_only(vcpu, p);
+
+ val = *vcpu_reg(vcpu, p->Rt);
+ vgic_v3_dispatch_sgi(vcpu, val);
+
+ return true;
+}
+
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
const struct sys_reg_params *p,
const struct sys_reg_desc *r)
@@ -255,10 +276,19 @@ static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
+ u64 mpidr;
+
/*
- * Simply map the vcpu_id into the Aff0 field of the MPIDR.
+ * Map the vcpu_id into the first three affinity level fields of
+ * the MPIDR. We limit the number of VCPUs in level 0 due to a
+ * limitation to 16 CPUs in that level in the ICC_SGIxR registers
+ * of the GICv3 to be able to address each CPU directly when
+ * sending IPIs.
*/
- vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
+ mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
+ mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
+ mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
+ vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
}
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
@@ -428,6 +458,9 @@ static const struct sys_reg_desc sys_reg_descs[] = {
{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
NULL, reset_val, VBAR_EL1, 0 },
+ /* ICC_SGI1R_EL1 */
+ { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
+ access_gic_sgi },
/* ICC_SRE_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
trap_raz_wi },
@@ -660,6 +693,8 @@ static const struct sys_reg_desc cp14_64_regs[] = {
* register).
*/
static const struct sys_reg_desc cp15_regs[] = {
+ { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
+
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
@@ -707,6 +742,7 @@ static const struct sys_reg_desc cp15_regs[] = {
static const struct sys_reg_desc cp15_64_regs[] = {
{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
+ { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
};
diff --git a/arch/arm64/kvm/trace.h b/arch/arm64/kvm/trace.h
new file mode 100644
index 000000000000..157416e963f2
--- /dev/null
+++ b/arch/arm64/kvm/trace.h
@@ -0,0 +1,55 @@
+#if !defined(_TRACE_ARM64_KVM_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_ARM64_KVM_H
+
+#include <linux/tracepoint.h>
+
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM kvm
+
+TRACE_EVENT(kvm_wfx_arm64,
+ TP_PROTO(unsigned long vcpu_pc, bool is_wfe),
+ TP_ARGS(vcpu_pc, is_wfe),
+
+ TP_STRUCT__entry(
+ __field(unsigned long, vcpu_pc)
+ __field(bool, is_wfe)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->is_wfe = is_wfe;
+ ),
+
+ TP_printk("guest executed wf%c at: 0x%08lx",
+ __entry->is_wfe ? 'e' : 'i', __entry->vcpu_pc)
+);
+
+TRACE_EVENT(kvm_hvc_arm64,
+ TP_PROTO(unsigned long vcpu_pc, unsigned long r0, unsigned long imm),
+ TP_ARGS(vcpu_pc, r0, imm),
+
+ TP_STRUCT__entry(
+ __field(unsigned long, vcpu_pc)
+ __field(unsigned long, r0)
+ __field(unsigned long, imm)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->r0 = r0;
+ __entry->imm = imm;
+ ),
+
+ TP_printk("HVC at 0x%08lx (r0: 0x%08lx, imm: 0x%lx)",
+ __entry->vcpu_pc, __entry->r0, __entry->imm)
+);
+
+#endif /* _TRACE_ARM64_KVM_H */
+
+#undef TRACE_INCLUDE_PATH
+#define TRACE_INCLUDE_PATH .
+#undef TRACE_INCLUDE_FILE
+#define TRACE_INCLUDE_FILE trace
+
+/* This part must be outside protection */
+#include <trace/define_trace.h>
diff --git a/arch/arm64/kvm/vgic-v3-switch.S b/arch/arm64/kvm/vgic-v3-switch.S
index d16046999e06..617a012a0107 100644
--- a/arch/arm64/kvm/vgic-v3-switch.S
+++ b/arch/arm64/kvm/vgic-v3-switch.S
@@ -148,17 +148,18 @@
* x0: Register pointing to VCPU struct
*/
.macro restore_vgic_v3_state
- // Disable SRE_EL1 access. Necessary, otherwise
- // ICH_VMCR_EL2.VFIQEn becomes one, and FIQ happens...
- msr_s ICC_SRE_EL1, xzr
- isb
-
// Compute the address of struct vgic_cpu
add x3, x0, #VCPU_VGIC_CPU
// Restore all interesting registers
ldr w4, [x3, #VGIC_V3_CPU_HCR]
ldr w5, [x3, #VGIC_V3_CPU_VMCR]
+ ldr w25, [x3, #VGIC_V3_CPU_SRE]
+
+ msr_s ICC_SRE_EL1, x25
+
+ // make sure SRE is valid before writing the other registers
+ isb
msr_s ICH_HCR_EL2, x4
msr_s ICH_VMCR_EL2, x5
@@ -244,9 +245,12 @@
dsb sy
// Prevent the guest from touching the GIC system registers
+ // if SRE isn't enabled for GICv3 emulation
+ cbnz x25, 1f
mrs_s x5, ICC_SRE_EL2
and x5, x5, #~ICC_SRE_EL2_ENABLE
msr_s ICC_SRE_EL2, x5
+1:
.endm
ENTRY(__save_vgic_v3_state)
diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h
index 4327af53e544..843bea0e70fd 100644
--- a/arch/x86/include/asm/kvm_host.h
+++ b/arch/x86/include/asm/kvm_host.h
@@ -835,9 +835,6 @@ void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot);
-void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
- struct kvm_memory_slot *slot,
- gfn_t gfn_offset, unsigned long mask);
void kvm_mmu_zap_all(struct kvm *kvm);
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm);
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm);
diff --git a/arch/x86/kvm/Kconfig b/arch/x86/kvm/Kconfig
index f9d16ff56c6b..d07359466d5d 100644
--- a/arch/x86/kvm/Kconfig
+++ b/arch/x86/kvm/Kconfig
@@ -39,6 +39,7 @@ config KVM
select PERF_EVENTS
select HAVE_KVM_MSI
select HAVE_KVM_CPU_RELAX_INTERCEPT
+ select KVM_GENERIC_DIRTYLOG_READ_PROTECT
select KVM_VFIO
---help---
Support hosting fully virtualized guest machines using hardware
diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c
index 97898abe8386..0ed9f795e4f0 100644
--- a/arch/x86/kvm/mmu.c
+++ b/arch/x86/kvm/mmu.c
@@ -1216,7 +1216,7 @@ static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
}
/**
- * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
+ * kvm_arch_mmu_write_protect_pt_masked - write protect selected PT level pages
* @kvm: kvm instance
* @slot: slot to protect
* @gfn_offset: start of the BITS_PER_LONG pages we care about
@@ -1225,7 +1225,7 @@ static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
* Used when we do not need to care about huge page mappings: e.g. during dirty
* logging we do not have any such mappings.
*/
-void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
+void kvm_arch_mmu_write_protect_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset, unsigned long mask)
{
diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c
index 917672f8034a..d2bbb2d86610 100644
--- a/arch/x86/kvm/x86.c
+++ b/arch/x86/kvm/x86.c
@@ -3759,83 +3759,37 @@ static int kvm_vm_ioctl_reinject(struct kvm *kvm,
* @kvm: kvm instance
* @log: slot id and address to which we copy the log
*
- * We need to keep it in mind that VCPU threads can write to the bitmap
- * concurrently. So, to avoid losing data, we keep the following order for
- * each bit:
+ * Steps 1-4 below provide general overview of dirty page logging. See
+ * kvm_get_dirty_log_protect() function description for additional details.
+ *
+ * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
+ * always flush the TLB (step 4) even if previous step failed and the dirty
+ * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
+ * does not preclude user space subsequent dirty log read. Flushing TLB ensures
+ * writes will be marked dirty for next log read.
*
* 1. Take a snapshot of the bit and clear it if needed.
* 2. Write protect the corresponding page.
- * 3. Flush TLB's if needed.
- * 4. Copy the snapshot to the userspace.
- *
- * Between 2 and 3, the guest may write to the page using the remaining TLB
- * entry. This is not a problem because the page will be reported dirty at
- * step 4 using the snapshot taken before and step 3 ensures that successive
- * writes will be logged for the next call.
+ * 3. Copy the snapshot to the userspace.
+ * 4. Flush TLB's if needed.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
- int r;
- struct kvm_memory_slot *memslot;
- unsigned long n, i;
- unsigned long *dirty_bitmap;
- unsigned long *dirty_bitmap_buffer;
bool is_dirty = false;
+ int r;
mutex_lock(&kvm->slots_lock);
- r = -EINVAL;
- if (log->slot >= KVM_USER_MEM_SLOTS)
- goto out;
-
- memslot = id_to_memslot(kvm->memslots, log->slot);
-
- dirty_bitmap = memslot->dirty_bitmap;
- r = -ENOENT;
- if (!dirty_bitmap)
- goto out;
-
- n = kvm_dirty_bitmap_bytes(memslot);
-
- dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
- memset(dirty_bitmap_buffer, 0, n);
-
- spin_lock(&kvm->mmu_lock);
-
- for (i = 0; i < n / sizeof(long); i++) {
- unsigned long mask;
- gfn_t offset;
-
- if (!dirty_bitmap[i])
- continue;
-
- is_dirty = true;
-
- mask = xchg(&dirty_bitmap[i], 0);
- dirty_bitmap_buffer[i] = mask;
-
- offset = i * BITS_PER_LONG;
- kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
- }
-
- spin_unlock(&kvm->mmu_lock);
-
- /* See the comments in kvm_mmu_slot_remove_write_access(). */
- lockdep_assert_held(&kvm->slots_lock);
+ r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
/*
* All the TLBs can be flushed out of mmu lock, see the comments in
* kvm_mmu_slot_remove_write_access().
*/
+ lockdep_assert_held(&kvm->slots_lock);
if (is_dirty)
kvm_flush_remote_tlbs(kvm);
- r = -EFAULT;
- if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
- goto out;
-
- r = 0;
-out:
mutex_unlock(&kvm->slots_lock);
return r;
}
diff --git a/drivers/irqchip/irq-gic-v3.c b/drivers/irqchip/irq-gic-v3.c
index 1a146ccee701..2ab290bec655 100644
--- a/drivers/irqchip/irq-gic-v3.c
+++ b/drivers/irqchip/irq-gic-v3.c
@@ -481,15 +481,19 @@ out:
return tlist;
}
+#define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
+ (MPIDR_AFFINITY_LEVEL(cluster_id, level) \
+ << ICC_SGI1R_AFFINITY_## level ##_SHIFT)
+
static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
{
u64 val;
- val = (MPIDR_AFFINITY_LEVEL(cluster_id, 3) << 48 |
- MPIDR_AFFINITY_LEVEL(cluster_id, 2) << 32 |
- irq << 24 |
- MPIDR_AFFINITY_LEVEL(cluster_id, 1) << 16 |
- tlist);
+ val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) |
+ MPIDR_TO_SGI_AFFINITY(cluster_id, 2) |
+ irq << ICC_SGI1R_SGI_ID_SHIFT |
+ MPIDR_TO_SGI_AFFINITY(cluster_id, 1) |
+ tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
pr_debug("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
gic_write_sgi1r(val);
diff --git a/include/kvm/arm_vgic.h b/include/kvm/arm_vgic.h
index ac4888dc86bc..7c55dd5dd2c9 100644
--- a/include/kvm/arm_vgic.h
+++ b/include/kvm/arm_vgic.h
@@ -33,10 +33,11 @@
#define VGIC_V2_MAX_LRS (1 << 6)
#define VGIC_V3_MAX_LRS 16
#define VGIC_MAX_IRQS 1024
+#define VGIC_V2_MAX_CPUS 8
/* Sanity checks... */
-#if (KVM_MAX_VCPUS > 8)
-#error Invalid number of CPU interfaces
+#if (KVM_MAX_VCPUS > 255)
+#error Too many KVM VCPUs, the VGIC only supports up to 255 VCPUs for now
#endif
#if (VGIC_NR_IRQS_LEGACY & 31)
@@ -132,6 +133,18 @@ struct vgic_params {
unsigned int maint_irq;
/* Virtual control interface base address */
void __iomem *vctrl_base;
+ int max_gic_vcpus;
+ /* Only needed for the legacy KVM_CREATE_IRQCHIP */
+ bool can_emulate_gicv2;
+};
+
+struct vgic_vm_ops {
+ bool (*handle_mmio)(struct kvm_vcpu *, struct kvm_run *,
+ struct kvm_exit_mmio *);
+ bool (*queue_sgi)(struct kvm_vcpu *, int irq);
+ void (*add_sgi_source)(struct kvm_vcpu *, int irq, int source);
+ int (*init_model)(struct kvm *);
+ int (*map_resources)(struct kvm *, const struct vgic_params *);
};
struct vgic_dist {
@@ -140,6 +153,9 @@ struct vgic_dist {
bool in_kernel;
bool ready;
+ /* vGIC model the kernel emulates for the guest (GICv2 or GICv3) */
+ u32 vgic_model;
+
int nr_cpus;
int nr_irqs;
@@ -148,7 +164,11 @@ struct vgic_dist {
/* Distributor and vcpu interface mapping in the guest */
phys_addr_t vgic_dist_base;
- phys_addr_t vgic_cpu_base;
+ /* GICv2 and GICv3 use different mapped register blocks */
+ union {
+ phys_addr_t vgic_cpu_base;
+ phys_addr_t vgic_redist_base;
+ };
/* Distributor enabled */
u32 enabled;
@@ -210,8 +230,13 @@ struct vgic_dist {
*/
struct vgic_bitmap *irq_spi_target;
+ /* Target MPIDR for each IRQ (needed for GICv3 IROUTERn) only */
+ u32 *irq_spi_mpidr;
+
/* Bitmap indicating which CPU has something pending */
unsigned long *irq_pending_on_cpu;
+
+ struct vgic_vm_ops vm_ops;
#endif
};
@@ -229,6 +254,7 @@ struct vgic_v3_cpu_if {
#ifdef CONFIG_ARM_GIC_V3
u32 vgic_hcr;
u32 vgic_vmcr;
+ u32 vgic_sre; /* Restored only, change ignored */
u32 vgic_misr; /* Saved only */
u32 vgic_eisr; /* Saved only */
u32 vgic_elrsr; /* Saved only */
@@ -275,13 +301,15 @@ struct kvm_exit_mmio;
int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write);
int kvm_vgic_hyp_init(void);
int kvm_vgic_map_resources(struct kvm *kvm);
-int kvm_vgic_create(struct kvm *kvm);
+int kvm_vgic_get_max_vcpus(void);
+int kvm_vgic_create(struct kvm *kvm, u32 type);
void kvm_vgic_destroy(struct kvm *kvm);
void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu);
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu);
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu);
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
bool level);
+void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg);
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu);
bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
struct kvm_exit_mmio *mmio);
@@ -327,7 +355,7 @@ static inline int kvm_vgic_map_resources(struct kvm *kvm)
return 0;
}
-static inline int kvm_vgic_create(struct kvm *kvm)
+static inline int kvm_vgic_create(struct kvm *kvm, u32 type)
{
return 0;
}
@@ -379,6 +407,11 @@ static inline bool vgic_ready(struct kvm *kvm)
{
return true;
}
+
+static inline int kvm_vgic_get_max_vcpus(void)
+{
+ return KVM_MAX_VCPUS;
+}
#endif
#endif
diff --git a/include/linux/irqchip/arm-gic-v3.h b/include/linux/irqchip/arm-gic-v3.h
index 1e8b0cf30792..800544bc7bfd 100644
--- a/include/linux/irqchip/arm-gic-v3.h
+++ b/include/linux/irqchip/arm-gic-v3.h
@@ -33,6 +33,7 @@
#define GICD_SETSPI_SR 0x0050
#define GICD_CLRSPI_SR 0x0058
#define GICD_SEIR 0x0068
+#define GICD_IGROUPR 0x0080
#define GICD_ISENABLER 0x0100
#define GICD_ICENABLER 0x0180
#define GICD_ISPENDR 0x0200
@@ -41,14 +42,37 @@
#define GICD_ICACTIVER 0x0380
#define GICD_IPRIORITYR 0x0400
#define GICD_ICFGR 0x0C00
+#define GICD_IGRPMODR 0x0D00
+#define GICD_NSACR 0x0E00
#define GICD_IROUTER 0x6000
+#define GICD_IDREGS 0xFFD0
#define GICD_PIDR2 0xFFE8
+/*
+ * Those registers are actually from GICv2, but the spec demands that they
+ * are implemented as RES0 if ARE is 1 (which we do in KVM's emulated GICv3).
+ */
+#define GICD_ITARGETSR 0x0800
+#define GICD_SGIR 0x0F00
+#define GICD_CPENDSGIR 0x0F10
+#define GICD_SPENDSGIR 0x0F20
+
#define GICD_CTLR_RWP (1U << 31)
+#define GICD_CTLR_DS (1U << 6)
#define GICD_CTLR_ARE_NS (1U << 4)
#define GICD_CTLR_ENABLE_G1A (1U << 1)
#define GICD_CTLR_ENABLE_G1 (1U << 0)
+/*
+ * In systems with a single security state (what we emulate in KVM)
+ * the meaning of the interrupt group enable bits is slightly different
+ */
+#define GICD_CTLR_ENABLE_SS_G1 (1U << 1)
+#define GICD_CTLR_ENABLE_SS_G0 (1U << 0)
+
+#define GICD_TYPER_LPIS (1U << 17)
+#define GICD_TYPER_MBIS (1U << 16)
+
#define GICD_TYPER_ID_BITS(typer) ((((typer) >> 19) & 0x1f) + 1)
#define GICD_TYPER_IRQS(typer) ((((typer) & 0x1f) + 1) * 32)
#define GICD_TYPER_LPIS (1U << 17)
@@ -60,6 +84,8 @@
#define GIC_PIDR2_ARCH_GICv3 0x30
#define GIC_PIDR2_ARCH_GICv4 0x40
+#define GIC_V3_DIST_SIZE 0x10000
+
/*
* Re-Distributor registers, offsets from RD_base
*/
@@ -78,6 +104,7 @@
#define GICR_SYNCR 0x00C0
#define GICR_MOVLPIR 0x0100
#define GICR_MOVALLR 0x0110
+#define GICR_IDREGS GICD_IDREGS
#define GICR_PIDR2 GICD_PIDR2
#define GICR_CTLR_ENABLE_LPIS (1UL << 0)
@@ -104,6 +131,7 @@
/*
* Re-Distributor registers, offsets from SGI_base
*/
+#define GICR_IGROUPR0 GICD_IGROUPR
#define GICR_ISENABLER0 GICD_ISENABLER
#define GICR_ICENABLER0 GICD_ICENABLER
#define GICR_ISPENDR0 GICD_ISPENDR
@@ -112,11 +140,15 @@
#define GICR_ICACTIVER0 GICD_ICACTIVER
#define GICR_IPRIORITYR0 GICD_IPRIORITYR
#define GICR_ICFGR0 GICD_ICFGR
+#define GICR_IGRPMODR0 GICD_IGRPMODR
+#define GICR_NSACR GICD_NSACR
#define GICR_TYPER_PLPIS (1U << 0)
#define GICR_TYPER_VLPIS (1U << 1)
#define GICR_TYPER_LAST (1U << 4)
+#define GIC_V3_REDIST_SIZE 0x20000
+
#define LPI_PROP_GROUP1 (1 << 1)
#define LPI_PROP_ENABLED (1 << 0)
@@ -248,6 +280,18 @@
#define ICC_SRE_EL2_SRE (1 << 0)
#define ICC_SRE_EL2_ENABLE (1 << 3)
+#define ICC_SGI1R_TARGET_LIST_SHIFT 0
+#define ICC_SGI1R_TARGET_LIST_MASK (0xffff << ICC_SGI1R_TARGET_LIST_SHIFT)
+#define ICC_SGI1R_AFFINITY_1_SHIFT 16
+#define ICC_SGI1R_AFFINITY_1_MASK (0xff << ICC_SGI1R_AFFINITY_1_SHIFT)
+#define ICC_SGI1R_SGI_ID_SHIFT 24
+#define ICC_SGI1R_SGI_ID_MASK (0xff << ICC_SGI1R_SGI_ID_SHIFT)
+#define ICC_SGI1R_AFFINITY_2_SHIFT 32
+#define ICC_SGI1R_AFFINITY_2_MASK (0xffULL << ICC_SGI1R_AFFINITY_1_SHIFT)
+#define ICC_SGI1R_IRQ_ROUTING_MODE_BIT 40
+#define ICC_SGI1R_AFFINITY_3_SHIFT 48
+#define ICC_SGI1R_AFFINITY_3_MASK (0xffULL << ICC_SGI1R_AFFINITY_1_SHIFT)
+
/*
* System register definitions
*/
diff --git a/include/linux/kvm_host.h b/include/linux/kvm_host.h
index 26f106022c88..0ef2daa199d8 100644
--- a/include/linux/kvm_host.h
+++ b/include/linux/kvm_host.h
@@ -611,6 +611,15 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
int kvm_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log, int *is_dirty);
+
+int kvm_get_dirty_log_protect(struct kvm *kvm,
+ struct kvm_dirty_log *log, bool *is_dirty);
+
+void kvm_arch_mmu_write_protect_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn_offset,
+ unsigned long mask);
+
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log);
@@ -1042,6 +1051,8 @@ void kvm_unregister_device_ops(u32 type);
extern struct kvm_device_ops kvm_mpic_ops;
extern struct kvm_device_ops kvm_xics_ops;
+extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
+extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
diff --git a/include/uapi/linux/kvm.h b/include/uapi/linux/kvm.h
index a37fd1224f36..b4e6f1e70f03 100644
--- a/include/uapi/linux/kvm.h
+++ b/include/uapi/linux/kvm.h
@@ -952,6 +952,8 @@ enum kvm_device_type {
#define KVM_DEV_TYPE_ARM_VGIC_V2 KVM_DEV_TYPE_ARM_VGIC_V2
KVM_DEV_TYPE_FLIC,
#define KVM_DEV_TYPE_FLIC KVM_DEV_TYPE_FLIC
+ KVM_DEV_TYPE_ARM_VGIC_V3,
+#define KVM_DEV_TYPE_ARM_VGIC_V3 KVM_DEV_TYPE_ARM_VGIC_V3
KVM_DEV_TYPE_MAX,
};
diff --git a/virt/kvm/Kconfig b/virt/kvm/Kconfig
index fc0c5e603eb4..50d110654b42 100644
--- a/virt/kvm/Kconfig
+++ b/virt/kvm/Kconfig
@@ -37,3 +37,9 @@ config HAVE_KVM_CPU_RELAX_INTERCEPT
config KVM_VFIO
bool
+
+config HAVE_KVM_ARCH_TLB_FLUSH_ALL
+ bool
+
+config KVM_GENERIC_DIRTYLOG_READ_PROTECT
+ bool
diff --git a/virt/kvm/arm/vgic-v2-emul.c b/virt/kvm/arm/vgic-v2-emul.c
new file mode 100644
index 000000000000..19c6210f02cf
--- /dev/null
+++ b/virt/kvm/arm/vgic-v2-emul.c
@@ -0,0 +1,847 @@
+/*
+ * Contains GICv2 specific emulation code, was in vgic.c before.
+ *
+ * Copyright (C) 2012 ARM Ltd.
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <linux/cpu.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/uaccess.h>
+
+#include <linux/irqchip/arm-gic.h>
+
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_mmu.h>
+
+#include "vgic.h"
+
+#define GICC_ARCH_VERSION_V2 0x2
+
+static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
+static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi)
+{
+ return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi;
+}
+
+static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, phys_addr_t offset)
+{
+ u32 reg;
+ u32 word_offset = offset & 3;
+
+ switch (offset & ~3) {
+ case 0: /* GICD_CTLR */
+ reg = vcpu->kvm->arch.vgic.enabled;
+ vgic_reg_access(mmio, &reg, word_offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
+ if (mmio->is_write) {
+ vcpu->kvm->arch.vgic.enabled = reg & 1;
+ vgic_update_state(vcpu->kvm);
+ return true;
+ }
+ break;
+
+ case 4: /* GICD_TYPER */
+ reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
+ reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1;
+ vgic_reg_access(mmio, &reg, word_offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
+ break;
+
+ case 8: /* GICD_IIDR */
+ reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
+ vgic_reg_access(mmio, &reg, word_offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
+ break;
+ }
+
+ return false;
+}
+
+static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
+ vcpu->vcpu_id, ACCESS_WRITE_SETBIT);
+}
+
+static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
+ vcpu->vcpu_id, ACCESS_WRITE_CLEARBIT);
+}
+
+static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
+ vcpu->vcpu_id);
+}
+
+static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
+ vcpu->vcpu_id);
+}
+
+static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
+ vcpu->vcpu_id, offset);
+ vgic_reg_access(mmio, reg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
+ return false;
+}
+
+#define GICD_ITARGETSR_SIZE 32
+#define GICD_CPUTARGETS_BITS 8
+#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
+static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ int i;
+ u32 val = 0;
+
+ irq -= VGIC_NR_PRIVATE_IRQS;
+
+ for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
+ val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
+
+ return val;
+}
+
+static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct kvm_vcpu *vcpu;
+ int i, c;
+ unsigned long *bmap;
+ u32 target;
+
+ irq -= VGIC_NR_PRIVATE_IRQS;
+
+ /*
+ * Pick the LSB in each byte. This ensures we target exactly
+ * one vcpu per IRQ. If the byte is null, assume we target
+ * CPU0.
+ */
+ for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
+ int shift = i * GICD_CPUTARGETS_BITS;
+
+ target = ffs((val >> shift) & 0xffU);
+ target = target ? (target - 1) : 0;
+ dist->irq_spi_cpu[irq + i] = target;
+ kvm_for_each_vcpu(c, vcpu, kvm) {
+ bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
+ if (c == target)
+ set_bit(irq + i, bmap);
+ else
+ clear_bit(irq + i, bmap);
+ }
+ }
+}
+
+static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ u32 reg;
+
+ /* We treat the banked interrupts targets as read-only */
+ if (offset < 32) {
+ u32 roreg;
+
+ roreg = 1 << vcpu->vcpu_id;
+ roreg |= roreg << 8;
+ roreg |= roreg << 16;
+
+ vgic_reg_access(mmio, &roreg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
+ return false;
+ }
+
+ reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
+ vgic_reg_access(mmio, &reg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
+ if (mmio->is_write) {
+ vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
+ vgic_update_state(vcpu->kvm);
+ return true;
+ }
+
+ return false;
+}
+
+static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, phys_addr_t offset)
+{
+ u32 *reg;
+
+ reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
+ vcpu->vcpu_id, offset >> 1);
+
+ return vgic_handle_cfg_reg(reg, mmio, offset);
+}
+
+static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, phys_addr_t offset)
+{
+ u32 reg;
+
+ vgic_reg_access(mmio, &reg, offset,
+ ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
+ if (mmio->is_write) {
+ vgic_dispatch_sgi(vcpu, reg);
+ vgic_update_state(vcpu->kvm);
+ return true;
+ }
+
+ return false;
+}
+
+/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
+static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+ int sgi;
+ int min_sgi = (offset & ~0x3);
+ int max_sgi = min_sgi + 3;
+ int vcpu_id = vcpu->vcpu_id;
+ u32 reg = 0;
+
+ /* Copy source SGIs from distributor side */
+ for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
+ u8 sources = *vgic_get_sgi_sources(dist, vcpu_id, sgi);
+
+ reg |= ((u32)sources) << (8 * (sgi - min_sgi));
+ }
+
+ mmio_data_write(mmio, ~0, reg);
+ return false;
+}
+
+static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset, bool set)
+{
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+ int sgi;
+ int min_sgi = (offset & ~0x3);
+ int max_sgi = min_sgi + 3;
+ int vcpu_id = vcpu->vcpu_id;
+ u32 reg;
+ bool updated = false;
+
+ reg = mmio_data_read(mmio, ~0);
+
+ /* Clear pending SGIs on the distributor */
+ for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
+ u8 mask = reg >> (8 * (sgi - min_sgi));
+ u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi);
+
+ if (set) {
+ if ((*src & mask) != mask)
+ updated = true;
+ *src |= mask;
+ } else {
+ if (*src & mask)
+ updated = true;
+ *src &= ~mask;
+ }
+ }
+
+ if (updated)
+ vgic_update_state(vcpu->kvm);
+
+ return updated;
+}
+
+static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ if (!mmio->is_write)
+ return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
+ else
+ return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
+}
+
+static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ if (!mmio->is_write)
+ return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
+ else
+ return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
+}
+
+static const struct kvm_mmio_range vgic_dist_ranges[] = {
+ {
+ .base = GIC_DIST_CTRL,
+ .len = 12,
+ .bits_per_irq = 0,
+ .handle_mmio = handle_mmio_misc,
+ },
+ {
+ .base = GIC_DIST_IGROUP,
+ .len = VGIC_MAX_IRQS / 8,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ .base = GIC_DIST_ENABLE_SET,
+ .len = VGIC_MAX_IRQS / 8,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_set_enable_reg,
+ },
+ {
+ .base = GIC_DIST_ENABLE_CLEAR,
+ .len = VGIC_MAX_IRQS / 8,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_clear_enable_reg,
+ },
+ {
+ .base = GIC_DIST_PENDING_SET,
+ .len = VGIC_MAX_IRQS / 8,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_set_pending_reg,
+ },
+ {
+ .base = GIC_DIST_PENDING_CLEAR,
+ .len = VGIC_MAX_IRQS / 8,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_clear_pending_reg,
+ },
+ {
+ .base = GIC_DIST_ACTIVE_SET,
+ .len = VGIC_MAX_IRQS / 8,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ .base = GIC_DIST_ACTIVE_CLEAR,
+ .len = VGIC_MAX_IRQS / 8,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ .base = GIC_DIST_PRI,
+ .len = VGIC_MAX_IRQS,
+ .bits_per_irq = 8,
+ .handle_mmio = handle_mmio_priority_reg,
+ },
+ {
+ .base = GIC_DIST_TARGET,
+ .len = VGIC_MAX_IRQS,
+ .bits_per_irq = 8,
+ .handle_mmio = handle_mmio_target_reg,
+ },
+ {
+ .base = GIC_DIST_CONFIG,
+ .len = VGIC_MAX_IRQS / 4,
+ .bits_per_irq = 2,
+ .handle_mmio = handle_mmio_cfg_reg,
+ },
+ {
+ .base = GIC_DIST_SOFTINT,
+ .len = 4,
+ .handle_mmio = handle_mmio_sgi_reg,
+ },
+ {
+ .base = GIC_DIST_SGI_PENDING_CLEAR,
+ .len = VGIC_NR_SGIS,
+ .handle_mmio = handle_mmio_sgi_clear,
+ },
+ {
+ .base = GIC_DIST_SGI_PENDING_SET,
+ .len = VGIC_NR_SGIS,
+ .handle_mmio = handle_mmio_sgi_set,
+ },
+ {}
+};
+
+static bool vgic_v2_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
+ struct kvm_exit_mmio *mmio)
+{
+ unsigned long base = vcpu->kvm->arch.vgic.vgic_dist_base;
+
+ if (!is_in_range(mmio->phys_addr, mmio->len, base,
+ KVM_VGIC_V2_DIST_SIZE))
+ return false;
+
+ /* GICv2 does not support accesses wider than 32 bits */
+ if (mmio->len > 4) {
+ kvm_inject_dabt(vcpu, mmio->phys_addr);
+ return true;
+ }
+
+ return vgic_handle_mmio_range(vcpu, run, mmio, vgic_dist_ranges, base);
+}
+
+static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ int nrcpus = atomic_read(&kvm->online_vcpus);
+ u8 target_cpus;
+ int sgi, mode, c, vcpu_id;
+
+ vcpu_id = vcpu->vcpu_id;
+
+ sgi = reg & 0xf;
+ target_cpus = (reg >> 16) & 0xff;
+ mode = (reg >> 24) & 3;
+
+ switch (mode) {
+ case 0:
+ if (!target_cpus)
+ return;
+ break;
+
+ case 1:
+ target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
+ break;
+
+ case 2:
+ target_cpus = 1 << vcpu_id;
+ break;
+ }
+
+ kvm_for_each_vcpu(c, vcpu, kvm) {
+ if (target_cpus & 1) {
+ /* Flag the SGI as pending */
+ vgic_dist_irq_set_pending(vcpu, sgi);
+ *vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id;
+ kvm_debug("SGI%d from CPU%d to CPU%d\n",
+ sgi, vcpu_id, c);
+ }
+
+ target_cpus >>= 1;
+ }
+}
+
+static bool vgic_v2_queue_sgi(struct kvm_vcpu *vcpu, int irq)
+{
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+ unsigned long sources;
+ int vcpu_id = vcpu->vcpu_id;
+ int c;
+
+ sources = *vgic_get_sgi_sources(dist, vcpu_id, irq);
+
+ for_each_set_bit(c, &sources, dist->nr_cpus) {
+ if (vgic_queue_irq(vcpu, c, irq))
+ clear_bit(c, &sources);
+ }
+
+ *vgic_get_sgi_sources(dist, vcpu_id, irq) = sources;
+
+ /*
+ * If the sources bitmap has been cleared it means that we
+ * could queue all the SGIs onto link registers (see the
+ * clear_bit above), and therefore we are done with them in
+ * our emulated gic and can get rid of them.
+ */
+ if (!sources) {
+ vgic_dist_irq_clear_pending(vcpu, irq);
+ vgic_cpu_irq_clear(vcpu, irq);
+ return true;
+ }
+
+ return false;
+}
+
+/**
+ * kvm_vgic_map_resources - Configure global VGIC state before running any VCPUs
+ * @kvm: pointer to the kvm struct
+ *
+ * Map the virtual CPU interface into the VM before running any VCPUs. We
+ * can't do this at creation time, because user space must first set the
+ * virtual CPU interface address in the guest physical address space.
+ */
+static int vgic_v2_map_resources(struct kvm *kvm,
+ const struct vgic_params *params)
+{
+ int ret = 0;
+
+ if (!irqchip_in_kernel(kvm))
+ return 0;
+
+ mutex_lock(&kvm->lock);
+
+ if (vgic_ready(kvm))
+ goto out;
+
+ if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
+ IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
+ kvm_err("Need to set vgic cpu and dist addresses first\n");
+ ret = -ENXIO;
+ goto out;
+ }
+
+ /*
+ * Initialize the vgic if this hasn't already been done on demand by
+ * accessing the vgic state from userspace.
+ */
+ ret = vgic_init(kvm);
+ if (ret) {
+ kvm_err("Unable to allocate maps\n");
+ goto out;
+ }
+
+ ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
+ params->vcpu_base, KVM_VGIC_V2_CPU_SIZE,
+ true);
+ if (ret) {
+ kvm_err("Unable to remap VGIC CPU to VCPU\n");
+ goto out;
+ }
+
+ kvm->arch.vgic.ready = true;
+out:
+ if (ret)
+ kvm_vgic_destroy(kvm);
+ mutex_unlock(&kvm->lock);
+ return ret;
+}
+
+static void vgic_v2_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
+{
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+
+ *vgic_get_sgi_sources(dist, vcpu->vcpu_id, irq) |= 1 << source;
+}
+
+static int vgic_v2_init_model(struct kvm *kvm)
+{
+ int i;
+
+ for (i = VGIC_NR_PRIVATE_IRQS; i < kvm->arch.vgic.nr_irqs; i += 4)
+ vgic_set_target_reg(kvm, 0, i);
+
+ return 0;
+}
+
+void vgic_v2_init_emulation(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+
+ dist->vm_ops.handle_mmio = vgic_v2_handle_mmio;
+ dist->vm_ops.queue_sgi = vgic_v2_queue_sgi;
+ dist->vm_ops.add_sgi_source = vgic_v2_add_sgi_source;
+ dist->vm_ops.init_model = vgic_v2_init_model;
+ dist->vm_ops.map_resources = vgic_v2_map_resources;
+
+ kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS;
+}
+
+static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, phys_addr_t offset)
+{
+ bool updated = false;
+ struct vgic_vmcr vmcr;
+ u32 *vmcr_field;
+ u32 reg;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+
+ switch (offset & ~0x3) {
+ case GIC_CPU_CTRL:
+ vmcr_field = &vmcr.ctlr;
+ break;
+ case GIC_CPU_PRIMASK:
+ vmcr_field = &vmcr.pmr;
+ break;
+ case GIC_CPU_BINPOINT:
+ vmcr_field = &vmcr.bpr;
+ break;
+ case GIC_CPU_ALIAS_BINPOINT:
+ vmcr_field = &vmcr.abpr;
+ break;
+ default:
+ BUG();
+ }
+
+ if (!mmio->is_write) {
+ reg = *vmcr_field;
+ mmio_data_write(mmio, ~0, reg);
+ } else {
+ reg = mmio_data_read(mmio, ~0);
+ if (reg != *vmcr_field) {
+ *vmcr_field = reg;
+ vgic_set_vmcr(vcpu, &vmcr);
+ updated = true;
+ }
+ }
+ return updated;
+}
+
+static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, phys_addr_t offset)
+{
+ return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
+}
+
+static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ u32 reg;
+
+ if (mmio->is_write)
+ return false;
+
+ /* GICC_IIDR */
+ reg = (PRODUCT_ID_KVM << 20) |
+ (GICC_ARCH_VERSION_V2 << 16) |
+ (IMPLEMENTER_ARM << 0);
+ mmio_data_write(mmio, ~0, reg);
+ return false;
+}
+
+/*
+ * CPU Interface Register accesses - these are not accessed by the VM, but by
+ * user space for saving and restoring VGIC state.
+ */
+static const struct kvm_mmio_range vgic_cpu_ranges[] = {
+ {
+ .base = GIC_CPU_CTRL,
+ .len = 12,
+ .handle_mmio = handle_cpu_mmio_misc,
+ },
+ {
+ .base = GIC_CPU_ALIAS_BINPOINT,
+ .len = 4,
+ .handle_mmio = handle_mmio_abpr,
+ },
+ {
+ .base = GIC_CPU_ACTIVEPRIO,
+ .len = 16,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ .base = GIC_CPU_IDENT,
+ .len = 4,
+ .handle_mmio = handle_cpu_mmio_ident,
+ },
+};
+
+static int vgic_attr_regs_access(struct kvm_device *dev,
+ struct kvm_device_attr *attr,
+ u32 *reg, bool is_write)
+{
+ const struct kvm_mmio_range *r = NULL, *ranges;
+ phys_addr_t offset;
+ int ret, cpuid, c;
+ struct kvm_vcpu *vcpu, *tmp_vcpu;
+ struct vgic_dist *vgic;
+ struct kvm_exit_mmio mmio;
+
+ offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
+ cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
+ KVM_DEV_ARM_VGIC_CPUID_SHIFT;
+
+ mutex_lock(&dev->kvm->lock);
+
+ ret = vgic_init(dev->kvm);
+ if (ret)
+ goto out;
+
+ if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ vcpu = kvm_get_vcpu(dev->kvm, cpuid);
+ vgic = &dev->kvm->arch.vgic;
+
+ mmio.len = 4;
+ mmio.is_write = is_write;
+ if (is_write)
+ mmio_data_write(&mmio, ~0, *reg);
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ mmio.phys_addr = vgic->vgic_dist_base + offset;
+ ranges = vgic_dist_ranges;
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
+ mmio.phys_addr = vgic->vgic_cpu_base + offset;
+ ranges = vgic_cpu_ranges;
+ break;
+ default:
+ BUG();
+ }
+ r = vgic_find_range(ranges, &mmio, offset);
+
+ if (unlikely(!r || !r->handle_mmio)) {
+ ret = -ENXIO;
+ goto out;
+ }
+
+
+ spin_lock(&vgic->lock);
+
+ /*
+ * Ensure that no other VCPU is running by checking the vcpu->cpu
+ * field. If no other VPCUs are running we can safely access the VGIC
+ * state, because even if another VPU is run after this point, that
+ * VCPU will not touch the vgic state, because it will block on
+ * getting the vgic->lock in kvm_vgic_sync_hwstate().
+ */
+ kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
+ if (unlikely(tmp_vcpu->cpu != -1)) {
+ ret = -EBUSY;
+ goto out_vgic_unlock;
+ }
+ }
+
+ /*
+ * Move all pending IRQs from the LRs on all VCPUs so the pending
+ * state can be properly represented in the register state accessible
+ * through this API.
+ */
+ kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
+ vgic_unqueue_irqs(tmp_vcpu);
+
+ offset -= r->base;
+ r->handle_mmio(vcpu, &mmio, offset);
+
+ if (!is_write)
+ *reg = mmio_data_read(&mmio, ~0);
+
+ ret = 0;
+out_vgic_unlock:
+ spin_unlock(&vgic->lock);
+out:
+ mutex_unlock(&dev->kvm->lock);
+ return ret;
+}
+
+static int vgic_v2_create(struct kvm_device *dev, u32 type)
+{
+ return kvm_vgic_create(dev->kvm, type);
+}
+
+static void vgic_v2_destroy(struct kvm_device *dev)
+{
+ kfree(dev);
+}
+
+static int vgic_v2_set_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ int ret;
+
+ ret = vgic_set_common_attr(dev, attr);
+ if (ret != -ENXIO)
+ return ret;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
+ u32 __user *uaddr = (u32 __user *)(long)attr->addr;
+ u32 reg;
+
+ if (get_user(reg, uaddr))
+ return -EFAULT;
+
+ return vgic_attr_regs_access(dev, attr, &reg, true);
+ }
+
+ }
+
+ return -ENXIO;
+}
+
+static int vgic_v2_get_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ int ret;
+
+ ret = vgic_get_common_attr(dev, attr);
+ if (ret != -ENXIO)
+ return ret;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
+ u32 __user *uaddr = (u32 __user *)(long)attr->addr;
+ u32 reg = 0;
+
+ ret = vgic_attr_regs_access(dev, attr, &reg, false);
+ if (ret)
+ return ret;
+ return put_user(reg, uaddr);
+ }
+
+ }
+
+ return -ENXIO;
+}
+
+static int vgic_v2_has_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ phys_addr_t offset;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_ADDR:
+ switch (attr->attr) {
+ case KVM_VGIC_V2_ADDR_TYPE_DIST:
+ case KVM_VGIC_V2_ADDR_TYPE_CPU:
+ return 0;
+ }
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
+ return vgic_has_attr_regs(vgic_dist_ranges, offset);
+ case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
+ offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
+ return vgic_has_attr_regs(vgic_cpu_ranges, offset);
+ case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
+ return 0;
+ case KVM_DEV_ARM_VGIC_GRP_CTRL:
+ switch (attr->attr) {
+ case KVM_DEV_ARM_VGIC_CTRL_INIT:
+ return 0;
+ }
+ }
+ return -ENXIO;
+}
+
+struct kvm_device_ops kvm_arm_vgic_v2_ops = {
+ .name = "kvm-arm-vgic-v2",
+ .create = vgic_v2_create,
+ .destroy = vgic_v2_destroy,
+ .set_attr = vgic_v2_set_attr,
+ .get_attr = vgic_v2_get_attr,
+ .has_attr = vgic_v2_has_attr,
+};
diff --git a/virt/kvm/arm/vgic-v2.c b/virt/kvm/arm/vgic-v2.c
index 2935405ad22f..a0a7b5d1a070 100644
--- a/virt/kvm/arm/vgic-v2.c
+++ b/virt/kvm/arm/vgic-v2.c
@@ -229,12 +229,16 @@ int vgic_v2_probe(struct device_node *vgic_node,
goto out_unmap;
}
+ vgic->can_emulate_gicv2 = true;
+ kvm_register_device_ops(&kvm_arm_vgic_v2_ops, KVM_DEV_TYPE_ARM_VGIC_V2);
+
vgic->vcpu_base = vcpu_res.start;
kvm_info("%s@%llx IRQ%d\n", vgic_node->name,
vctrl_res.start, vgic->maint_irq);
vgic->type = VGIC_V2;
+ vgic->max_gic_vcpus = VGIC_V2_MAX_CPUS;
*ops = &vgic_v2_ops;
*params = vgic;
goto out;
diff --git a/virt/kvm/arm/vgic-v3-emul.c b/virt/kvm/arm/vgic-v3-emul.c
new file mode 100644
index 000000000000..b3f154631515
--- /dev/null
+++ b/virt/kvm/arm/vgic-v3-emul.c
@@ -0,0 +1,1036 @@
+/*
+ * GICv3 distributor and redistributor emulation
+ *
+ * GICv3 emulation is currently only supported on a GICv3 host (because
+ * we rely on the hardware's CPU interface virtualization support), but
+ * supports both hardware with or without the optional GICv2 backwards
+ * compatibility features.
+ *
+ * Limitations of the emulation:
+ * (RAZ/WI: read as zero, write ignore, RAO/WI: read as one, write ignore)
+ * - We do not support LPIs (yet). TYPER.LPIS is reported as 0 and is RAZ/WI.
+ * - We do not support the message based interrupts (MBIs) triggered by
+ * writes to the GICD_{SET,CLR}SPI_* registers. TYPER.MBIS is reported as 0.
+ * - We do not support the (optional) backwards compatibility feature.
+ * GICD_CTLR.ARE resets to 1 and is RAO/WI. If the _host_ GIC supports
+ * the compatiblity feature, you can use a GICv2 in the guest, though.
+ * - We only support a single security state. GICD_CTLR.DS is 1 and is RAO/WI.
+ * - Priorities are not emulated (same as the GICv2 emulation). Linux
+ * as a guest is fine with this, because it does not use priorities.
+ * - We only support Group1 interrupts. Again Linux uses only those.
+ *
+ * Copyright (C) 2014 ARM Ltd.
+ * Author: Andre Przywara <andre.przywara@arm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <linux/cpu.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/interrupt.h>
+
+#include <linux/irqchip/arm-gic-v3.h>
+#include <kvm/arm_vgic.h>
+
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_mmu.h>
+
+#include "vgic.h"
+
+static bool handle_mmio_rao_wi(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, phys_addr_t offset)
+{
+ u32 reg = 0xffffffff;
+
+ vgic_reg_access(mmio, &reg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
+
+ return false;
+}
+
+static bool handle_mmio_ctlr(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, phys_addr_t offset)
+{
+ u32 reg = 0;
+
+ /*
+ * Force ARE and DS to 1, the guest cannot change this.
+ * For the time being we only support Group1 interrupts.
+ */
+ if (vcpu->kvm->arch.vgic.enabled)
+ reg = GICD_CTLR_ENABLE_SS_G1;
+ reg |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
+
+ vgic_reg_access(mmio, &reg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
+ if (mmio->is_write) {
+ if (reg & GICD_CTLR_ENABLE_SS_G0)
+ kvm_info("guest tried to enable unsupported Group0 interrupts\n");
+ vcpu->kvm->arch.vgic.enabled = !!(reg & GICD_CTLR_ENABLE_SS_G1);
+ vgic_update_state(vcpu->kvm);
+ return true;
+ }
+ return false;
+}
+
+/*
+ * As this implementation does not provide compatibility
+ * with GICv2 (ARE==1), we report zero CPUs in bits [5..7].
+ * Also LPIs and MBIs are not supported, so we set the respective bits to 0.
+ * Also we report at most 2**10=1024 interrupt IDs (to match 1024 SPIs).
+ */
+#define INTERRUPT_ID_BITS 10
+static bool handle_mmio_typer(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, phys_addr_t offset)
+{
+ u32 reg;
+
+ reg = (min(vcpu->kvm->arch.vgic.nr_irqs, 1024) >> 5) - 1;
+
+ reg |= (INTERRUPT_ID_BITS - 1) << 19;
+
+ vgic_reg_access(mmio, &reg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
+
+ return false;
+}
+
+static bool handle_mmio_iidr(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, phys_addr_t offset)
+{
+ u32 reg;
+
+ reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
+ vgic_reg_access(mmio, &reg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
+
+ return false;
+}
+
+static bool handle_mmio_set_enable_reg_dist(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
+ return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
+ vcpu->vcpu_id,
+ ACCESS_WRITE_SETBIT);
+
+ vgic_reg_access(mmio, NULL, offset,
+ ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
+ return false;
+}
+
+static bool handle_mmio_clear_enable_reg_dist(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
+ return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
+ vcpu->vcpu_id,
+ ACCESS_WRITE_CLEARBIT);
+
+ vgic_reg_access(mmio, NULL, offset,
+ ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
+ return false;
+}
+
+static bool handle_mmio_set_pending_reg_dist(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
+ return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
+ vcpu->vcpu_id);
+
+ vgic_reg_access(mmio, NULL, offset,
+ ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
+ return false;
+}
+
+static bool handle_mmio_clear_pending_reg_dist(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
+ return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
+ vcpu->vcpu_id);
+
+ vgic_reg_access(mmio, NULL, offset,
+ ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
+ return false;
+}
+
+static bool handle_mmio_priority_reg_dist(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ u32 *reg;
+
+ if (unlikely(offset < VGIC_NR_PRIVATE_IRQS)) {
+ vgic_reg_access(mmio, NULL, offset,
+ ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
+ return false;
+ }
+
+ reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
+ vcpu->vcpu_id, offset);
+ vgic_reg_access(mmio, reg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
+ return false;
+}
+
+static bool handle_mmio_cfg_reg_dist(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ u32 *reg;
+
+ if (unlikely(offset < VGIC_NR_PRIVATE_IRQS / 4)) {
+ vgic_reg_access(mmio, NULL, offset,
+ ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
+ return false;
+ }
+
+ reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
+ vcpu->vcpu_id, offset >> 1);
+
+ return vgic_handle_cfg_reg(reg, mmio, offset);
+}
+
+/*
+ * We use a compressed version of the MPIDR (all 32 bits in one 32-bit word)
+ * when we store the target MPIDR written by the guest.
+ */
+static u32 compress_mpidr(unsigned long mpidr)
+{
+ u32 ret;
+
+ ret = MPIDR_AFFINITY_LEVEL(mpidr, 0);
+ ret |= MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8;
+ ret |= MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16;
+ ret |= MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24;
+
+ return ret;
+}
+
+static unsigned long uncompress_mpidr(u32 value)
+{
+ unsigned long mpidr;
+
+ mpidr = ((value >> 0) & 0xFF) << MPIDR_LEVEL_SHIFT(0);
+ mpidr |= ((value >> 8) & 0xFF) << MPIDR_LEVEL_SHIFT(1);
+ mpidr |= ((value >> 16) & 0xFF) << MPIDR_LEVEL_SHIFT(2);
+ mpidr |= (u64)((value >> 24) & 0xFF) << MPIDR_LEVEL_SHIFT(3);
+
+ return mpidr;
+}
+
+/*
+ * Lookup the given MPIDR value to get the vcpu_id (if there is one)
+ * and store that in the irq_spi_cpu[] array.
+ * This limits the number of VCPUs to 255 for now, extending the data
+ * type (or storing kvm_vcpu pointers) should lift the limit.
+ * Store the original MPIDR value in an extra array to support read-as-written.
+ * Unallocated MPIDRs are translated to a special value and caught
+ * before any array accesses.
+ */
+static bool handle_mmio_route_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ int spi;
+ u32 reg;
+ int vcpu_id;
+ unsigned long *bmap, mpidr;
+
+ /*
+ * The upper 32 bits of each 64 bit register are zero,
+ * as we don't support Aff3.
+ */
+ if ((offset & 4)) {
+ vgic_reg_access(mmio, NULL, offset,
+ ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
+ return false;
+ }
+
+ /* This region only covers SPIs, so no handling of private IRQs here. */
+ spi = offset / 8;
+
+ /* get the stored MPIDR for this IRQ */
+ mpidr = uncompress_mpidr(dist->irq_spi_mpidr[spi]);
+ reg = mpidr;
+
+ vgic_reg_access(mmio, &reg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
+
+ if (!mmio->is_write)
+ return false;
+
+ /*
+ * Now clear the currently assigned vCPU from the map, making room
+ * for the new one to be written below
+ */
+ vcpu = kvm_mpidr_to_vcpu(kvm, mpidr);
+ if (likely(vcpu)) {
+ vcpu_id = vcpu->vcpu_id;
+ bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]);
+ __clear_bit(spi, bmap);
+ }
+
+ dist->irq_spi_mpidr[spi] = compress_mpidr(reg);
+ vcpu = kvm_mpidr_to_vcpu(kvm, reg & MPIDR_HWID_BITMASK);
+
+ /*
+ * The spec says that non-existent MPIDR values should not be
+ * forwarded to any existent (v)CPU, but should be able to become
+ * pending anyway. We simply keep the irq_spi_target[] array empty, so
+ * the interrupt will never be injected.
+ * irq_spi_cpu[irq] gets a magic value in this case.
+ */
+ if (likely(vcpu)) {
+ vcpu_id = vcpu->vcpu_id;
+ dist->irq_spi_cpu[spi] = vcpu_id;
+ bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]);
+ __set_bit(spi, bmap);
+ } else {
+ dist->irq_spi_cpu[spi] = VCPU_NOT_ALLOCATED;
+ }
+
+ vgic_update_state(kvm);
+
+ return true;
+}
+
+/*
+ * We should be careful about promising too much when a guest reads
+ * this register. Don't claim to be like any hardware implementation,
+ * but just report the GIC as version 3 - which is what a Linux guest
+ * would check.
+ */
+static bool handle_mmio_idregs(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ u32 reg = 0;
+
+ switch (offset + GICD_IDREGS) {
+ case GICD_PIDR2:
+ reg = 0x3b;
+ break;
+ }
+
+ vgic_reg_access(mmio, &reg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
+
+ return false;
+}
+
+static const struct kvm_mmio_range vgic_v3_dist_ranges[] = {
+ {
+ .base = GICD_CTLR,
+ .len = 0x04,
+ .bits_per_irq = 0,
+ .handle_mmio = handle_mmio_ctlr,
+ },
+ {
+ .base = GICD_TYPER,
+ .len = 0x04,
+ .bits_per_irq = 0,
+ .handle_mmio = handle_mmio_typer,
+ },
+ {
+ .base = GICD_IIDR,
+ .len = 0x04,
+ .bits_per_irq = 0,
+ .handle_mmio = handle_mmio_iidr,
+ },
+ {
+ /* this register is optional, it is RAZ/WI if not implemented */
+ .base = GICD_STATUSR,
+ .len = 0x04,
+ .bits_per_irq = 0,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ /* this write only register is WI when TYPER.MBIS=0 */
+ .base = GICD_SETSPI_NSR,
+ .len = 0x04,
+ .bits_per_irq = 0,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ /* this write only register is WI when TYPER.MBIS=0 */
+ .base = GICD_CLRSPI_NSR,
+ .len = 0x04,
+ .bits_per_irq = 0,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ /* this is RAZ/WI when DS=1 */
+ .base = GICD_SETSPI_SR,
+ .len = 0x04,
+ .bits_per_irq = 0,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ /* this is RAZ/WI when DS=1 */
+ .base = GICD_CLRSPI_SR,
+ .len = 0x04,
+ .bits_per_irq = 0,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ .base = GICD_IGROUPR,
+ .len = 0x80,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_rao_wi,
+ },
+ {
+ .base = GICD_ISENABLER,
+ .len = 0x80,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_set_enable_reg_dist,
+ },
+ {
+ .base = GICD_ICENABLER,
+ .len = 0x80,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_clear_enable_reg_dist,
+ },
+ {
+ .base = GICD_ISPENDR,
+ .len = 0x80,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_set_pending_reg_dist,
+ },
+ {
+ .base = GICD_ICPENDR,
+ .len = 0x80,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_clear_pending_reg_dist,
+ },
+ {
+ .base = GICD_ISACTIVER,
+ .len = 0x80,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ .base = GICD_ICACTIVER,
+ .len = 0x80,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ .base = GICD_IPRIORITYR,
+ .len = 0x400,
+ .bits_per_irq = 8,
+ .handle_mmio = handle_mmio_priority_reg_dist,
+ },
+ {
+ /* TARGETSRn is RES0 when ARE=1 */
+ .base = GICD_ITARGETSR,
+ .len = 0x400,
+ .bits_per_irq = 8,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ .base = GICD_ICFGR,
+ .len = 0x100,
+ .bits_per_irq = 2,
+ .handle_mmio = handle_mmio_cfg_reg_dist,
+ },
+ {
+ /* this is RAZ/WI when DS=1 */
+ .base = GICD_IGRPMODR,
+ .len = 0x80,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ /* this is RAZ/WI when DS=1 */
+ .base = GICD_NSACR,
+ .len = 0x100,
+ .bits_per_irq = 2,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ /* this is RAZ/WI when ARE=1 */
+ .base = GICD_SGIR,
+ .len = 0x04,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ /* this is RAZ/WI when ARE=1 */
+ .base = GICD_CPENDSGIR,
+ .len = 0x10,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ /* this is RAZ/WI when ARE=1 */
+ .base = GICD_SPENDSGIR,
+ .len = 0x10,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ .base = GICD_IROUTER + 0x100,
+ .len = 0x1ee0,
+ .bits_per_irq = 64,
+ .handle_mmio = handle_mmio_route_reg,
+ },
+ {
+ .base = GICD_IDREGS,
+ .len = 0x30,
+ .bits_per_irq = 0,
+ .handle_mmio = handle_mmio_idregs,
+ },
+ {},
+};
+
+static bool handle_mmio_set_enable_reg_redist(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ struct kvm_vcpu *redist_vcpu = mmio->private;
+
+ return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
+ redist_vcpu->vcpu_id,
+ ACCESS_WRITE_SETBIT);
+}
+
+static bool handle_mmio_clear_enable_reg_redist(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ struct kvm_vcpu *redist_vcpu = mmio->private;
+
+ return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
+ redist_vcpu->vcpu_id,
+ ACCESS_WRITE_CLEARBIT);
+}
+
+static bool handle_mmio_set_pending_reg_redist(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ struct kvm_vcpu *redist_vcpu = mmio->private;
+
+ return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
+ redist_vcpu->vcpu_id);
+}
+
+static bool handle_mmio_clear_pending_reg_redist(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ struct kvm_vcpu *redist_vcpu = mmio->private;
+
+ return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
+ redist_vcpu->vcpu_id);
+}
+
+static bool handle_mmio_priority_reg_redist(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ struct kvm_vcpu *redist_vcpu = mmio->private;
+ u32 *reg;
+
+ reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
+ redist_vcpu->vcpu_id, offset);
+ vgic_reg_access(mmio, reg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
+ return false;
+}
+
+static bool handle_mmio_cfg_reg_redist(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ struct kvm_vcpu *redist_vcpu = mmio->private;
+
+ u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
+ redist_vcpu->vcpu_id, offset >> 1);
+
+ return vgic_handle_cfg_reg(reg, mmio, offset);
+}
+
+static const struct kvm_mmio_range vgic_redist_sgi_ranges[] = {
+ {
+ .base = GICR_IGROUPR0,
+ .len = 0x04,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_rao_wi,
+ },
+ {
+ .base = GICR_ISENABLER0,
+ .len = 0x04,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_set_enable_reg_redist,
+ },
+ {
+ .base = GICR_ICENABLER0,
+ .len = 0x04,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_clear_enable_reg_redist,
+ },
+ {
+ .base = GICR_ISPENDR0,
+ .len = 0x04,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_set_pending_reg_redist,
+ },
+ {
+ .base = GICR_ICPENDR0,
+ .len = 0x04,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_clear_pending_reg_redist,
+ },
+ {
+ .base = GICR_ISACTIVER0,
+ .len = 0x04,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ .base = GICR_ICACTIVER0,
+ .len = 0x04,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ .base = GICR_IPRIORITYR0,
+ .len = 0x20,
+ .bits_per_irq = 8,
+ .handle_mmio = handle_mmio_priority_reg_redist,
+ },
+ {
+ .base = GICR_ICFGR0,
+ .len = 0x08,
+ .bits_per_irq = 2,
+ .handle_mmio = handle_mmio_cfg_reg_redist,
+ },
+ {
+ .base = GICR_IGRPMODR0,
+ .len = 0x04,
+ .bits_per_irq = 1,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ .base = GICR_NSACR,
+ .len = 0x04,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {},
+};
+
+static bool handle_mmio_ctlr_redist(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ /* since we don't support LPIs, this register is zero for now */
+ vgic_reg_access(mmio, NULL, offset,
+ ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
+ return false;
+}
+
+static bool handle_mmio_typer_redist(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
+{
+ u32 reg;
+ u64 mpidr;
+ struct kvm_vcpu *redist_vcpu = mmio->private;
+ int target_vcpu_id = redist_vcpu->vcpu_id;
+
+ /* the upper 32 bits contain the affinity value */
+ if ((offset & ~3) == 4) {
+ mpidr = kvm_vcpu_get_mpidr_aff(redist_vcpu);
+ reg = compress_mpidr(mpidr);
+
+ vgic_reg_access(mmio, &reg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
+ return false;
+ }
+
+ reg = redist_vcpu->vcpu_id << 8;
+ if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
+ reg |= GICR_TYPER_LAST;
+ vgic_reg_access(mmio, &reg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
+ return false;
+}
+
+static const struct kvm_mmio_range vgic_redist_ranges[] = {
+ {
+ .base = GICR_CTLR,
+ .len = 0x04,
+ .bits_per_irq = 0,
+ .handle_mmio = handle_mmio_ctlr_redist,
+ },
+ {
+ .base = GICR_TYPER,
+ .len = 0x08,
+ .bits_per_irq = 0,
+ .handle_mmio = handle_mmio_typer_redist,
+ },
+ {
+ .base = GICR_IIDR,
+ .len = 0x04,
+ .bits_per_irq = 0,
+ .handle_mmio = handle_mmio_iidr,
+ },
+ {
+ .base = GICR_WAKER,
+ .len = 0x04,
+ .bits_per_irq = 0,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ {
+ .base = GICR_IDREGS,
+ .len = 0x30,
+ .bits_per_irq = 0,
+ .handle_mmio = handle_mmio_idregs,
+ },
+ {},
+};
+
+/*
+ * This function splits accesses between the distributor and the two
+ * redistributor parts (private/SPI). As each redistributor is accessible
+ * from any CPU, we have to determine the affected VCPU by taking the faulting
+ * address into account. We then pass this VCPU to the handler function via
+ * the private parameter.
+ */
+#define SGI_BASE_OFFSET SZ_64K
+static bool vgic_v3_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
+ struct kvm_exit_mmio *mmio)
+{
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+ unsigned long dbase = dist->vgic_dist_base;
+ unsigned long rdbase = dist->vgic_redist_base;
+ int nrcpus = atomic_read(&vcpu->kvm->online_vcpus);
+ int vcpu_id;
+ const struct kvm_mmio_range *mmio_range;
+
+ if (is_in_range(mmio->phys_addr, mmio->len, dbase, GIC_V3_DIST_SIZE)) {
+ return vgic_handle_mmio_range(vcpu, run, mmio,
+ vgic_v3_dist_ranges, dbase);
+ }
+
+ if (!is_in_range(mmio->phys_addr, mmio->len, rdbase,
+ GIC_V3_REDIST_SIZE * nrcpus))
+ return false;
+
+ vcpu_id = (mmio->phys_addr - rdbase) / GIC_V3_REDIST_SIZE;
+ rdbase += (vcpu_id * GIC_V3_REDIST_SIZE);
+ mmio->private = kvm_get_vcpu(vcpu->kvm, vcpu_id);
+
+ if (mmio->phys_addr >= rdbase + SGI_BASE_OFFSET) {
+ rdbase += SGI_BASE_OFFSET;
+ mmio_range = vgic_redist_sgi_ranges;
+ } else {
+ mmio_range = vgic_redist_ranges;
+ }
+ return vgic_handle_mmio_range(vcpu, run, mmio, mmio_range, rdbase);
+}
+
+static bool vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, int irq)
+{
+ if (vgic_queue_irq(vcpu, 0, irq)) {
+ vgic_dist_irq_clear_pending(vcpu, irq);
+ vgic_cpu_irq_clear(vcpu, irq);
+ return true;
+ }
+
+ return false;
+}
+
+static int vgic_v3_map_resources(struct kvm *kvm,
+ const struct vgic_params *params)
+{
+ int ret = 0;
+ struct vgic_dist *dist = &kvm->arch.vgic;
+
+ if (!irqchip_in_kernel(kvm))
+ return 0;
+
+ mutex_lock(&kvm->lock);
+
+ if (vgic_ready(kvm))
+ goto out;
+
+ if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
+ IS_VGIC_ADDR_UNDEF(dist->vgic_redist_base)) {
+ kvm_err("Need to set vgic distributor addresses first\n");
+ ret = -ENXIO;
+ goto out;
+ }
+
+ /*
+ * For a VGICv3 we require the userland to explicitly initialize
+ * the VGIC before we need to use it.
+ */
+ if (!vgic_initialized(kvm)) {
+ ret = -EBUSY;
+ goto out;
+ }
+
+ kvm->arch.vgic.ready = true;
+out:
+ if (ret)
+ kvm_vgic_destroy(kvm);
+ mutex_unlock(&kvm->lock);
+ return ret;
+}
+
+static int vgic_v3_init_model(struct kvm *kvm)
+{
+ int i;
+ u32 mpidr;
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ int nr_spis = dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
+
+ dist->irq_spi_mpidr = kcalloc(nr_spis, sizeof(dist->irq_spi_mpidr[0]),
+ GFP_KERNEL);
+
+ if (!dist->irq_spi_mpidr)
+ return -ENOMEM;
+
+ /* Initialize the target VCPUs for each IRQ to VCPU 0 */
+ mpidr = compress_mpidr(kvm_vcpu_get_mpidr_aff(kvm_get_vcpu(kvm, 0)));
+ for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i++) {
+ dist->irq_spi_cpu[i - VGIC_NR_PRIVATE_IRQS] = 0;
+ dist->irq_spi_mpidr[i - VGIC_NR_PRIVATE_IRQS] = mpidr;
+ vgic_bitmap_set_irq_val(dist->irq_spi_target, 0, i, 1);
+ }
+
+ return 0;
+}
+
+/* GICv3 does not keep track of SGI sources anymore. */
+static void vgic_v3_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
+{
+}
+
+void vgic_v3_init_emulation(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+
+ dist->vm_ops.handle_mmio = vgic_v3_handle_mmio;
+ dist->vm_ops.queue_sgi = vgic_v3_queue_sgi;
+ dist->vm_ops.add_sgi_source = vgic_v3_add_sgi_source;
+ dist->vm_ops.init_model = vgic_v3_init_model;
+ dist->vm_ops.map_resources = vgic_v3_map_resources;
+
+ kvm->arch.max_vcpus = KVM_MAX_VCPUS;
+}
+
+/*
+ * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
+ * generation register ICC_SGI1R_EL1) with a given VCPU.
+ * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
+ * return -1.
+ */
+static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
+{
+ unsigned long affinity;
+ int level0;
+
+ /*
+ * Split the current VCPU's MPIDR into affinity level 0 and the
+ * rest as this is what we have to compare against.
+ */
+ affinity = kvm_vcpu_get_mpidr_aff(vcpu);
+ level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
+ affinity &= ~MPIDR_LEVEL_MASK;
+
+ /* bail out if the upper three levels don't match */
+ if (sgi_aff != affinity)
+ return -1;
+
+ /* Is this VCPU's bit set in the mask ? */
+ if (!(sgi_cpu_mask & BIT(level0)))
+ return -1;
+
+ return level0;
+}
+
+#define SGI_AFFINITY_LEVEL(reg, level) \
+ ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
+ >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
+
+/**
+ * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
+ * @vcpu: The VCPU requesting a SGI
+ * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
+ *
+ * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
+ * This will trap in sys_regs.c and call this function.
+ * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
+ * target processors as well as a bitmask of 16 Aff0 CPUs.
+ * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
+ * check for matching ones. If this bit is set, we signal all, but not the
+ * calling VCPU.
+ */
+void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_vcpu *c_vcpu;
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ u16 target_cpus;
+ u64 mpidr;
+ int sgi, c;
+ int vcpu_id = vcpu->vcpu_id;
+ bool broadcast;
+ int updated = 0;
+
+ sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
+ broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
+ target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
+ mpidr = SGI_AFFINITY_LEVEL(reg, 3);
+ mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
+ mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
+
+ /*
+ * We take the dist lock here, because we come from the sysregs
+ * code path and not from the MMIO one (which already takes the lock).
+ */
+ spin_lock(&dist->lock);
+
+ /*
+ * We iterate over all VCPUs to find the MPIDRs matching the request.
+ * If we have handled one CPU, we clear it's bit to detect early
+ * if we are already finished. This avoids iterating through all
+ * VCPUs when most of the times we just signal a single VCPU.
+ */
+ kvm_for_each_vcpu(c, c_vcpu, kvm) {
+
+ /* Exit early if we have dealt with all requested CPUs */
+ if (!broadcast && target_cpus == 0)
+ break;
+
+ /* Don't signal the calling VCPU */
+ if (broadcast && c == vcpu_id)
+ continue;
+
+ if (!broadcast) {
+ int level0;
+
+ level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
+ if (level0 == -1)
+ continue;
+
+ /* remove this matching VCPU from the mask */
+ target_cpus &= ~BIT(level0);
+ }
+
+ /* Flag the SGI as pending */
+ vgic_dist_irq_set_pending(c_vcpu, sgi);
+ updated = 1;
+ kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
+ }
+ if (updated)
+ vgic_update_state(vcpu->kvm);
+ spin_unlock(&dist->lock);
+ if (updated)
+ vgic_kick_vcpus(vcpu->kvm);
+}
+
+static int vgic_v3_create(struct kvm_device *dev, u32 type)
+{
+ return kvm_vgic_create(dev->kvm, type);
+}
+
+static void vgic_v3_destroy(struct kvm_device *dev)
+{
+ kfree(dev);
+}
+
+static int vgic_v3_set_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ int ret;
+
+ ret = vgic_set_common_attr(dev, attr);
+ if (ret != -ENXIO)
+ return ret;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
+ return -ENXIO;
+ }
+
+ return -ENXIO;
+}
+
+static int vgic_v3_get_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ int ret;
+
+ ret = vgic_get_common_attr(dev, attr);
+ if (ret != -ENXIO)
+ return ret;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
+ return -ENXIO;
+ }
+
+ return -ENXIO;
+}
+
+static int vgic_v3_has_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_ADDR:
+ switch (attr->attr) {
+ case KVM_VGIC_V2_ADDR_TYPE_DIST:
+ case KVM_VGIC_V2_ADDR_TYPE_CPU:
+ return -ENXIO;
+ case KVM_VGIC_V3_ADDR_TYPE_DIST:
+ case KVM_VGIC_V3_ADDR_TYPE_REDIST:
+ return 0;
+ }
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
+ return -ENXIO;
+ case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
+ return 0;
+ case KVM_DEV_ARM_VGIC_GRP_CTRL:
+ switch (attr->attr) {
+ case KVM_DEV_ARM_VGIC_CTRL_INIT:
+ return 0;
+ }
+ }
+ return -ENXIO;
+}
+
+struct kvm_device_ops kvm_arm_vgic_v3_ops = {
+ .name = "kvm-arm-vgic-v3",
+ .create = vgic_v3_create,
+ .destroy = vgic_v3_destroy,
+ .set_attr = vgic_v3_set_attr,
+ .get_attr = vgic_v3_get_attr,
+ .has_attr = vgic_v3_has_attr,
+};
diff --git a/virt/kvm/arm/vgic-v3.c b/virt/kvm/arm/vgic-v3.c
index 1c2c8eef0599..3a62d8a9a2c6 100644
--- a/virt/kvm/arm/vgic-v3.c
+++ b/virt/kvm/arm/vgic-v3.c
@@ -34,6 +34,7 @@
#define GICH_LR_VIRTUALID (0x3ffUL << 0)
#define GICH_LR_PHYSID_CPUID_SHIFT (10)
#define GICH_LR_PHYSID_CPUID (7UL << GICH_LR_PHYSID_CPUID_SHIFT)
+#define ICH_LR_VIRTUALID_MASK (BIT_ULL(32) - 1)
/*
* LRs are stored in reverse order in memory. make sure we index them
@@ -48,12 +49,17 @@ static struct vgic_lr vgic_v3_get_lr(const struct kvm_vcpu *vcpu, int lr)
struct vgic_lr lr_desc;
u64 val = vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[LR_INDEX(lr)];
- lr_desc.irq = val & GICH_LR_VIRTUALID;
- if (lr_desc.irq <= 15)
- lr_desc.source = (val >> GICH_LR_PHYSID_CPUID_SHIFT) & 0x7;
+ if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)
+ lr_desc.irq = val & ICH_LR_VIRTUALID_MASK;
else
- lr_desc.source = 0;
- lr_desc.state = 0;
+ lr_desc.irq = val & GICH_LR_VIRTUALID;
+
+ lr_desc.source = 0;
+ if (lr_desc.irq <= 15 &&
+ vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
+ lr_desc.source = (val >> GICH_LR_PHYSID_CPUID_SHIFT) & 0x7;
+
+ lr_desc.state = 0;
if (val & ICH_LR_PENDING_BIT)
lr_desc.state |= LR_STATE_PENDING;
@@ -68,8 +74,20 @@ static struct vgic_lr vgic_v3_get_lr(const struct kvm_vcpu *vcpu, int lr)
static void vgic_v3_set_lr(struct kvm_vcpu *vcpu, int lr,
struct vgic_lr lr_desc)
{
- u64 lr_val = (((u32)lr_desc.source << GICH_LR_PHYSID_CPUID_SHIFT) |
- lr_desc.irq);
+ u64 lr_val;
+
+ lr_val = lr_desc.irq;
+
+ /*
+ * Currently all guest IRQs are Group1, as Group0 would result
+ * in a FIQ in the guest, which it wouldn't expect.
+ * Eventually we want to make this configurable, so we may revisit
+ * this in the future.
+ */
+ if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)
+ lr_val |= ICH_LR_GROUP;
+ else
+ lr_val |= (u32)lr_desc.source << GICH_LR_PHYSID_CPUID_SHIFT;
if (lr_desc.state & LR_STATE_PENDING)
lr_val |= ICH_LR_PENDING_BIT;
@@ -145,15 +163,27 @@ static void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
static void vgic_v3_enable(struct kvm_vcpu *vcpu)
{
+ struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
+
/*
* By forcing VMCR to zero, the GIC will restore the binary
* points to their reset values. Anything else resets to zero
* anyway.
*/
- vcpu->arch.vgic_cpu.vgic_v3.vgic_vmcr = 0;
+ vgic_v3->vgic_vmcr = 0;
+
+ /*
+ * If we are emulating a GICv3, we do it in an non-GICv2-compatible
+ * way, so we force SRE to 1 to demonstrate this to the guest.
+ * This goes with the spec allowing the value to be RAO/WI.
+ */
+ if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)
+ vgic_v3->vgic_sre = ICC_SRE_EL1_SRE;
+ else
+ vgic_v3->vgic_sre = 0;
/* Get the show on the road... */
- vcpu->arch.vgic_cpu.vgic_v3.vgic_hcr = ICH_HCR_EN;
+ vgic_v3->vgic_hcr = ICH_HCR_EN;
}
static const struct vgic_ops vgic_v3_ops = {
@@ -205,35 +235,37 @@ int vgic_v3_probe(struct device_node *vgic_node,
* maximum of 16 list registers. Just ignore bit 4...
*/
vgic->nr_lr = (ich_vtr_el2 & 0xf) + 1;
+ vgic->can_emulate_gicv2 = false;
if (of_property_read_u32(vgic_node, "#redistributor-regions", &gicv_idx))
gicv_idx = 1;
gicv_idx += 3; /* Also skip GICD, GICC, GICH */
if (of_address_to_resource(vgic_node, gicv_idx, &vcpu_res)) {
- kvm_err("Cannot obtain GICV region\n");
- ret = -ENXIO;
- goto out;
- }
-
- if (!PAGE_ALIGNED(vcpu_res.start)) {
- kvm_err("GICV physical address 0x%llx not page aligned\n",
+ kvm_info("GICv3: no GICV resource entry\n");
+ vgic->vcpu_base = 0;
+ } else if (!PAGE_ALIGNED(vcpu_res.start)) {
+ pr_warn("GICV physical address 0x%llx not page aligned\n",
(unsigned long long)vcpu_res.start);
- ret = -ENXIO;
- goto out;
- }
-
- if (!PAGE_ALIGNED(resource_size(&vcpu_res))) {
- kvm_err("GICV size 0x%llx not a multiple of page size 0x%lx\n",
+ vgic->vcpu_base = 0;
+ } else if (!PAGE_ALIGNED(resource_size(&vcpu_res))) {
+ pr_warn("GICV size 0x%llx not a multiple of page size 0x%lx\n",
(unsigned long long)resource_size(&vcpu_res),
PAGE_SIZE);
- ret = -ENXIO;
- goto out;
+ vgic->vcpu_base = 0;
+ } else {
+ vgic->vcpu_base = vcpu_res.start;
+ vgic->can_emulate_gicv2 = true;
+ kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
+ KVM_DEV_TYPE_ARM_VGIC_V2);
}
+ if (vgic->vcpu_base == 0)
+ kvm_info("disabling GICv2 emulation\n");
+ kvm_register_device_ops(&kvm_arm_vgic_v3_ops, KVM_DEV_TYPE_ARM_VGIC_V3);
- vgic->vcpu_base = vcpu_res.start;
vgic->vctrl_base = NULL;
vgic->type = VGIC_V3;
+ vgic->max_gic_vcpus = KVM_MAX_VCPUS;
kvm_info("%s@%llx IRQ%d\n", vgic_node->name,
vcpu_res.start, vgic->maint_irq);
diff --git a/virt/kvm/arm/vgic.c b/virt/kvm/arm/vgic.c
index 03affc7bf453..0cc6ab6005a0 100644
--- a/virt/kvm/arm/vgic.c
+++ b/virt/kvm/arm/vgic.c
@@ -75,37 +75,31 @@
* inactive as long as the external input line is held high.
*/
-#define VGIC_ADDR_UNDEF (-1)
-#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
-
-#define PRODUCT_ID_KVM 0x4b /* ASCII code K */
-#define IMPLEMENTER_ARM 0x43b
-#define GICC_ARCH_VERSION_V2 0x2
-
-#define ACCESS_READ_VALUE (1 << 0)
-#define ACCESS_READ_RAZ (0 << 0)
-#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
-#define ACCESS_WRITE_IGNORED (0 << 1)
-#define ACCESS_WRITE_SETBIT (1 << 1)
-#define ACCESS_WRITE_CLEARBIT (2 << 1)
-#define ACCESS_WRITE_VALUE (3 << 1)
-#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
-
-static int vgic_init(struct kvm *kvm);
+#include "vgic.h"
+
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
-static void vgic_update_state(struct kvm *kvm);
-static void vgic_kick_vcpus(struct kvm *kvm);
-static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi);
-static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
-static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
-static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
static const struct vgic_ops *vgic_ops;
static const struct vgic_params *vgic;
+static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
+{
+ vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
+}
+
+static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
+{
+ return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
+}
+
+int kvm_vgic_map_resources(struct kvm *kvm)
+{
+ return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
+}
+
/*
* struct vgic_bitmap contains a bitmap made of unsigned longs, but
* extracts u32s out of them.
@@ -160,8 +154,7 @@ static unsigned long *u64_to_bitmask(u64 *val)
return (unsigned long *)val;
}
-static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
- int cpuid, u32 offset)
+u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
{
offset >>= 2;
if (!offset)
@@ -179,8 +172,8 @@ static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
}
-static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
- int irq, int val)
+void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
+ int irq, int val)
{
unsigned long *reg;
@@ -202,7 +195,7 @@ static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
return x->private + cpuid;
}
-static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
+unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
{
return x->shared;
}
@@ -229,7 +222,7 @@ static void vgic_free_bytemap(struct vgic_bytemap *b)
b->shared = NULL;
}
-static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
+u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
{
u32 *reg;
@@ -326,14 +319,14 @@ static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
}
-static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
+void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
}
-static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
+void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
@@ -349,7 +342,7 @@ static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
vcpu->arch.vgic_cpu.pending_shared);
}
-static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
+void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
{
if (irq < VGIC_NR_PRIVATE_IRQS)
clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
@@ -363,16 +356,6 @@ static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
}
-static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
-{
- return le32_to_cpu(*((u32 *)mmio->data)) & mask;
-}
-
-static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
-{
- *((u32 *)mmio->data) = cpu_to_le32(value) & mask;
-}
-
/**
* vgic_reg_access - access vgic register
* @mmio: pointer to the data describing the mmio access
@@ -384,8 +367,8 @@ static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
* modes defined for vgic register access
* (read,raz,write-ignored,setbit,clearbit,write)
*/
-static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
- phys_addr_t offset, int mode)
+void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
+ phys_addr_t offset, int mode)
{
int word_offset = (offset & 3) * 8;
u32 mask = (1UL << (mmio->len * 8)) - 1;
@@ -434,107 +417,58 @@ static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
}
}
-static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
- struct kvm_exit_mmio *mmio, phys_addr_t offset)
-{
- u32 reg;
- u32 word_offset = offset & 3;
-
- switch (offset & ~3) {
- case 0: /* GICD_CTLR */
- reg = vcpu->kvm->arch.vgic.enabled;
- vgic_reg_access(mmio, &reg, word_offset,
- ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
- if (mmio->is_write) {
- vcpu->kvm->arch.vgic.enabled = reg & 1;
- vgic_update_state(vcpu->kvm);
- return true;
- }
- break;
-
- case 4: /* GICD_TYPER */
- reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
- reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1;
- vgic_reg_access(mmio, &reg, word_offset,
- ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
- break;
-
- case 8: /* GICD_IIDR */
- reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
- vgic_reg_access(mmio, &reg, word_offset,
- ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
- break;
- }
-
- return false;
-}
-
-static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
- struct kvm_exit_mmio *mmio, phys_addr_t offset)
+bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
{
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
-static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
- struct kvm_exit_mmio *mmio,
- phys_addr_t offset)
+bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
+ phys_addr_t offset, int vcpu_id, int access)
{
- u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
- vcpu->vcpu_id, offset);
- vgic_reg_access(mmio, reg, offset,
- ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
- if (mmio->is_write) {
- vgic_update_state(vcpu->kvm);
- return true;
- }
-
- return false;
-}
+ u32 *reg;
+ int mode = ACCESS_READ_VALUE | access;
+ struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
-static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
- struct kvm_exit_mmio *mmio,
- phys_addr_t offset)
-{
- u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
- vcpu->vcpu_id, offset);
- vgic_reg_access(mmio, reg, offset,
- ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
+ reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
+ vgic_reg_access(mmio, reg, offset, mode);
if (mmio->is_write) {
- if (offset < 4) /* Force SGI enabled */
- *reg |= 0xffff;
- vgic_retire_disabled_irqs(vcpu);
- vgic_update_state(vcpu->kvm);
+ if (access & ACCESS_WRITE_CLEARBIT) {
+ if (offset < 4) /* Force SGI enabled */
+ *reg |= 0xffff;
+ vgic_retire_disabled_irqs(target_vcpu);
+ }
+ vgic_update_state(kvm);
return true;
}
return false;
}
-static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
- struct kvm_exit_mmio *mmio,
- phys_addr_t offset)
+bool vgic_handle_set_pending_reg(struct kvm *kvm,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset, int vcpu_id)
{
u32 *reg, orig;
u32 level_mask;
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+ int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
+ struct vgic_dist *dist = &kvm->arch.vgic;
- reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset);
+ reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
level_mask = (~(*reg));
/* Mark both level and edge triggered irqs as pending */
- reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
+ reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
orig = *reg;
- vgic_reg_access(mmio, reg, offset,
- ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
+ vgic_reg_access(mmio, reg, offset, mode);
if (mmio->is_write) {
/* Set the soft-pending flag only for level-triggered irqs */
reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
- vcpu->vcpu_id, offset);
- vgic_reg_access(mmio, reg, offset,
- ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
+ vcpu_id, offset);
+ vgic_reg_access(mmio, reg, offset, mode);
*reg &= level_mask;
/* Ignore writes to SGIs */
@@ -543,31 +477,30 @@ static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
*reg |= orig & 0xffff;
}
- vgic_update_state(vcpu->kvm);
+ vgic_update_state(kvm);
return true;
}
return false;
}
-static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
- struct kvm_exit_mmio *mmio,
- phys_addr_t offset)
+bool vgic_handle_clear_pending_reg(struct kvm *kvm,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset, int vcpu_id)
{
u32 *level_active;
u32 *reg, orig;
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+ int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
+ struct vgic_dist *dist = &kvm->arch.vgic;
- reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
+ reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
orig = *reg;
- vgic_reg_access(mmio, reg, offset,
- ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
+ vgic_reg_access(mmio, reg, offset, mode);
if (mmio->is_write) {
/* Re-set level triggered level-active interrupts */
level_active = vgic_bitmap_get_reg(&dist->irq_level,
- vcpu->vcpu_id, offset);
- reg = vgic_bitmap_get_reg(&dist->irq_pending,
- vcpu->vcpu_id, offset);
+ vcpu_id, offset);
+ reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
*reg |= *level_active;
/* Ignore writes to SGIs */
@@ -578,101 +511,12 @@ static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
/* Clear soft-pending flags */
reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
- vcpu->vcpu_id, offset);
- vgic_reg_access(mmio, reg, offset,
- ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
+ vcpu_id, offset);
+ vgic_reg_access(mmio, reg, offset, mode);
- vgic_update_state(vcpu->kvm);
+ vgic_update_state(kvm);
return true;
}
-
- return false;
-}
-
-static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
- struct kvm_exit_mmio *mmio,
- phys_addr_t offset)
-{
- u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
- vcpu->vcpu_id, offset);
- vgic_reg_access(mmio, reg, offset,
- ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
- return false;
-}
-
-#define GICD_ITARGETSR_SIZE 32
-#define GICD_CPUTARGETS_BITS 8
-#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
-static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
-{
- struct vgic_dist *dist = &kvm->arch.vgic;
- int i;
- u32 val = 0;
-
- irq -= VGIC_NR_PRIVATE_IRQS;
-
- for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
- val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
-
- return val;
-}
-
-static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
-{
- struct vgic_dist *dist = &kvm->arch.vgic;
- struct kvm_vcpu *vcpu;
- int i, c;
- unsigned long *bmap;
- u32 target;
-
- irq -= VGIC_NR_PRIVATE_IRQS;
-
- /*
- * Pick the LSB in each byte. This ensures we target exactly
- * one vcpu per IRQ. If the byte is null, assume we target
- * CPU0.
- */
- for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
- int shift = i * GICD_CPUTARGETS_BITS;
- target = ffs((val >> shift) & 0xffU);
- target = target ? (target - 1) : 0;
- dist->irq_spi_cpu[irq + i] = target;
- kvm_for_each_vcpu(c, vcpu, kvm) {
- bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
- if (c == target)
- set_bit(irq + i, bmap);
- else
- clear_bit(irq + i, bmap);
- }
- }
-}
-
-static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
- struct kvm_exit_mmio *mmio,
- phys_addr_t offset)
-{
- u32 reg;
-
- /* We treat the banked interrupts targets as read-only */
- if (offset < 32) {
- u32 roreg = 1 << vcpu->vcpu_id;
- roreg |= roreg << 8;
- roreg |= roreg << 16;
-
- vgic_reg_access(mmio, &roreg, offset,
- ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
- return false;
- }
-
- reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
- vgic_reg_access(mmio, &reg, offset,
- ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
- if (mmio->is_write) {
- vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
- vgic_update_state(vcpu->kvm);
- return true;
- }
-
return false;
}
@@ -711,14 +555,10 @@ static u16 vgic_cfg_compress(u32 val)
* LSB is always 0. As such, we only keep the upper bit, and use the
* two above functions to compress/expand the bits
*/
-static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
- struct kvm_exit_mmio *mmio, phys_addr_t offset)
+bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
+ phys_addr_t offset)
{
u32 val;
- u32 *reg;
-
- reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
- vcpu->vcpu_id, offset >> 1);
if (offset & 4)
val = *reg >> 16;
@@ -747,21 +587,6 @@ static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
return false;
}
-static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
- struct kvm_exit_mmio *mmio, phys_addr_t offset)
-{
- u32 reg;
- vgic_reg_access(mmio, &reg, offset,
- ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
- if (mmio->is_write) {
- vgic_dispatch_sgi(vcpu, reg);
- vgic_update_state(vcpu->kvm);
- return true;
- }
-
- return false;
-}
-
/**
* vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
* @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
@@ -774,11 +599,9 @@ static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
* to the distributor but the active state stays in the LRs, because we don't
* track the active state on the distributor side.
*/
-static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
+void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
{
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
- int vcpu_id = vcpu->vcpu_id;
int i;
for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
@@ -805,7 +628,7 @@ static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
*/
vgic_dist_irq_set_pending(vcpu, lr.irq);
if (lr.irq < VGIC_NR_SGIS)
- *vgic_get_sgi_sources(dist, vcpu_id, lr.irq) |= 1 << lr.source;
+ add_sgi_source(vcpu, lr.irq, lr.source);
lr.state &= ~LR_STATE_PENDING;
vgic_set_lr(vcpu, i, lr);
@@ -824,188 +647,12 @@ static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
}
}
-/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
-static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
- struct kvm_exit_mmio *mmio,
- phys_addr_t offset)
-{
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
- int sgi;
- int min_sgi = (offset & ~0x3);
- int max_sgi = min_sgi + 3;
- int vcpu_id = vcpu->vcpu_id;
- u32 reg = 0;
-
- /* Copy source SGIs from distributor side */
- for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
- int shift = 8 * (sgi - min_sgi);
- reg |= ((u32)*vgic_get_sgi_sources(dist, vcpu_id, sgi)) << shift;
- }
-
- mmio_data_write(mmio, ~0, reg);
- return false;
-}
-
-static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
- struct kvm_exit_mmio *mmio,
- phys_addr_t offset, bool set)
-{
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
- int sgi;
- int min_sgi = (offset & ~0x3);
- int max_sgi = min_sgi + 3;
- int vcpu_id = vcpu->vcpu_id;
- u32 reg;
- bool updated = false;
-
- reg = mmio_data_read(mmio, ~0);
-
- /* Clear pending SGIs on the distributor */
- for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
- u8 mask = reg >> (8 * (sgi - min_sgi));
- u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi);
- if (set) {
- if ((*src & mask) != mask)
- updated = true;
- *src |= mask;
- } else {
- if (*src & mask)
- updated = true;
- *src &= ~mask;
- }
- }
-
- if (updated)
- vgic_update_state(vcpu->kvm);
-
- return updated;
-}
-
-static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
- struct kvm_exit_mmio *mmio,
- phys_addr_t offset)
-{
- if (!mmio->is_write)
- return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
- else
- return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
-}
-
-static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
- struct kvm_exit_mmio *mmio,
- phys_addr_t offset)
-{
- if (!mmio->is_write)
- return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
- else
- return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
-}
-
-/*
- * I would have liked to use the kvm_bus_io_*() API instead, but it
- * cannot cope with banked registers (only the VM pointer is passed
- * around, and we need the vcpu). One of these days, someone please
- * fix it!
- */
-struct mmio_range {
- phys_addr_t base;
- unsigned long len;
- int bits_per_irq;
- bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
- phys_addr_t offset);
-};
-
-static const struct mmio_range vgic_dist_ranges[] = {
- {
- .base = GIC_DIST_CTRL,
- .len = 12,
- .bits_per_irq = 0,
- .handle_mmio = handle_mmio_misc,
- },
- {
- .base = GIC_DIST_IGROUP,
- .len = VGIC_MAX_IRQS / 8,
- .bits_per_irq = 1,
- .handle_mmio = handle_mmio_raz_wi,
- },
- {
- .base = GIC_DIST_ENABLE_SET,
- .len = VGIC_MAX_IRQS / 8,
- .bits_per_irq = 1,
- .handle_mmio = handle_mmio_set_enable_reg,
- },
- {
- .base = GIC_DIST_ENABLE_CLEAR,
- .len = VGIC_MAX_IRQS / 8,
- .bits_per_irq = 1,
- .handle_mmio = handle_mmio_clear_enable_reg,
- },
- {
- .base = GIC_DIST_PENDING_SET,
- .len = VGIC_MAX_IRQS / 8,
- .bits_per_irq = 1,
- .handle_mmio = handle_mmio_set_pending_reg,
- },
- {
- .base = GIC_DIST_PENDING_CLEAR,
- .len = VGIC_MAX_IRQS / 8,
- .bits_per_irq = 1,
- .handle_mmio = handle_mmio_clear_pending_reg,
- },
- {
- .base = GIC_DIST_ACTIVE_SET,
- .len = VGIC_MAX_IRQS / 8,
- .bits_per_irq = 1,
- .handle_mmio = handle_mmio_raz_wi,
- },
- {
- .base = GIC_DIST_ACTIVE_CLEAR,
- .len = VGIC_MAX_IRQS / 8,
- .bits_per_irq = 1,
- .handle_mmio = handle_mmio_raz_wi,
- },
- {
- .base = GIC_DIST_PRI,
- .len = VGIC_MAX_IRQS,
- .bits_per_irq = 8,
- .handle_mmio = handle_mmio_priority_reg,
- },
- {
- .base = GIC_DIST_TARGET,
- .len = VGIC_MAX_IRQS,
- .bits_per_irq = 8,
- .handle_mmio = handle_mmio_target_reg,
- },
- {
- .base = GIC_DIST_CONFIG,
- .len = VGIC_MAX_IRQS / 4,
- .bits_per_irq = 2,
- .handle_mmio = handle_mmio_cfg_reg,
- },
- {
- .base = GIC_DIST_SOFTINT,
- .len = 4,
- .handle_mmio = handle_mmio_sgi_reg,
- },
- {
- .base = GIC_DIST_SGI_PENDING_CLEAR,
- .len = VGIC_NR_SGIS,
- .handle_mmio = handle_mmio_sgi_clear,
- },
- {
- .base = GIC_DIST_SGI_PENDING_SET,
- .len = VGIC_NR_SGIS,
- .handle_mmio = handle_mmio_sgi_set,
- },
- {}
-};
-
-static const
-struct mmio_range *find_matching_range(const struct mmio_range *ranges,
+const
+struct kvm_mmio_range *vgic_find_range(const struct kvm_mmio_range *ranges,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
- const struct mmio_range *r = ranges;
+ const struct kvm_mmio_range *r = ranges;
while (r->len) {
if (offset >= r->base &&
@@ -1018,7 +665,7 @@ struct mmio_range *find_matching_range(const struct mmio_range *ranges,
}
static bool vgic_validate_access(const struct vgic_dist *dist,
- const struct mmio_range *range,
+ const struct kvm_mmio_range *range,
unsigned long offset)
{
int irq;
@@ -1033,37 +680,76 @@ static bool vgic_validate_access(const struct vgic_dist *dist,
return true;
}
+/*
+ * Call the respective handler function for the given range.
+ * We split up any 64 bit accesses into two consecutive 32 bit
+ * handler calls and merge the result afterwards.
+ * We do this in a little endian fashion regardless of the host's
+ * or guest's endianness, because the GIC is always LE and the rest of
+ * the code (vgic_reg_access) also puts it in a LE fashion already.
+ * At this point we have already identified the handle function, so
+ * range points to that one entry and offset is relative to this.
+ */
+static bool call_range_handler(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio,
+ unsigned long offset,
+ const struct kvm_mmio_range *range)
+{
+ u32 *data32 = (void *)mmio->data;
+ struct kvm_exit_mmio mmio32;
+ bool ret;
+
+ if (likely(mmio->len <= 4))
+ return range->handle_mmio(vcpu, mmio, offset);
+
+ /*
+ * Any access bigger than 4 bytes (that we currently handle in KVM)
+ * is actually 8 bytes long, caused by a 64-bit access
+ */
+
+ mmio32.len = 4;
+ mmio32.is_write = mmio->is_write;
+ mmio32.private = mmio->private;
+
+ mmio32.phys_addr = mmio->phys_addr + 4;
+ if (mmio->is_write)
+ *(u32 *)mmio32.data = data32[1];
+ ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
+ if (!mmio->is_write)
+ data32[1] = *(u32 *)mmio32.data;
+
+ mmio32.phys_addr = mmio->phys_addr;
+ if (mmio->is_write)
+ *(u32 *)mmio32.data = data32[0];
+ ret |= range->handle_mmio(vcpu, &mmio32, offset);
+ if (!mmio->is_write)
+ data32[0] = *(u32 *)mmio32.data;
+
+ return ret;
+}
+
/**
- * vgic_handle_mmio - handle an in-kernel MMIO access
+ * vgic_handle_mmio_range - handle an in-kernel MMIO access
* @vcpu: pointer to the vcpu performing the access
* @run: pointer to the kvm_run structure
* @mmio: pointer to the data describing the access
+ * @ranges: array of MMIO ranges in a given region
+ * @mmio_base: base address of that region
*
- * returns true if the MMIO access has been performed in kernel space,
- * and false if it needs to be emulated in user space.
+ * returns true if the MMIO access could be performed
*/
-bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
- struct kvm_exit_mmio *mmio)
+bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run,
+ struct kvm_exit_mmio *mmio,
+ const struct kvm_mmio_range *ranges,
+ unsigned long mmio_base)
{
- const struct mmio_range *range;
+ const struct kvm_mmio_range *range;
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
- unsigned long base = dist->vgic_dist_base;
bool updated_state;
unsigned long offset;
- if (!irqchip_in_kernel(vcpu->kvm) ||
- mmio->phys_addr < base ||
- (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
- return false;
-
- /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
- if (mmio->len > 4) {
- kvm_inject_dabt(vcpu, mmio->phys_addr);
- return true;
- }
-
- offset = mmio->phys_addr - base;
- range = find_matching_range(vgic_dist_ranges, mmio, offset);
+ offset = mmio->phys_addr - mmio_base;
+ range = vgic_find_range(ranges, mmio, offset);
if (unlikely(!range || !range->handle_mmio)) {
pr_warn("Unhandled access %d %08llx %d\n",
mmio->is_write, mmio->phys_addr, mmio->len);
@@ -1071,12 +757,12 @@ bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
}
spin_lock(&vcpu->kvm->arch.vgic.lock);
- offset = mmio->phys_addr - range->base - base;
+ offset -= range->base;
if (vgic_validate_access(dist, range, offset)) {
- updated_state = range->handle_mmio(vcpu, mmio, offset);
+ updated_state = call_range_handler(vcpu, mmio, offset, range);
} else {
- vgic_reg_access(mmio, NULL, offset,
- ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
+ if (!mmio->is_write)
+ memset(mmio->data, 0, mmio->len);
updated_state = false;
}
spin_unlock(&vcpu->kvm->arch.vgic.lock);
@@ -1089,50 +775,28 @@ bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
return true;
}
-static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi)
-{
- return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi;
-}
-
-static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
+/**
+ * vgic_handle_mmio - handle an in-kernel MMIO access for the GIC emulation
+ * @vcpu: pointer to the vcpu performing the access
+ * @run: pointer to the kvm_run structure
+ * @mmio: pointer to the data describing the access
+ *
+ * returns true if the MMIO access has been performed in kernel space,
+ * and false if it needs to be emulated in user space.
+ * Calls the actual handling routine for the selected VGIC model.
+ */
+bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
+ struct kvm_exit_mmio *mmio)
{
- struct kvm *kvm = vcpu->kvm;
- struct vgic_dist *dist = &kvm->arch.vgic;
- int nrcpus = atomic_read(&kvm->online_vcpus);
- u8 target_cpus;
- int sgi, mode, c, vcpu_id;
-
- vcpu_id = vcpu->vcpu_id;
-
- sgi = reg & 0xf;
- target_cpus = (reg >> 16) & 0xff;
- mode = (reg >> 24) & 3;
-
- switch (mode) {
- case 0:
- if (!target_cpus)
- return;
- break;
-
- case 1:
- target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
- break;
-
- case 2:
- target_cpus = 1 << vcpu_id;
- break;
- }
-
- kvm_for_each_vcpu(c, vcpu, kvm) {
- if (target_cpus & 1) {
- /* Flag the SGI as pending */
- vgic_dist_irq_set_pending(vcpu, sgi);
- *vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id;
- kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
- }
+ if (!irqchip_in_kernel(vcpu->kvm))
+ return false;
- target_cpus >>= 1;
- }
+ /*
+ * This will currently call either vgic_v2_handle_mmio() or
+ * vgic_v3_handle_mmio(), which in turn will call
+ * vgic_handle_mmio_range() defined above.
+ */
+ return vcpu->kvm->arch.vgic.vm_ops.handle_mmio(vcpu, run, mmio);
}
static int vgic_nr_shared_irqs(struct vgic_dist *dist)
@@ -1173,7 +837,7 @@ static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
* Update the interrupt state and determine which CPUs have pending
* interrupts. Must be called with distributor lock held.
*/
-static void vgic_update_state(struct kvm *kvm)
+void vgic_update_state(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
@@ -1234,12 +898,12 @@ static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
vgic_ops->disable_underflow(vcpu);
}
-static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
+void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
{
vgic_ops->get_vmcr(vcpu, vmcr);
}
-static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
+void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
{
vgic_ops->set_vmcr(vcpu, vmcr);
}
@@ -1288,8 +952,9 @@ static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
/*
* Queue an interrupt to a CPU virtual interface. Return true on success,
* or false if it wasn't possible to queue it.
+ * sgi_source must be zero for any non-SGI interrupts.
*/
-static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
+bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
@@ -1338,37 +1003,6 @@ static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
return true;
}
-static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
-{
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
- unsigned long sources;
- int vcpu_id = vcpu->vcpu_id;
- int c;
-
- sources = *vgic_get_sgi_sources(dist, vcpu_id, irq);
-
- for_each_set_bit(c, &sources, dist->nr_cpus) {
- if (vgic_queue_irq(vcpu, c, irq))
- clear_bit(c, &sources);
- }
-
- *vgic_get_sgi_sources(dist, vcpu_id, irq) = sources;
-
- /*
- * If the sources bitmap has been cleared it means that we
- * could queue all the SGIs onto link registers (see the
- * clear_bit above), and therefore we are done with them in
- * our emulated gic and can get rid of them.
- */
- if (!sources) {
- vgic_dist_irq_clear_pending(vcpu, irq);
- vgic_cpu_irq_clear(vcpu, irq);
- return true;
- }
-
- return false;
-}
-
static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
{
if (!vgic_can_sample_irq(vcpu, irq))
@@ -1413,7 +1047,7 @@ static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
/* SGIs */
for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
- if (!vgic_queue_sgi(vcpu, i))
+ if (!queue_sgi(vcpu, i))
overflow = 1;
}
@@ -1575,7 +1209,7 @@ int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
}
-static void vgic_kick_vcpus(struct kvm *kvm)
+void vgic_kick_vcpus(struct kvm *kvm)
{
struct kvm_vcpu *vcpu;
int c;
@@ -1615,7 +1249,7 @@ static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
struct kvm_vcpu *vcpu;
int edge_triggered, level_triggered;
int enabled;
- bool ret = true;
+ bool ret = true, can_inject = true;
spin_lock(&dist->lock);
@@ -1630,6 +1264,11 @@ static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
+ if (cpuid == VCPU_NOT_ALLOCATED) {
+ /* Pretend we use CPU0, and prevent injection */
+ cpuid = 0;
+ can_inject = false;
+ }
vcpu = kvm_get_vcpu(kvm, cpuid);
}
@@ -1652,7 +1291,7 @@ static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
enabled = vgic_irq_is_enabled(vcpu, irq_num);
- if (!enabled) {
+ if (!enabled || !can_inject) {
ret = false;
goto out;
}
@@ -1698,6 +1337,16 @@ int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
int vcpu_id;
if (unlikely(!vgic_initialized(kvm))) {
+ /*
+ * We only provide the automatic initialization of the VGIC
+ * for the legacy case of a GICv2. Any other type must
+ * be explicitly initialized once setup with the respective
+ * KVM device call.
+ */
+ if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
+ ret = -EBUSY;
+ goto out;
+ }
mutex_lock(&kvm->lock);
ret = vgic_init(kvm);
mutex_unlock(&kvm->lock);
@@ -1762,6 +1411,17 @@ static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
return 0;
}
+/**
+ * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
+ *
+ * The host's GIC naturally limits the maximum amount of VCPUs a guest
+ * can use.
+ */
+int kvm_vgic_get_max_vcpus(void)
+{
+ return vgic->max_gic_vcpus;
+}
+
void kvm_vgic_destroy(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
@@ -1784,6 +1444,7 @@ void kvm_vgic_destroy(struct kvm *kvm)
}
kfree(dist->irq_sgi_sources);
kfree(dist->irq_spi_cpu);
+ kfree(dist->irq_spi_mpidr);
kfree(dist->irq_spi_target);
kfree(dist->irq_pending_on_cpu);
dist->irq_sgi_sources = NULL;
@@ -1797,7 +1458,7 @@ void kvm_vgic_destroy(struct kvm *kvm)
* Allocate and initialize the various data structures. Must be called
* with kvm->lock held!
*/
-static int vgic_init(struct kvm *kvm)
+int vgic_init(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
@@ -1809,7 +1470,7 @@ static int vgic_init(struct kvm *kvm)
nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
if (!nr_cpus) /* No vcpus? Can't be good... */
- return -EINVAL;
+ return -ENODEV;
/*
* If nobody configured the number of interrupts, use the
@@ -1852,8 +1513,9 @@ static int vgic_init(struct kvm *kvm)
if (ret)
goto out;
- for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i += 4)
- vgic_set_target_reg(kvm, 0, i);
+ ret = kvm->arch.vgic.vm_ops.init_model(kvm);
+ if (ret)
+ goto out;
kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
@@ -1882,72 +1544,49 @@ out:
return ret;
}
-/**
- * kvm_vgic_map_resources - Configure global VGIC state before running any VCPUs
- * @kvm: pointer to the kvm struct
- *
- * Map the virtual CPU interface into the VM before running any VCPUs. We
- * can't do this at creation time, because user space must first set the
- * virtual CPU interface address in the guest physical address space.
- */
-int kvm_vgic_map_resources(struct kvm *kvm)
+static int init_vgic_model(struct kvm *kvm, int type)
{
- int ret = 0;
-
- if (!irqchip_in_kernel(kvm))
- return 0;
-
- mutex_lock(&kvm->lock);
-
- if (vgic_ready(kvm))
- goto out;
-
- if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
- IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
- kvm_err("Need to set vgic cpu and dist addresses first\n");
- ret = -ENXIO;
- goto out;
- }
-
- /*
- * Initialize the vgic if this hasn't already been done on demand by
- * accessing the vgic state from userspace.
- */
- ret = vgic_init(kvm);
- if (ret) {
- kvm_err("Unable to allocate maps\n");
- goto out;
+ switch (type) {
+ case KVM_DEV_TYPE_ARM_VGIC_V2:
+ vgic_v2_init_emulation(kvm);
+ break;
+#ifdef CONFIG_ARM_GIC_V3
+ case KVM_DEV_TYPE_ARM_VGIC_V3:
+ vgic_v3_init_emulation(kvm);
+ break;
+#endif
+ default:
+ return -ENODEV;
}
- ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
- vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE,
- true);
- if (ret) {
- kvm_err("Unable to remap VGIC CPU to VCPU\n");
- goto out;
- }
+ if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
+ return -E2BIG;
- kvm->arch.vgic.ready = true;
-out:
- if (ret)
- kvm_vgic_destroy(kvm);
- mutex_unlock(&kvm->lock);
- return ret;
+ return 0;
}
-int kvm_vgic_create(struct kvm *kvm)
+int kvm_vgic_create(struct kvm *kvm, u32 type)
{
int i, vcpu_lock_idx = -1, ret;
struct kvm_vcpu *vcpu;
mutex_lock(&kvm->lock);
- if (kvm->arch.vgic.vctrl_base) {
+ if (irqchip_in_kernel(kvm)) {
ret = -EEXIST;
goto out;
}
/*
+ * This function is also called by the KVM_CREATE_IRQCHIP handler,
+ * which had no chance yet to check the availability of the GICv2
+ * emulation. So check this here again. KVM_CREATE_DEVICE does
+ * the proper checks already.
+ */
+ if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2)
+ return -ENODEV;
+
+ /*
* Any time a vcpu is run, vcpu_load is called which tries to grab the
* vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
* that no other VCPUs are run while we create the vgic.
@@ -1965,11 +1604,17 @@ int kvm_vgic_create(struct kvm *kvm)
}
ret = 0;
+ ret = init_vgic_model(kvm, type);
+ if (ret)
+ goto out_unlock;
+
spin_lock_init(&kvm->arch.vgic.lock);
kvm->arch.vgic.in_kernel = true;
+ kvm->arch.vgic.vgic_model = type;
kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
+ kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
out_unlock:
for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
@@ -2022,7 +1667,7 @@ static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
/**
* kvm_vgic_addr - set or get vgic VM base addresses
* @kvm: pointer to the vm struct
- * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
+ * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
* @addr: pointer to address value
* @write: if true set the address in the VM address space, if false read the
* address
@@ -2036,216 +1681,64 @@ int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
{
int r = 0;
struct vgic_dist *vgic = &kvm->arch.vgic;
+ int type_needed;
+ phys_addr_t *addr_ptr, block_size;
+ phys_addr_t alignment;
mutex_lock(&kvm->lock);
switch (type) {
case KVM_VGIC_V2_ADDR_TYPE_DIST:
- if (write) {
- r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
- *addr, KVM_VGIC_V2_DIST_SIZE);
- } else {
- *addr = vgic->vgic_dist_base;
- }
+ type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
+ addr_ptr = &vgic->vgic_dist_base;
+ block_size = KVM_VGIC_V2_DIST_SIZE;
+ alignment = SZ_4K;
break;
case KVM_VGIC_V2_ADDR_TYPE_CPU:
- if (write) {
- r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
- *addr, KVM_VGIC_V2_CPU_SIZE);
- } else {
- *addr = vgic->vgic_cpu_base;
- }
+ type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
+ addr_ptr = &vgic->vgic_cpu_base;
+ block_size = KVM_VGIC_V2_CPU_SIZE;
+ alignment = SZ_4K;
break;
- default:
- r = -ENODEV;
- }
-
- mutex_unlock(&kvm->lock);
- return r;
-}
-
-static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
- struct kvm_exit_mmio *mmio, phys_addr_t offset)
-{
- bool updated = false;
- struct vgic_vmcr vmcr;
- u32 *vmcr_field;
- u32 reg;
-
- vgic_get_vmcr(vcpu, &vmcr);
-
- switch (offset & ~0x3) {
- case GIC_CPU_CTRL:
- vmcr_field = &vmcr.ctlr;
- break;
- case GIC_CPU_PRIMASK:
- vmcr_field = &vmcr.pmr;
+#ifdef CONFIG_ARM_GIC_V3
+ case KVM_VGIC_V3_ADDR_TYPE_DIST:
+ type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
+ addr_ptr = &vgic->vgic_dist_base;
+ block_size = KVM_VGIC_V3_DIST_SIZE;
+ alignment = SZ_64K;
break;
- case GIC_CPU_BINPOINT:
- vmcr_field = &vmcr.bpr;
- break;
- case GIC_CPU_ALIAS_BINPOINT:
- vmcr_field = &vmcr.abpr;
+ case KVM_VGIC_V3_ADDR_TYPE_REDIST:
+ type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
+ addr_ptr = &vgic->vgic_redist_base;
+ block_size = KVM_VGIC_V3_REDIST_SIZE;
+ alignment = SZ_64K;
break;
+#endif
default:
- BUG();
- }
-
- if (!mmio->is_write) {
- reg = *vmcr_field;
- mmio_data_write(mmio, ~0, reg);
- } else {
- reg = mmio_data_read(mmio, ~0);
- if (reg != *vmcr_field) {
- *vmcr_field = reg;
- vgic_set_vmcr(vcpu, &vmcr);
- updated = true;
- }
- }
- return updated;
-}
-
-static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
- struct kvm_exit_mmio *mmio, phys_addr_t offset)
-{
- return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
-}
-
-static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
- struct kvm_exit_mmio *mmio,
- phys_addr_t offset)
-{
- u32 reg;
-
- if (mmio->is_write)
- return false;
-
- /* GICC_IIDR */
- reg = (PRODUCT_ID_KVM << 20) |
- (GICC_ARCH_VERSION_V2 << 16) |
- (IMPLEMENTER_ARM << 0);
- mmio_data_write(mmio, ~0, reg);
- return false;
-}
-
-/*
- * CPU Interface Register accesses - these are not accessed by the VM, but by
- * user space for saving and restoring VGIC state.
- */
-static const struct mmio_range vgic_cpu_ranges[] = {
- {
- .base = GIC_CPU_CTRL,
- .len = 12,
- .handle_mmio = handle_cpu_mmio_misc,
- },
- {
- .base = GIC_CPU_ALIAS_BINPOINT,
- .len = 4,
- .handle_mmio = handle_mmio_abpr,
- },
- {
- .base = GIC_CPU_ACTIVEPRIO,
- .len = 16,
- .handle_mmio = handle_mmio_raz_wi,
- },
- {
- .base = GIC_CPU_IDENT,
- .len = 4,
- .handle_mmio = handle_cpu_mmio_ident,
- },
-};
-
-static int vgic_attr_regs_access(struct kvm_device *dev,
- struct kvm_device_attr *attr,
- u32 *reg, bool is_write)
-{
- const struct mmio_range *r = NULL, *ranges;
- phys_addr_t offset;
- int ret, cpuid, c;
- struct kvm_vcpu *vcpu, *tmp_vcpu;
- struct vgic_dist *vgic;
- struct kvm_exit_mmio mmio;
-
- offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
- cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
- KVM_DEV_ARM_VGIC_CPUID_SHIFT;
-
- mutex_lock(&dev->kvm->lock);
-
- ret = vgic_init(dev->kvm);
- if (ret)
- goto out;
-
- if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
- ret = -EINVAL;
+ r = -ENODEV;
goto out;
}
- vcpu = kvm_get_vcpu(dev->kvm, cpuid);
- vgic = &dev->kvm->arch.vgic;
-
- mmio.len = 4;
- mmio.is_write = is_write;
- if (is_write)
- mmio_data_write(&mmio, ~0, *reg);
- switch (attr->group) {
- case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
- mmio.phys_addr = vgic->vgic_dist_base + offset;
- ranges = vgic_dist_ranges;
- break;
- case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
- mmio.phys_addr = vgic->vgic_cpu_base + offset;
- ranges = vgic_cpu_ranges;
- break;
- default:
- BUG();
- }
- r = find_matching_range(ranges, &mmio, offset);
-
- if (unlikely(!r || !r->handle_mmio)) {
- ret = -ENXIO;
+ if (vgic->vgic_model != type_needed) {
+ r = -ENODEV;
goto out;
}
-
- spin_lock(&vgic->lock);
-
- /*
- * Ensure that no other VCPU is running by checking the vcpu->cpu
- * field. If no other VPCUs are running we can safely access the VGIC
- * state, because even if another VPU is run after this point, that
- * VCPU will not touch the vgic state, because it will block on
- * getting the vgic->lock in kvm_vgic_sync_hwstate().
- */
- kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
- if (unlikely(tmp_vcpu->cpu != -1)) {
- ret = -EBUSY;
- goto out_vgic_unlock;
- }
+ if (write) {
+ if (!IS_ALIGNED(*addr, alignment))
+ r = -EINVAL;
+ else
+ r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
+ block_size);
+ } else {
+ *addr = *addr_ptr;
}
- /*
- * Move all pending IRQs from the LRs on all VCPUs so the pending
- * state can be properly represented in the register state accessible
- * through this API.
- */
- kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
- vgic_unqueue_irqs(tmp_vcpu);
-
- offset -= r->base;
- r->handle_mmio(vcpu, &mmio, offset);
-
- if (!is_write)
- *reg = mmio_data_read(&mmio, ~0);
-
- ret = 0;
-out_vgic_unlock:
- spin_unlock(&vgic->lock);
out:
- mutex_unlock(&dev->kvm->lock);
- return ret;
+ mutex_unlock(&kvm->lock);
+ return r;
}
-static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
+int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
int r;
@@ -2261,17 +1754,6 @@ static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
r = kvm_vgic_addr(dev->kvm, type, &addr, true);
return (r == -ENODEV) ? -ENXIO : r;
}
-
- case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
- case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
- u32 __user *uaddr = (u32 __user *)(long)attr->addr;
- u32 reg;
-
- if (get_user(reg, uaddr))
- return -EFAULT;
-
- return vgic_attr_regs_access(dev, attr, &reg, true);
- }
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
u32 val;
@@ -2302,13 +1784,20 @@ static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
return ret;
}
-
+ case KVM_DEV_ARM_VGIC_GRP_CTRL: {
+ switch (attr->attr) {
+ case KVM_DEV_ARM_VGIC_CTRL_INIT:
+ r = vgic_init(dev->kvm);
+ return r;
+ }
+ break;
+ }
}
return -ENXIO;
}
-static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
+int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
int r = -ENXIO;
@@ -2326,20 +1815,9 @@ static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
return -EFAULT;
break;
}
-
- case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
- case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
- u32 __user *uaddr = (u32 __user *)(long)attr->addr;
- u32 reg = 0;
-
- r = vgic_attr_regs_access(dev, attr, &reg, false);
- if (r)
- return r;
- r = put_user(reg, uaddr);
- break;
- }
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
+
r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
break;
}
@@ -2349,61 +1827,17 @@ static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
return r;
}
-static int vgic_has_attr_regs(const struct mmio_range *ranges,
- phys_addr_t offset)
+int vgic_has_attr_regs(const struct kvm_mmio_range *ranges, phys_addr_t offset)
{
struct kvm_exit_mmio dev_attr_mmio;
dev_attr_mmio.len = 4;
- if (find_matching_range(ranges, &dev_attr_mmio, offset))
+ if (vgic_find_range(ranges, &dev_attr_mmio, offset))
return 0;
else
return -ENXIO;
}
-static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
-{
- phys_addr_t offset;
-
- switch (attr->group) {
- case KVM_DEV_ARM_VGIC_GRP_ADDR:
- switch (attr->attr) {
- case KVM_VGIC_V2_ADDR_TYPE_DIST:
- case KVM_VGIC_V2_ADDR_TYPE_CPU:
- return 0;
- }
- break;
- case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
- offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
- return vgic_has_attr_regs(vgic_dist_ranges, offset);
- case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
- offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
- return vgic_has_attr_regs(vgic_cpu_ranges, offset);
- case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
- return 0;
- }
- return -ENXIO;
-}
-
-static void vgic_destroy(struct kvm_device *dev)
-{
- kfree(dev);
-}
-
-static int vgic_create(struct kvm_device *dev, u32 type)
-{
- return kvm_vgic_create(dev->kvm);
-}
-
-static struct kvm_device_ops kvm_arm_vgic_v2_ops = {
- .name = "kvm-arm-vgic",
- .create = vgic_create,
- .destroy = vgic_destroy,
- .set_attr = vgic_set_attr,
- .get_attr = vgic_get_attr,
- .has_attr = vgic_has_attr,
-};
-
static void vgic_init_maintenance_interrupt(void *info)
{
enable_percpu_irq(vgic->maint_irq, 0);
@@ -2474,8 +1908,7 @@ int kvm_vgic_hyp_init(void)
on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
- return kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
- KVM_DEV_TYPE_ARM_VGIC_V2);
+ return 0;
out_free_irq:
free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
diff --git a/virt/kvm/arm/vgic.h b/virt/kvm/arm/vgic.h
new file mode 100644
index 000000000000..1e83bdf5f499
--- /dev/null
+++ b/virt/kvm/arm/vgic.h
@@ -0,0 +1,123 @@
+/*
+ * Copyright (C) 2012-2014 ARM Ltd.
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ *
+ * Derived from virt/kvm/arm/vgic.c
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef __KVM_VGIC_H__
+#define __KVM_VGIC_H__
+
+#define VGIC_ADDR_UNDEF (-1)
+#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
+
+#define PRODUCT_ID_KVM 0x4b /* ASCII code K */
+#define IMPLEMENTER_ARM 0x43b
+
+#define ACCESS_READ_VALUE (1 << 0)
+#define ACCESS_READ_RAZ (0 << 0)
+#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
+#define ACCESS_WRITE_IGNORED (0 << 1)
+#define ACCESS_WRITE_SETBIT (1 << 1)
+#define ACCESS_WRITE_CLEARBIT (2 << 1)
+#define ACCESS_WRITE_VALUE (3 << 1)
+#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
+
+#define VCPU_NOT_ALLOCATED ((u8)-1)
+
+unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x);
+
+void vgic_update_state(struct kvm *kvm);
+int vgic_init_common_maps(struct kvm *kvm);
+
+u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset);
+u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset);
+
+void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq);
+void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq);
+void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq);
+void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
+ int irq, int val);
+
+void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
+void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
+
+bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq);
+void vgic_unqueue_irqs(struct kvm_vcpu *vcpu);
+
+void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
+ phys_addr_t offset, int mode);
+bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
+ phys_addr_t offset);
+
+static inline
+u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
+{
+ return le32_to_cpu(*((u32 *)mmio->data)) & mask;
+}
+
+static inline
+void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
+{
+ *((u32 *)mmio->data) = cpu_to_le32(value) & mask;
+}
+
+struct kvm_mmio_range {
+ phys_addr_t base;
+ unsigned long len;
+ int bits_per_irq;
+ bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
+ phys_addr_t offset);
+};
+
+static inline bool is_in_range(phys_addr_t addr, unsigned long len,
+ phys_addr_t baseaddr, unsigned long size)
+{
+ return (addr >= baseaddr) && (addr + len <= baseaddr + size);
+}
+
+const
+struct kvm_mmio_range *vgic_find_range(const struct kvm_mmio_range *ranges,
+ struct kvm_exit_mmio *mmio,
+ phys_addr_t offset);
+
+bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run,
+ struct kvm_exit_mmio *mmio,
+ const struct kvm_mmio_range *ranges,
+ unsigned long mmio_base);
+
+bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
+ phys_addr_t offset, int vcpu_id, int access);
+
+bool vgic_handle_set_pending_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
+ phys_addr_t offset, int vcpu_id);
+
+bool vgic_handle_clear_pending_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
+ phys_addr_t offset, int vcpu_id);
+
+bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
+ phys_addr_t offset);
+
+void vgic_kick_vcpus(struct kvm *kvm);
+
+int vgic_has_attr_regs(const struct kvm_mmio_range *ranges, phys_addr_t offset);
+int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr);
+int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr);
+
+int vgic_init(struct kvm *kvm);
+void vgic_v2_init_emulation(struct kvm *kvm);
+void vgic_v3_init_emulation(struct kvm *kvm);
+
+#endif
diff --git a/virt/kvm/kvm_main.c b/virt/kvm/kvm_main.c
index 167e8c14b143..246cf291c6fd 100644
--- a/virt/kvm/kvm_main.c
+++ b/virt/kvm/kvm_main.c
@@ -176,6 +176,7 @@ bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
return called;
}
+#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
long dirty_count = kvm->tlbs_dirty;
@@ -186,6 +187,7 @@ void kvm_flush_remote_tlbs(struct kvm *kvm)
cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
}
EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
+#endif
void kvm_reload_remote_mmus(struct kvm *kvm)
{
@@ -993,6 +995,86 @@ out:
}
EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
+#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
+/**
+ * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
+ * are dirty write protect them for next write.
+ * @kvm: pointer to kvm instance
+ * @log: slot id and address to which we copy the log
+ * @is_dirty: flag set if any page is dirty
+ *
+ * We need to keep it in mind that VCPU threads can write to the bitmap
+ * concurrently. So, to avoid losing track of dirty pages we keep the
+ * following order:
+ *
+ * 1. Take a snapshot of the bit and clear it if needed.
+ * 2. Write protect the corresponding page.
+ * 3. Copy the snapshot to the userspace.
+ * 4. Upon return caller flushes TLB's if needed.
+ *
+ * Between 2 and 4, the guest may write to the page using the remaining TLB
+ * entry. This is not a problem because the page is reported dirty using
+ * the snapshot taken before and step 4 ensures that writes done after
+ * exiting to userspace will be logged for the next call.
+ *
+ */
+int kvm_get_dirty_log_protect(struct kvm *kvm,
+ struct kvm_dirty_log *log, bool *is_dirty)
+{
+ struct kvm_memory_slot *memslot;
+ int r, i;
+ unsigned long n;
+ unsigned long *dirty_bitmap;
+ unsigned long *dirty_bitmap_buffer;
+
+ r = -EINVAL;
+ if (log->slot >= KVM_USER_MEM_SLOTS)
+ goto out;
+
+ memslot = id_to_memslot(kvm->memslots, log->slot);
+
+ dirty_bitmap = memslot->dirty_bitmap;
+ r = -ENOENT;
+ if (!dirty_bitmap)
+ goto out;
+
+ n = kvm_dirty_bitmap_bytes(memslot);
+
+ dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
+ memset(dirty_bitmap_buffer, 0, n);
+
+ spin_lock(&kvm->mmu_lock);
+ *is_dirty = false;
+ for (i = 0; i < n / sizeof(long); i++) {
+ unsigned long mask;
+ gfn_t offset;
+
+ if (!dirty_bitmap[i])
+ continue;
+
+ *is_dirty = true;
+
+ mask = xchg(&dirty_bitmap[i], 0);
+ dirty_bitmap_buffer[i] = mask;
+
+ offset = i * BITS_PER_LONG;
+ kvm_arch_mmu_write_protect_pt_masked(kvm, memslot, offset,
+ mask);
+ }
+
+ spin_unlock(&kvm->mmu_lock);
+
+ r = -EFAULT;
+ if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
+ goto out;
+
+ r = 0;
+out:
+ return r;
+}
+EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
+#endif
+
bool kvm_largepages_enabled(void)
{
return largepages_enabled;