summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorDavid Hildenbrand <david@redhat.com>2023-08-03 16:32:03 +0200
committerAndrew Morton <akpm@linux-foundation.org>2023-08-21 22:07:20 +0200
commit8b9c1cc0418a43196477083e7082568e7a4c9418 (patch)
tree3c97dba76983e76fd07cfbc7e102a1e2115c5146
parentmm/gup: reintroduce FOLL_NUMA as FOLL_HONOR_NUMA_FAULT (diff)
downloadlinux-8b9c1cc0418a43196477083e7082568e7a4c9418.tar.xz
linux-8b9c1cc0418a43196477083e7082568e7a4c9418.zip
smaps: use vm_normal_page_pmd() instead of follow_trans_huge_pmd()
We shouldn't be using a GUP-internal helper if it can be avoided. Similar to smaps_pte_entry() that uses vm_normal_page(), let's use vm_normal_page_pmd() that similarly refuses to return the huge zeropage. In contrast to follow_trans_huge_pmd(), vm_normal_page_pmd(): (1) Will always return the head page, not a tail page of a THP. If we'd ever call smaps_account with a tail page while setting "compound = true", we could be in trouble, because smaps_account() would look at the memmap of unrelated pages. If we're unlucky, that memmap does not exist at all. Before we removed PG_doublemap, we could have triggered something similar as in commit 24d7275ce279 ("fs/proc: task_mmu.c: don't read mapcount for migration entry"). This can theoretically happen ever since commit ff9f47f6f00c ("mm: proc: smaps_rollup: do not stall write attempts on mmap_lock"): (a) We're in show_smaps_rollup() and processed a VMA (b) We release the mmap lock in show_smaps_rollup() because it is contended (c) We merged that VMA with another VMA (d) We collapsed a THP in that merged VMA at that position If the end address of the original VMA falls into the middle of a THP area, we would call smap_gather_stats() with a start address that falls into a PMD-mapped THP. It's probably very rare to trigger when not really forced. (2) Will succeed on a is_pci_p2pdma_page(), like vm_normal_page() Treat such PMDs here just like smaps_pte_entry() would treat such PTEs. If such pages would be anonymous, we most certainly would want to account them. (3) Will skip over pmd_devmap(), like vm_normal_page() for pte_devmap() As noted in vm_normal_page(), that is only for handling legacy ZONE_DEVICE pages. So just like smaps_pte_entry(), we'll now also ignore such PMD entries. Especially, follow_pmd_mask() never ends up calling follow_trans_huge_pmd() on pmd_devmap(). Instead it calls follow_devmap_pmd() -- which will fail if neither FOLL_GET nor FOLL_PIN is set. So skipping pmd_devmap() pages seems to be the right thing to do. (4) Will properly handle VM_MIXEDMAP/VM_PFNMAP, like vm_normal_page() We won't be returning a memmap that should be ignored by core-mm, or worse, a memmap that does not even exist. Note that while walk_page_range() will skip VM_PFNMAP mappings, walk_page_vma() won't. Most probably this case doesn't currently really happen on the PMD level, otherwise we'd already be able to trigger kernel crashes when reading smaps / smaps_rollup. So most probably only (1) is relevant in practice as of now, but could only cause trouble in extreme corner cases. Let's move follow_trans_huge_pmd() to mm/internal.h to discourage future reuse in wrong context. Link: https://lkml.kernel.org/r/20230803143208.383663-3-david@redhat.com Fixes: ff9f47f6f00c ("mm: proc: smaps_rollup: do not stall write attempts on mmap_lock") Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: liubo <liubo254@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-rw-r--r--fs/proc/task_mmu.c3
-rw-r--r--include/linux/huge_mm.h3
-rw-r--r--mm/internal.h7
3 files changed, 8 insertions, 5 deletions
diff --git a/fs/proc/task_mmu.c b/fs/proc/task_mmu.c
index 507cd4e59d07..fc744964816e 100644
--- a/fs/proc/task_mmu.c
+++ b/fs/proc/task_mmu.c
@@ -587,8 +587,7 @@ static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
bool migration = false;
if (pmd_present(*pmd)) {
- /* FOLL_DUMP will return -EFAULT on huge zero page */
- page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
+ page = vm_normal_page_pmd(vma, addr, *pmd);
} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
swp_entry_t entry = pmd_to_swp_entry(*pmd);
diff --git a/include/linux/huge_mm.h b/include/linux/huge_mm.h
index 20284387b841..e718dbe928ba 100644
--- a/include/linux/huge_mm.h
+++ b/include/linux/huge_mm.h
@@ -25,9 +25,6 @@ static inline void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
#endif
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf);
-struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
- unsigned long addr, pmd_t *pmd,
- unsigned int flags);
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
pmd_t *pmd, unsigned long addr, unsigned long next);
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd,
diff --git a/mm/internal.h b/mm/internal.h
index a7d9e980429a..45383527e8b4 100644
--- a/mm/internal.h
+++ b/mm/internal.h
@@ -924,6 +924,13 @@ int migrate_device_coherent_page(struct page *page);
struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
int __must_check try_grab_page(struct page *page, unsigned int flags);
+/*
+ * mm/huge_memory.c
+ */
+struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
+ unsigned long addr, pmd_t *pmd,
+ unsigned int flags);
+
enum {
/* mark page accessed */
FOLL_TOUCH = 1 << 16,