diff options
author | Linus Walleij <linus.walleij@linaro.org> | 2017-05-18 22:17:01 +0200 |
---|---|---|
committer | Daniel Lezcano <daniel.lezcano@linaro.org> | 2017-06-12 10:14:00 +0200 |
commit | e7bad212ca0e6b1dcca1e0316ca8658c738c1206 (patch) | |
tree | 3d7b90061ad072196bbcc6c73439d18e9eccc40c | |
parent | clocksource/drivers/fttmr010: Drop Gemini specifics (diff) | |
download | linux-e7bad212ca0e6b1dcca1e0316ca8658c738c1206.tar.xz linux-e7bad212ca0e6b1dcca1e0316ca8658c738c1206.zip |
clocksource/drivers/fttmr010: Use state container
This converts the Faraday FTTMR010 to use the state container
design pattern. Take some care to handle the state container
and free:ing of resources as has been done in the Moxa driver.
Cc: Joel Stanley <joel@jms.id.au>
Tested-by: Jonas Jensen <jonas.jensen@gmail.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
-rw-r--r-- | drivers/clocksource/timer-fttmr010.c | 190 |
1 files changed, 116 insertions, 74 deletions
diff --git a/drivers/clocksource/timer-fttmr010.c b/drivers/clocksource/timer-fttmr010.c index db097db346e3..9ad31489bbef 100644 --- a/drivers/clocksource/timer-fttmr010.c +++ b/drivers/clocksource/timer-fttmr010.c @@ -15,6 +15,7 @@ #include <linux/clocksource.h> #include <linux/sched_clock.h> #include <linux/clk.h> +#include <linux/slab.h> /* * Register definitions for the timers @@ -62,23 +63,35 @@ #define TIMER_3_INT_OVERFLOW (1 << 8) #define TIMER_INT_ALL_MASK 0x1ff -static unsigned int tick_rate; -static void __iomem *base; +struct fttmr010 { + void __iomem *base; + unsigned int tick_rate; + struct clock_event_device clkevt; +}; + +/* A local singleton used by sched_clock, which is stateless */ +static struct fttmr010 *local_fttmr; + +static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt) +{ + return container_of(evt, struct fttmr010, clkevt); +} static u64 notrace fttmr010_read_sched_clock(void) { - return readl(base + TIMER3_COUNT); + return readl(local_fttmr->base + TIMER3_COUNT); } static int fttmr010_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { + struct fttmr010 *fttmr010 = to_fttmr010(evt); u32 cr; /* Setup the match register */ - cr = readl(base + TIMER1_COUNT); - writel(cr + cycles, base + TIMER1_MATCH1); - if (readl(base + TIMER1_COUNT) - cr > cycles) + cr = readl(fttmr010->base + TIMER1_COUNT); + writel(cr + cycles, fttmr010->base + TIMER1_MATCH1); + if (readl(fttmr010->base + TIMER1_COUNT) - cr > cycles) return -ETIME; return 0; @@ -86,99 +99,90 @@ static int fttmr010_timer_set_next_event(unsigned long cycles, static int fttmr010_timer_shutdown(struct clock_event_device *evt) { + struct fttmr010 *fttmr010 = to_fttmr010(evt); + u32 cr; + + /* Stop timer and interrupt. */ + cr = readl(fttmr010->base + TIMER_CR); + cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT); + writel(cr, fttmr010->base + TIMER_CR); + + return 0; +} + +static int fttmr010_timer_set_oneshot(struct clock_event_device *evt) +{ + struct fttmr010 *fttmr010 = to_fttmr010(evt); u32 cr; - /* - * Disable also for oneshot: the set_next() call will arm the timer - * instead. - */ /* Stop timer and interrupt. */ - cr = readl(base + TIMER_CR); + cr = readl(fttmr010->base + TIMER_CR); cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT); - writel(cr, base + TIMER_CR); + writel(cr, fttmr010->base + TIMER_CR); /* Setup counter start from 0 */ - writel(0, base + TIMER1_COUNT); - writel(0, base + TIMER1_LOAD); + writel(0, fttmr010->base + TIMER1_COUNT); + writel(0, fttmr010->base + TIMER1_LOAD); - /* enable interrupt */ - cr = readl(base + TIMER_INTR_MASK); + /* Enable interrupt */ + cr = readl(fttmr010->base + TIMER_INTR_MASK); cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2); cr |= TIMER_1_INT_MATCH1; - writel(cr, base + TIMER_INTR_MASK); + writel(cr, fttmr010->base + TIMER_INTR_MASK); - /* start the timer */ - cr = readl(base + TIMER_CR); + /* Start the timer */ + cr = readl(fttmr010->base + TIMER_CR); cr |= TIMER_1_CR_ENABLE; - writel(cr, base + TIMER_CR); + writel(cr, fttmr010->base + TIMER_CR); return 0; } static int fttmr010_timer_set_periodic(struct clock_event_device *evt) { - u32 period = DIV_ROUND_CLOSEST(tick_rate, HZ); + struct fttmr010 *fttmr010 = to_fttmr010(evt); + u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ); u32 cr; /* Stop timer and interrupt */ - cr = readl(base + TIMER_CR); + cr = readl(fttmr010->base + TIMER_CR); cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT); - writel(cr, base + TIMER_CR); + writel(cr, fttmr010->base + TIMER_CR); /* Setup timer to fire at 1/HT intervals. */ cr = 0xffffffff - (period - 1); - writel(cr, base + TIMER1_COUNT); - writel(cr, base + TIMER1_LOAD); + writel(cr, fttmr010->base + TIMER1_COUNT); + writel(cr, fttmr010->base + TIMER1_LOAD); /* enable interrupt on overflow */ - cr = readl(base + TIMER_INTR_MASK); + cr = readl(fttmr010->base + TIMER_INTR_MASK); cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2); cr |= TIMER_1_INT_OVERFLOW; - writel(cr, base + TIMER_INTR_MASK); + writel(cr, fttmr010->base + TIMER_INTR_MASK); /* Start the timer */ - cr = readl(base + TIMER_CR); + cr = readl(fttmr010->base + TIMER_CR); cr |= TIMER_1_CR_ENABLE; cr |= TIMER_1_CR_INT; - writel(cr, base + TIMER_CR); + writel(cr, fttmr010->base + TIMER_CR); return 0; } -/* Use TIMER1 as clock event */ -static struct clock_event_device fttmr010_clockevent = { - .name = "TIMER1", - /* Reasonably fast and accurate clock event */ - .rating = 300, - .shift = 32, - .features = CLOCK_EVT_FEAT_PERIODIC | - CLOCK_EVT_FEAT_ONESHOT, - .set_next_event = fttmr010_timer_set_next_event, - .set_state_shutdown = fttmr010_timer_shutdown, - .set_state_periodic = fttmr010_timer_set_periodic, - .set_state_oneshot = fttmr010_timer_shutdown, - .tick_resume = fttmr010_timer_shutdown, -}; - /* * IRQ handler for the timer */ static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id) { - struct clock_event_device *evt = &fttmr010_clockevent; + struct clock_event_device *evt = dev_id; evt->event_handler(evt); return IRQ_HANDLED; } -static struct irqaction fttmr010_timer_irq = { - .name = "Faraday FTTMR010 Timer Tick", - .flags = IRQF_TIMER, - .handler = fttmr010_timer_interrupt, -}; - static int __init fttmr010_timer_init(struct device_node *np) { + struct fttmr010 *fttmr010; int irq; struct clk *clk; int ret; @@ -198,53 +202,91 @@ static int __init fttmr010_timer_init(struct device_node *np) pr_err("failed to enable PCLK\n"); return ret; } - tick_rate = clk_get_rate(clk); - base = of_iomap(np, 0); - if (!base) { + fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL); + if (!fttmr010) { + ret = -ENOMEM; + goto out_disable_clock; + } + fttmr010->tick_rate = clk_get_rate(clk); + + fttmr010->base = of_iomap(np, 0); + if (!fttmr010->base) { pr_err("Can't remap registers"); - return -ENXIO; + ret = -ENXIO; + goto out_free; } /* IRQ for timer 1 */ irq = irq_of_parse_and_map(np, 0); if (irq <= 0) { pr_err("Can't parse IRQ"); - return -EINVAL; + ret = -EINVAL; + goto out_unmap; } /* * Reset the interrupt mask and status */ - writel(TIMER_INT_ALL_MASK, base + TIMER_INTR_MASK); - writel(0, base + TIMER_INTR_STATE); - writel(TIMER_DEFAULT_FLAGS, base + TIMER_CR); + writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK); + writel(0, fttmr010->base + TIMER_INTR_STATE); + writel(TIMER_DEFAULT_FLAGS, fttmr010->base + TIMER_CR); /* * Setup free-running clocksource timer (interrupts * disabled.) */ - writel(0, base + TIMER3_COUNT); - writel(0, base + TIMER3_LOAD); - writel(0, base + TIMER3_MATCH1); - writel(0, base + TIMER3_MATCH2); - clocksource_mmio_init(base + TIMER3_COUNT, - "fttmr010_clocksource", tick_rate, + local_fttmr = fttmr010; + writel(0, fttmr010->base + TIMER3_COUNT); + writel(0, fttmr010->base + TIMER3_LOAD); + writel(0, fttmr010->base + TIMER3_MATCH1); + writel(0, fttmr010->base + TIMER3_MATCH2); + clocksource_mmio_init(fttmr010->base + TIMER3_COUNT, + "FTTMR010-TIMER3", + fttmr010->tick_rate, 300, 32, clocksource_mmio_readl_up); - sched_clock_register(fttmr010_read_sched_clock, 32, tick_rate); + sched_clock_register(fttmr010_read_sched_clock, 32, + fttmr010->tick_rate); /* - * Setup clockevent timer (interrupt-driven.) + * Setup clockevent timer (interrupt-driven) on timer 1. */ - writel(0, base + TIMER1_COUNT); - writel(0, base + TIMER1_LOAD); - writel(0, base + TIMER1_MATCH1); - writel(0, base + TIMER1_MATCH2); - setup_irq(irq, &fttmr010_timer_irq); - fttmr010_clockevent.cpumask = cpumask_of(0); - clockevents_config_and_register(&fttmr010_clockevent, tick_rate, + writel(0, fttmr010->base + TIMER1_COUNT); + writel(0, fttmr010->base + TIMER1_LOAD); + writel(0, fttmr010->base + TIMER1_MATCH1); + writel(0, fttmr010->base + TIMER1_MATCH2); + ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER, + "FTTMR010-TIMER1", &fttmr010->clkevt); + if (ret) { + pr_err("FTTMR010-TIMER1 no IRQ\n"); + goto out_unmap; + } + + fttmr010->clkevt.name = "FTTMR010-TIMER1"; + /* Reasonably fast and accurate clock event */ + fttmr010->clkevt.rating = 300; + fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC | + CLOCK_EVT_FEAT_ONESHOT; + fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event; + fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown; + fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic; + fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot; + fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown; + fttmr010->clkevt.cpumask = cpumask_of(0); + fttmr010->clkevt.irq = irq; + clockevents_config_and_register(&fttmr010->clkevt, + fttmr010->tick_rate, 1, 0xffffffff); return 0; + +out_unmap: + iounmap(fttmr010->base); +out_free: + kfree(fttmr010); +out_disable_clock: + clk_disable_unprepare(clk); + + return ret; } CLOCKSOURCE_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init); CLOCKSOURCE_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init); |