summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorMel Gorman <mgorman@techsingularity.net>2018-01-30 11:45:55 +0100
committerIngo Molnar <mingo@kernel.org>2018-02-06 10:20:37 +0100
commit32e839dda3ba576943365f0f5817ce5c843137dc (patch)
tree022e93f73250d0fabca329b1d80f9e5ca581ea1d
parentsched/fair: Do not migrate if the prev_cpu is idle (diff)
downloadlinux-32e839dda3ba576943365f0f5817ce5c843137dc.tar.xz
linux-32e839dda3ba576943365f0f5817ce5c843137dc.zip
sched/fair: Use a recently used CPU as an idle candidate and the basis for SIS
The select_idle_sibling() (SIS) rewrite in commit: 10e2f1acd010 ("sched/core: Rewrite and improve select_idle_siblings()") ... replaced a domain iteration with a search that broadly speaking does a wrapped walk of the scheduler domain sharing a last-level-cache. While this had a number of improvements, one consequence is that two tasks that share a waker/wakee relationship push each other around a socket. Even though two tasks may be active, all cores are evenly used. This is great from a search perspective and spreads a load across individual cores, but it has adverse consequences for cpufreq. As each CPU has relatively low utilisation, cpufreq may decide the utilisation is too low to used a higher P-state and overall computation throughput suffers. While individual cpufreq and cpuidle drivers may compensate by artifically boosting P-state (at c0) or avoiding lower C-states (during idle), it does not help if hardware-based cpufreq (e.g. HWP) is used. This patch tracks a recently used CPU based on what CPU a task was running on when it last was a waker a CPU it was recently using when a task is a wakee. During SIS, the recently used CPU is used as a target if it's still allowed by the task and is idle. The benefit may be non-obvious so consider an example of two tasks communicating back and forth. Task A may be an application doing IO where task B is a kworker or kthread like journald. Task A may issue IO, wake B and B wakes up A on completion. With the existing scheme this may look like the following (potentially different IDs if SMT is in use but similar principal applies). A (cpu 0) wake B (wakes on cpu 1) B (cpu 1) wake A (wakes on cpu 2) A (cpu 2) wake B (wakes on cpu 3) etc. A careful reader may wonder why CPU 0 was not idle when B wakes A the first time and it's simply due to the fact that A can be rescheduled to another CPU and the pattern is that prev == target when B tries to wakeup A and the information about CPU 0 has been lost. With this patch, the pattern is more likely to be: A (cpu 0) wake B (wakes on cpu 1) B (cpu 1) wake A (wakes on cpu 0) A (cpu 0) wake B (wakes on cpu 1) etc i.e. two communicating casts are more likely to use just two cores instead of all available cores sharing a LLC. The most dramatic speedup was noticed on dbench using the XFS filesystem on UMA as clients interact heavily with workqueues in that configuration. Note that a similar speedup is not observed on ext4 as the wakeup pattern is different: 4.15.0-rc9 4.15.0-rc9 waprev-v1 biasancestor-v1 Hmean 1 287.54 ( 0.00%) 817.01 ( 184.14%) Hmean 2 1268.12 ( 0.00%) 1781.24 ( 40.46%) Hmean 4 1739.68 ( 0.00%) 1594.47 ( -8.35%) Hmean 8 2464.12 ( 0.00%) 2479.56 ( 0.63%) Hmean 64 1455.57 ( 0.00%) 1434.68 ( -1.44%) The results can be less dramatic on NUMA where automatic balancing interferes with the test. It's also known that network benchmarks running on localhost also benefit quite a bit from this patch (roughly 10% on netperf RR for UDP and TCP depending on the machine). Hackbench also seens small improvements (6-11% depending on machine and thread count). The facebook schbench was also tested but in most cases showed little or no different to wakeup latencies. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180130104555.4125-5-mgorman@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
-rw-r--r--include/linux/sched.h8
-rw-r--r--kernel/sched/core.c1
-rw-r--r--kernel/sched/fair.c22
3 files changed, 29 insertions, 2 deletions
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 166144c04ef6..92744e3f1556 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -555,6 +555,14 @@ struct task_struct {
unsigned long wakee_flip_decay_ts;
struct task_struct *last_wakee;
+ /*
+ * recent_used_cpu is initially set as the last CPU used by a task
+ * that wakes affine another task. Waker/wakee relationships can
+ * push tasks around a CPU where each wakeup moves to the next one.
+ * Tracking a recently used CPU allows a quick search for a recently
+ * used CPU that may be idle.
+ */
+ int recent_used_cpu;
int wake_cpu;
#endif
int on_rq;
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index b40540e68104..36f113ac6353 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -2461,6 +2461,7 @@ void wake_up_new_task(struct task_struct *p)
* Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
* as we're not fully set-up yet.
*/
+ p->recent_used_cpu = task_cpu(p);
__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
#endif
rq = __task_rq_lock(p, &rf);
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index db45b3554682..5eb3ffc9be84 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -6197,7 +6197,7 @@ static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int t
static int select_idle_sibling(struct task_struct *p, int prev, int target)
{
struct sched_domain *sd;
- int i;
+ int i, recent_used_cpu;
if (idle_cpu(target))
return target;
@@ -6208,6 +6208,21 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target)
if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
return prev;
+ /* Check a recently used CPU as a potential idle candidate */
+ recent_used_cpu = p->recent_used_cpu;
+ if (recent_used_cpu != prev &&
+ recent_used_cpu != target &&
+ cpus_share_cache(recent_used_cpu, target) &&
+ idle_cpu(recent_used_cpu) &&
+ cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
+ /*
+ * Replace recent_used_cpu with prev as it is a potential
+ * candidate for the next wake.
+ */
+ p->recent_used_cpu = prev;
+ return recent_used_cpu;
+ }
+
sd = rcu_dereference(per_cpu(sd_llc, target));
if (!sd)
return target;
@@ -6375,9 +6390,12 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
if (!sd) {
pick_cpu:
- if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
+ if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
+ if (want_affine)
+ current->recent_used_cpu = cpu;
+ }
} else {
new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
}