summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorJakub Kicinski <kuba@kernel.org>2022-04-26 19:54:35 +0200
committerDavid S. Miller <davem@davemloft.net>2022-04-27 13:22:56 +0200
commitbc6df26f1f785be9b4c10d37e50ac40b46428984 (patch)
treee4c2b07114fba91352da734347d6d4f9ae5d6ecf
parentnet: wan: remove support for COSA and SRP synchronous serial boards (diff)
downloadlinux-bc6df26f1f785be9b4c10d37e50ac40b46428984.tar.xz
linux-bc6df26f1f785be9b4c10d37e50ac40b46428984.zip
net: wan: remove support for Z85230-based devices
Looks like all the changes to this driver had been automated churn since git era begun. The driver is using virt_to_bus(), it's just a maintenance burden unlikely to have any users. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
-rw-r--r--Documentation/networking/device_drivers/index.rst1
-rw-r--r--Documentation/networking/device_drivers/wan/index.rst18
-rw-r--r--Documentation/networking/device_drivers/wan/z8530book.rst256
-rw-r--r--drivers/net/wan/Kconfig22
-rw-r--r--drivers/net/wan/Makefile2
-rw-r--r--drivers/net/wan/hostess_sv11.c336
-rw-r--r--drivers/net/wan/sealevel.c352
-rw-r--r--drivers/net/wan/z85230.c1641
-rw-r--r--drivers/net/wan/z85230.h407
9 files changed, 0 insertions, 3035 deletions
diff --git a/Documentation/networking/device_drivers/index.rst b/Documentation/networking/device_drivers/index.rst
index 5f5cfdb2a300..601eacaf12f3 100644
--- a/Documentation/networking/device_drivers/index.rst
+++ b/Documentation/networking/device_drivers/index.rst
@@ -17,7 +17,6 @@ Contents:
fddi/index
hamradio/index
qlogic/index
- wan/index
wifi/index
wwan/index
diff --git a/Documentation/networking/device_drivers/wan/index.rst b/Documentation/networking/device_drivers/wan/index.rst
deleted file mode 100644
index 9d9ae94f00b4..000000000000
--- a/Documentation/networking/device_drivers/wan/index.rst
+++ /dev/null
@@ -1,18 +0,0 @@
-.. SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
-
-Classic WAN Device Drivers
-==========================
-
-Contents:
-
-.. toctree::
- :maxdepth: 2
-
- z8530book
-
-.. only:: subproject and html
-
- Indices
- =======
-
- * :ref:`genindex`
diff --git a/Documentation/networking/device_drivers/wan/z8530book.rst b/Documentation/networking/device_drivers/wan/z8530book.rst
deleted file mode 100644
index fea2c40e7973..000000000000
--- a/Documentation/networking/device_drivers/wan/z8530book.rst
+++ /dev/null
@@ -1,256 +0,0 @@
-=======================
-Z8530 Programming Guide
-=======================
-
-:Author: Alan Cox
-
-Introduction
-============
-
-The Z85x30 family synchronous/asynchronous controller chips are used on
-a large number of cheap network interface cards. The kernel provides a
-core interface layer that is designed to make it easy to provide WAN
-services using this chip.
-
-The current driver only support synchronous operation. Merging the
-asynchronous driver support into this code to allow any Z85x30 device to
-be used as both a tty interface and as a synchronous controller is a
-project for Linux post the 2.4 release
-
-Driver Modes
-============
-
-The Z85230 driver layer can drive Z8530, Z85C30 and Z85230 devices in
-three different modes. Each mode can be applied to an individual channel
-on the chip (each chip has two channels).
-
-The PIO synchronous mode supports the most common Z8530 wiring. Here the
-chip is interface to the I/O and interrupt facilities of the host
-machine but not to the DMA subsystem. When running PIO the Z8530 has
-extremely tight timing requirements. Doing high speeds, even with a
-Z85230 will be tricky. Typically you should expect to achieve at best
-9600 baud with a Z8C530 and 64Kbits with a Z85230.
-
-The DMA mode supports the chip when it is configured to use dual DMA
-channels on an ISA bus. The better cards tend to support this mode of
-operation for a single channel. With DMA running the Z85230 tops out
-when it starts to hit ISA DMA constraints at about 512Kbits. It is worth
-noting here that many PC machines hang or crash when the chip is driven
-fast enough to hold the ISA bus solid.
-
-Transmit DMA mode uses a single DMA channel. The DMA channel is used for
-transmission as the transmit FIFO is smaller than the receive FIFO. it
-gives better performance than pure PIO mode but is nowhere near as ideal
-as pure DMA mode.
-
-Using the Z85230 driver
-=======================
-
-The Z85230 driver provides the back end interface to your board. To
-configure a Z8530 interface you need to detect the board and to identify
-its ports and interrupt resources. It is also your problem to verify the
-resources are available.
-
-Having identified the chip you need to fill in a struct z8530_dev,
-which describes each chip. This object must exist until you finally
-shutdown the board. Firstly zero the active field. This ensures nothing
-goes off without you intending it. The irq field should be set to the
-interrupt number of the chip. (Each chip has a single interrupt source
-rather than each channel). You are responsible for allocating the
-interrupt line. The interrupt handler should be set to
-:c:func:`z8530_interrupt()`. The device id should be set to the
-z8530_dev structure pointer. Whether the interrupt can be shared or not
-is board dependent, and up to you to initialise.
-
-The structure holds two channel structures. Initialise chanA.ctrlio and
-chanA.dataio with the address of the control and data ports. You can or
-this with Z8530_PORT_SLEEP to indicate your interface needs the 5uS
-delay for chip settling done in software. The PORT_SLEEP option is
-architecture specific. Other flags may become available on future
-platforms, eg for MMIO. Initialise the chanA.irqs to &z8530_nop to
-start the chip up as disabled and discarding interrupt events. This
-ensures that stray interrupts will be mopped up and not hang the bus.
-Set chanA.dev to point to the device structure itself. The private and
-name field you may use as you wish. The private field is unused by the
-Z85230 layer. The name is used for error reporting and it may thus make
-sense to make it match the network name.
-
-Repeat the same operation with the B channel if your chip has both
-channels wired to something useful. This isn't always the case. If it is
-not wired then the I/O values do not matter, but you must initialise
-chanB.dev.
-
-If your board has DMA facilities then initialise the txdma and rxdma
-fields for the relevant channels. You must also allocate the ISA DMA
-channels and do any necessary board level initialisation to configure
-them. The low level driver will do the Z8530 and DMA controller
-programming but not board specific magic.
-
-Having initialised the device you can then call
-:c:func:`z8530_init()`. This will probe the chip and reset it into
-a known state. An identification sequence is then run to identify the
-chip type. If the checks fail to pass the function returns a non zero
-error code. Typically this indicates that the port given is not valid.
-After this call the type field of the z8530_dev structure is
-initialised to either Z8530, Z85C30 or Z85230 according to the chip
-found.
-
-Once you have called z8530_init you can also make use of the utility
-function :c:func:`z8530_describe()`. This provides a consistent
-reporting format for the Z8530 devices, and allows all the drivers to
-provide consistent reporting.
-
-Attaching Network Interfaces
-============================
-
-If you wish to use the network interface facilities of the driver, then
-you need to attach a network device to each channel that is present and
-in use. In addition to use the generic HDLC you need to follow some
-additional plumbing rules. They may seem complex but a look at the
-example hostess_sv11 driver should reassure you.
-
-The network device used for each channel should be pointed to by the
-netdevice field of each channel. The hdlc-> priv field of the network
-device points to your private data - you will need to be able to find
-your private data from this.
-
-The way most drivers approach this particular problem is to create a
-structure holding the Z8530 device definition and put that into the
-private field of the network device. The network device fields of the
-channels then point back to the network devices.
-
-If you wish to use the generic HDLC then you need to register the HDLC
-device.
-
-Before you register your network device you will also need to provide
-suitable handlers for most of the network device callbacks. See the
-network device documentation for more details on this.
-
-Configuring And Activating The Port
-===================================
-
-The Z85230 driver provides helper functions and tables to load the port
-registers on the Z8530 chips. When programming the register settings for
-a channel be aware that the documentation recommends initialisation
-orders. Strange things happen when these are not followed.
-
-:c:func:`z8530_channel_load()` takes an array of pairs of
-initialisation values in an array of u8 type. The first value is the
-Z8530 register number. Add 16 to indicate the alternate register bank on
-the later chips. The array is terminated by a 255.
-
-The driver provides a pair of public tables. The z8530_hdlc_kilostream
-table is for the UK 'Kilostream' service and also happens to cover most
-other end host configurations. The z8530_hdlc_kilostream_85230 table
-is the same configuration using the enhancements of the 85230 chip. The
-configuration loaded is standard NRZ encoded synchronous data with HDLC
-bitstuffing. All of the timing is taken from the other end of the link.
-
-When writing your own tables be aware that the driver internally tracks
-register values. It may need to reload values. You should therefore be
-sure to set registers 1-7, 9-11, 14 and 15 in all configurations. Where
-the register settings depend on DMA selection the driver will update the
-bits itself when you open or close. Loading a new table with the
-interface open is not recommended.
-
-There are three standard configurations supported by the core code. In
-PIO mode the interface is programmed up to use interrupt driven PIO.
-This places high demands on the host processor to avoid latency. The
-driver is written to take account of latency issues but it cannot avoid
-latencies caused by other drivers, notably IDE in PIO mode. Because the
-drivers allocate buffers you must also prevent MTU changes while the
-port is open.
-
-Once the port is open it will call the rx_function of each channel
-whenever a completed packet arrived. This is invoked from interrupt
-context and passes you the channel and a network buffer (struct
-sk_buff) holding the data. The data includes the CRC bytes so most
-users will want to trim the last two bytes before processing the data.
-This function is very timing critical. When you wish to simply discard
-data the support code provides the function
-:c:func:`z8530_null_rx()` to discard the data.
-
-To active PIO mode sending and receiving the ``z8530_sync_open`` is called.
-This expects to be passed the network device and the channel. Typically
-this is called from your network device open callback. On a failure a
-non zero error status is returned.
-The :c:func:`z8530_sync_close()` function shuts down a PIO
-channel. This must be done before the channel is opened again and before
-the driver shuts down and unloads.
-
-The ideal mode of operation is dual channel DMA mode. Here the kernel
-driver will configure the board for DMA in both directions. The driver
-also handles ISA DMA issues such as controller programming and the
-memory range limit for you. This mode is activated by calling the
-:c:func:`z8530_sync_dma_open()` function. On failure a non zero
-error value is returned. Once this mode is activated it can be shut down
-by calling the :c:func:`z8530_sync_dma_close()`. You must call
-the close function matching the open mode you used.
-
-The final supported mode uses a single DMA channel to drive the transmit
-side. As the Z85C30 has a larger FIFO on the receive channel this tends
-to increase the maximum speed a little. This is activated by calling the
-``z8530_sync_txdma_open``. This returns a non zero error code on failure. The
-:c:func:`z8530_sync_txdma_close()` function closes down the Z8530
-interface from this mode.
-
-Network Layer Functions
-=======================
-
-The Z8530 layer provides functions to queue packets for transmission.
-The driver internally buffers the frame currently being transmitted and
-one further frame (in order to keep back to back transmission running).
-Any further buffering is up to the caller.
-
-The function :c:func:`z8530_queue_xmit()` takes a network buffer
-in sk_buff format and queues it for transmission. The caller must
-provide the entire packet with the exception of the bitstuffing and CRC.
-This is normally done by the caller via the generic HDLC interface
-layer. It returns 0 if the buffer has been queued and non zero values
-for queue full. If the function accepts the buffer it becomes property
-of the Z8530 layer and the caller should not free it.
-
-The function :c:func:`z8530_get_stats()` returns a pointer to an
-internally maintained per interface statistics block. This provides most
-of the interface code needed to implement the network layer get_stats
-callback.
-
-Porting The Z8530 Driver
-========================
-
-The Z8530 driver is written to be portable. In DMA mode it makes
-assumptions about the use of ISA DMA. These are probably warranted in
-most cases as the Z85230 in particular was designed to glue to PC type
-machines. The PIO mode makes no real assumptions.
-
-Should you need to retarget the Z8530 driver to another architecture the
-only code that should need changing are the port I/O functions. At the
-moment these assume PC I/O port accesses. This may not be appropriate
-for all platforms. Replacing :c:func:`z8530_read_port()` and
-``z8530_write_port`` is intended to be all that is required to port
-this driver layer.
-
-Known Bugs And Assumptions
-==========================
-
-Interrupt Locking
- The locking in the driver is done via the global cli/sti lock. This
- makes for relatively poor SMP performance. Switching this to use a
- per device spin lock would probably materially improve performance.
-
-Occasional Failures
- We have reports of occasional failures when run for very long
- periods of time and the driver starts to receive junk frames. At the
- moment the cause of this is not clear.
-
-Public Functions Provided
-=========================
-
-.. kernel-doc:: drivers/net/wan/z85230.c
- :export:
-
-Internal Functions
-==================
-
-.. kernel-doc:: drivers/net/wan/z85230.c
- :internal:
diff --git a/drivers/net/wan/Kconfig b/drivers/net/wan/Kconfig
index 12c5b6c67ab2..dcb069dde66b 100644
--- a/drivers/net/wan/Kconfig
+++ b/drivers/net/wan/Kconfig
@@ -23,28 +23,6 @@ menuconfig WAN
if WAN
-# There is no way to detect a comtrol sv11 - force it modular for now.
-config HOSTESS_SV11
- tristate "Comtrol Hostess SV-11 support"
- depends on ISA && m && ISA_DMA_API && INET && HDLC && VIRT_TO_BUS
- help
- Driver for Comtrol Hostess SV-11 network card which
- operates on low speed synchronous serial links at up to
- 256Kbps, supporting PPP and Cisco HDLC.
-
- The driver will be compiled as a module: the
- module will be called hostess_sv11.
-
-# There is no way to detect a Sealevel board. Force it modular
-config SEALEVEL_4021
- tristate "Sealevel Systems 4021 support"
- depends on ISA && m && ISA_DMA_API && INET && HDLC && VIRT_TO_BUS
- help
- This is a driver for the Sealevel Systems ACB 56 serial I/O adapter.
-
- The driver will be compiled as a module: the
- module will be called sealevel.
-
# Generic HDLC
config HDLC
tristate "Generic HDLC layer"
diff --git a/drivers/net/wan/Makefile b/drivers/net/wan/Makefile
index 901a094c061c..5bec8fae47f8 100644
--- a/drivers/net/wan/Makefile
+++ b/drivers/net/wan/Makefile
@@ -14,8 +14,6 @@ obj-$(CONFIG_HDLC_FR) += hdlc_fr.o
obj-$(CONFIG_HDLC_PPP) += hdlc_ppp.o
obj-$(CONFIG_HDLC_X25) += hdlc_x25.o
-obj-$(CONFIG_HOSTESS_SV11) += z85230.o hostess_sv11.o
-obj-$(CONFIG_SEALEVEL_4021) += z85230.o sealevel.o
obj-$(CONFIG_FARSYNC) += farsync.o
obj-$(CONFIG_LAPBETHER) += lapbether.o
diff --git a/drivers/net/wan/hostess_sv11.c b/drivers/net/wan/hostess_sv11.c
deleted file mode 100644
index e985e54ba75d..000000000000
--- a/drivers/net/wan/hostess_sv11.c
+++ /dev/null
@@ -1,336 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-only
-/* Comtrol SV11 card driver
- *
- * This is a slightly odd Z85230 synchronous driver. All you need to
- * know basically is
- *
- * Its a genuine Z85230
- *
- * It supports DMA using two DMA channels in SYNC mode. The driver doesn't
- * use these facilities
- *
- * The control port is at io+1, the data at io+3 and turning off the DMA
- * is done by writing 0 to io+4
- *
- * The hardware does the bus handling to avoid the need for delays between
- * touching control registers.
- *
- * Port B isn't wired (why - beats me)
- *
- * Generic HDLC port Copyright (C) 2008 Krzysztof Halasa <khc@pm.waw.pl>
- */
-
-#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
-
-#include <linux/module.h>
-#include <linux/kernel.h>
-#include <linux/mm.h>
-#include <linux/net.h>
-#include <linux/skbuff.h>
-#include <linux/netdevice.h>
-#include <linux/if_arp.h>
-#include <linux/delay.h>
-#include <linux/hdlc.h>
-#include <linux/ioport.h>
-#include <linux/slab.h>
-#include <net/arp.h>
-
-#include <asm/irq.h>
-#include <asm/io.h>
-#include <asm/dma.h>
-#include <asm/byteorder.h>
-#include "z85230.h"
-
-static int dma;
-
-/* Network driver support routines
- */
-
-static inline struct z8530_dev *dev_to_sv(struct net_device *dev)
-{
- return (struct z8530_dev *)dev_to_hdlc(dev)->priv;
-}
-
-/* Frame receive. Simple for our card as we do HDLC and there
- * is no funny garbage involved
- */
-
-static void hostess_input(struct z8530_channel *c, struct sk_buff *skb)
-{
- /* Drop the CRC - it's not a good idea to try and negotiate it ;) */
- skb_trim(skb, skb->len - 2);
- skb->protocol = hdlc_type_trans(skb, c->netdevice);
- skb_reset_mac_header(skb);
- skb->dev = c->netdevice;
- /* Send it to the PPP layer. We don't have time to process
- * it right now.
- */
- netif_rx(skb);
-}
-
-/* We've been placed in the UP state
- */
-
-static int hostess_open(struct net_device *d)
-{
- struct z8530_dev *sv11 = dev_to_sv(d);
- int err = -1;
-
- /* Link layer up
- */
- switch (dma) {
- case 0:
- err = z8530_sync_open(d, &sv11->chanA);
- break;
- case 1:
- err = z8530_sync_dma_open(d, &sv11->chanA);
- break;
- case 2:
- err = z8530_sync_txdma_open(d, &sv11->chanA);
- break;
- }
-
- if (err)
- return err;
-
- err = hdlc_open(d);
- if (err) {
- switch (dma) {
- case 0:
- z8530_sync_close(d, &sv11->chanA);
- break;
- case 1:
- z8530_sync_dma_close(d, &sv11->chanA);
- break;
- case 2:
- z8530_sync_txdma_close(d, &sv11->chanA);
- break;
- }
- return err;
- }
- sv11->chanA.rx_function = hostess_input;
-
- /*
- * Go go go
- */
-
- netif_start_queue(d);
- return 0;
-}
-
-static int hostess_close(struct net_device *d)
-{
- struct z8530_dev *sv11 = dev_to_sv(d);
- /* Discard new frames
- */
- sv11->chanA.rx_function = z8530_null_rx;
-
- hdlc_close(d);
- netif_stop_queue(d);
-
- switch (dma) {
- case 0:
- z8530_sync_close(d, &sv11->chanA);
- break;
- case 1:
- z8530_sync_dma_close(d, &sv11->chanA);
- break;
- case 2:
- z8530_sync_txdma_close(d, &sv11->chanA);
- break;
- }
- return 0;
-}
-
-/* Passed network frames, fire them downwind.
- */
-
-static netdev_tx_t hostess_queue_xmit(struct sk_buff *skb,
- struct net_device *d)
-{
- return z8530_queue_xmit(&dev_to_sv(d)->chanA, skb);
-}
-
-static int hostess_attach(struct net_device *dev, unsigned short encoding,
- unsigned short parity)
-{
- if (encoding == ENCODING_NRZ && parity == PARITY_CRC16_PR1_CCITT)
- return 0;
- return -EINVAL;
-}
-
-/* Description block for a Comtrol Hostess SV11 card
- */
-
-static const struct net_device_ops hostess_ops = {
- .ndo_open = hostess_open,
- .ndo_stop = hostess_close,
- .ndo_start_xmit = hdlc_start_xmit,
- .ndo_siocwandev = hdlc_ioctl,
-};
-
-static struct z8530_dev *sv11_init(int iobase, int irq)
-{
- struct z8530_dev *sv;
- struct net_device *netdev;
- /* Get the needed I/O space
- */
-
- if (!request_region(iobase, 8, "Comtrol SV11")) {
- pr_warn("I/O 0x%X already in use\n", iobase);
- return NULL;
- }
-
- sv = kzalloc(sizeof(struct z8530_dev), GFP_KERNEL);
- if (!sv)
- goto err_kzalloc;
-
- /* Stuff in the I/O addressing
- */
-
- sv->active = 0;
-
- sv->chanA.ctrlio = iobase + 1;
- sv->chanA.dataio = iobase + 3;
- sv->chanB.ctrlio = -1;
- sv->chanB.dataio = -1;
- sv->chanA.irqs = &z8530_nop;
- sv->chanB.irqs = &z8530_nop;
-
- outb(0, iobase + 4); /* DMA off */
-
- /* We want a fast IRQ for this device. Actually we'd like an even faster
- * IRQ ;) - This is one driver RtLinux is made for
- */
-
- if (request_irq(irq, z8530_interrupt, 0,
- "Hostess SV11", sv) < 0) {
- pr_warn("IRQ %d already in use\n", irq);
- goto err_irq;
- }
-
- sv->irq = irq;
- sv->chanA.private = sv;
- sv->chanA.dev = sv;
- sv->chanB.dev = sv;
-
- if (dma) {
- /* You can have DMA off or 1 and 3 thats the lot
- * on the Comtrol.
- */
- sv->chanA.txdma = 3;
- sv->chanA.rxdma = 1;
- outb(0x03 | 0x08, iobase + 4); /* DMA on */
- if (request_dma(sv->chanA.txdma, "Hostess SV/11 (TX)"))
- goto err_txdma;
-
- if (dma == 1)
- if (request_dma(sv->chanA.rxdma, "Hostess SV/11 (RX)"))
- goto err_rxdma;
- }
-
- /* Kill our private IRQ line the hostess can end up chattering
- * until the configuration is set
- */
- disable_irq(irq);
-
- /* Begin normal initialise
- */
-
- if (z8530_init(sv)) {
- pr_err("Z8530 series device not found\n");
- enable_irq(irq);
- goto free_dma;
- }
- z8530_channel_load(&sv->chanB, z8530_dead_port);
- if (sv->type == Z85C30)
- z8530_channel_load(&sv->chanA, z8530_hdlc_kilostream);
- else
- z8530_channel_load(&sv->chanA, z8530_hdlc_kilostream_85230);
-
- enable_irq(irq);
-
- /* Now we can take the IRQ
- */
-
- sv->chanA.netdevice = netdev = alloc_hdlcdev(sv);
- if (!netdev)
- goto free_dma;
-
- dev_to_hdlc(netdev)->attach = hostess_attach;
- dev_to_hdlc(netdev)->xmit = hostess_queue_xmit;
- netdev->netdev_ops = &hostess_ops;
- netdev->base_addr = iobase;
- netdev->irq = irq;
-
- if (register_hdlc_device(netdev)) {
- pr_err("unable to register HDLC device\n");
- free_netdev(netdev);
- goto free_dma;
- }
-
- z8530_describe(sv, "I/O", iobase);
- sv->active = 1;
- return sv;
-
-free_dma:
- if (dma == 1)
- free_dma(sv->chanA.rxdma);
-err_rxdma:
- if (dma)
- free_dma(sv->chanA.txdma);
-err_txdma:
- free_irq(irq, sv);
-err_irq:
- kfree(sv);
-err_kzalloc:
- release_region(iobase, 8);
- return NULL;
-}
-
-static void sv11_shutdown(struct z8530_dev *dev)
-{
- unregister_hdlc_device(dev->chanA.netdevice);
- z8530_shutdown(dev);
- free_irq(dev->irq, dev);
- if (dma) {
- if (dma == 1)
- free_dma(dev->chanA.rxdma);
- free_dma(dev->chanA.txdma);
- }
- release_region(dev->chanA.ctrlio - 1, 8);
- free_netdev(dev->chanA.netdevice);
- kfree(dev);
-}
-
-static int io = 0x200;
-static int irq = 9;
-
-module_param_hw(io, int, ioport, 0);
-MODULE_PARM_DESC(io, "The I/O base of the Comtrol Hostess SV11 card");
-module_param_hw(dma, int, dma, 0);
-MODULE_PARM_DESC(dma, "Set this to 1 to use DMA1/DMA3 for TX/RX");
-module_param_hw(irq, int, irq, 0);
-MODULE_PARM_DESC(irq, "The interrupt line setting for the Comtrol Hostess SV11 card");
-
-MODULE_AUTHOR("Alan Cox");
-MODULE_LICENSE("GPL");
-MODULE_DESCRIPTION("Modular driver for the Comtrol Hostess SV11");
-
-static struct z8530_dev *sv11_unit;
-
-static int sv11_module_init(void)
-{
- sv11_unit = sv11_init(io, irq);
- if (!sv11_unit)
- return -ENODEV;
- return 0;
-}
-module_init(sv11_module_init);
-
-static void sv11_module_cleanup(void)
-{
- if (sv11_unit)
- sv11_shutdown(sv11_unit);
-}
-module_exit(sv11_module_cleanup);
diff --git a/drivers/net/wan/sealevel.c b/drivers/net/wan/sealevel.c
deleted file mode 100644
index eddd20aab691..000000000000
--- a/drivers/net/wan/sealevel.c
+++ /dev/null
@@ -1,352 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/* Sealevel Systems 4021 driver.
- *
- * (c) Copyright 1999, 2001 Alan Cox
- * (c) Copyright 2001 Red Hat Inc.
- * Generic HDLC port Copyright (C) 2008 Krzysztof Halasa <khc@pm.waw.pl>
- */
-
-#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
-
-#include <linux/module.h>
-#include <linux/kernel.h>
-#include <linux/mm.h>
-#include <linux/net.h>
-#include <linux/skbuff.h>
-#include <linux/netdevice.h>
-#include <linux/if_arp.h>
-#include <linux/delay.h>
-#include <linux/hdlc.h>
-#include <linux/ioport.h>
-#include <linux/init.h>
-#include <linux/slab.h>
-#include <net/arp.h>
-
-#include <asm/irq.h>
-#include <asm/io.h>
-#include <asm/dma.h>
-#include <asm/byteorder.h>
-#include "z85230.h"
-
-struct slvl_device {
- struct z8530_channel *chan;
- int channel;
-};
-
-struct slvl_board {
- struct slvl_device dev[2];
- struct z8530_dev board;
- int iobase;
-};
-
- /* Network driver support routines */
-
-static inline struct slvl_device *dev_to_chan(struct net_device *dev)
-{
- return (struct slvl_device *)dev_to_hdlc(dev)->priv;
-}
-
-/* Frame receive. Simple for our card as we do HDLC and there
- * is no funny garbage involved
- */
-
-static void sealevel_input(struct z8530_channel *c, struct sk_buff *skb)
-{
- /* Drop the CRC - it's not a good idea to try and negotiate it ;) */
- skb_trim(skb, skb->len - 2);
- skb->protocol = hdlc_type_trans(skb, c->netdevice);
- skb_reset_mac_header(skb);
- skb->dev = c->netdevice;
- netif_rx(skb);
-}
-
- /* We've been placed in the UP state */
-
-static int sealevel_open(struct net_device *d)
-{
- struct slvl_device *slvl = dev_to_chan(d);
- int err = -1;
- int unit = slvl->channel;
-
- /* Link layer up. */
-
- switch (unit) {
- case 0:
- err = z8530_sync_dma_open(d, slvl->chan);
- break;
- case 1:
- err = z8530_sync_open(d, slvl->chan);
- break;
- }
-
- if (err)
- return err;
-
- err = hdlc_open(d);
- if (err) {
- switch (unit) {
- case 0:
- z8530_sync_dma_close(d, slvl->chan);
- break;
- case 1:
- z8530_sync_close(d, slvl->chan);
- break;
- }
- return err;
- }
-
- slvl->chan->rx_function = sealevel_input;
-
- netif_start_queue(d);
- return 0;
-}
-
-static int sealevel_close(struct net_device *d)
-{
- struct slvl_device *slvl = dev_to_chan(d);
- int unit = slvl->channel;
-
- /* Discard new frames */
-
- slvl->chan->rx_function = z8530_null_rx;
-
- hdlc_close(d);
- netif_stop_queue(d);
-
- switch (unit) {
- case 0:
- z8530_sync_dma_close(d, slvl->chan);
- break;
- case 1:
- z8530_sync_close(d, slvl->chan);
- break;
- }
- return 0;
-}
-
-/* Passed network frames, fire them downwind. */
-
-static netdev_tx_t sealevel_queue_xmit(struct sk_buff *skb,
- struct net_device *d)
-{
- return z8530_queue_xmit(dev_to_chan(d)->chan, skb);
-}
-
-static int sealevel_attach(struct net_device *dev, unsigned short encoding,
- unsigned short parity)
-{
- if (encoding == ENCODING_NRZ && parity == PARITY_CRC16_PR1_CCITT)
- return 0;
- return -EINVAL;
-}
-
-static const struct net_device_ops sealevel_ops = {
- .ndo_open = sealevel_open,
- .ndo_stop = sealevel_close,
- .ndo_start_xmit = hdlc_start_xmit,
- .ndo_siocwandev = hdlc_ioctl,
-};
-
-static int slvl_setup(struct slvl_device *sv, int iobase, int irq)
-{
- struct net_device *dev = alloc_hdlcdev(sv);
-
- if (!dev)
- return -1;
-
- dev_to_hdlc(dev)->attach = sealevel_attach;
- dev_to_hdlc(dev)->xmit = sealevel_queue_xmit;
- dev->netdev_ops = &sealevel_ops;
- dev->base_addr = iobase;
- dev->irq = irq;
-
- if (register_hdlc_device(dev)) {
- pr_err("unable to register HDLC device\n");
- free_netdev(dev);
- return -1;
- }
-
- sv->chan->netdevice = dev;
- return 0;
-}
-
-/* Allocate and setup Sealevel board. */
-
-static __init struct slvl_board *slvl_init(int iobase, int irq,
- int txdma, int rxdma, int slow)
-{
- struct z8530_dev *dev;
- struct slvl_board *b;
-
- /* Get the needed I/O space */
-
- if (!request_region(iobase, 8, "Sealevel 4021")) {
- pr_warn("I/O 0x%X already in use\n", iobase);
- return NULL;
- }
-
- b = kzalloc(sizeof(struct slvl_board), GFP_KERNEL);
- if (!b)
- goto err_kzalloc;
-
- b->dev[0].chan = &b->board.chanA;
- b->dev[0].channel = 0;
-
- b->dev[1].chan = &b->board.chanB;
- b->dev[1].channel = 1;
-
- dev = &b->board;
-
- /* Stuff in the I/O addressing */
-
- dev->active = 0;
-
- b->iobase = iobase;
-
- /* Select 8530 delays for the old board */
-
- if (slow)
- iobase |= Z8530_PORT_SLEEP;
-
- dev->chanA.ctrlio = iobase + 1;
- dev->chanA.dataio = iobase;
- dev->chanB.ctrlio = iobase + 3;
- dev->chanB.dataio = iobase + 2;
-
- dev->chanA.irqs = &z8530_nop;
- dev->chanB.irqs = &z8530_nop;
-
- /* Assert DTR enable DMA */
-
- outb(3 | (1 << 7), b->iobase + 4);
-
- /* We want a fast IRQ for this device. Actually we'd like an even faster
- * IRQ ;) - This is one driver RtLinux is made for
- */
-
- if (request_irq(irq, z8530_interrupt, 0,
- "SeaLevel", dev) < 0) {
- pr_warn("IRQ %d already in use\n", irq);
- goto err_request_irq;
- }
-
- dev->irq = irq;
- dev->chanA.private = &b->dev[0];
- dev->chanB.private = &b->dev[1];
- dev->chanA.dev = dev;
- dev->chanB.dev = dev;
-
- dev->chanA.txdma = 3;
- dev->chanA.rxdma = 1;
- if (request_dma(dev->chanA.txdma, "SeaLevel (TX)"))
- goto err_dma_tx;
-
- if (request_dma(dev->chanA.rxdma, "SeaLevel (RX)"))
- goto err_dma_rx;
-
- disable_irq(irq);
-
- /* Begin normal initialise */
-
- if (z8530_init(dev) != 0) {
- pr_err("Z8530 series device not found\n");
- enable_irq(irq);
- goto free_hw;
- }
- if (dev->type == Z85C30) {
- z8530_channel_load(&dev->chanA, z8530_hdlc_kilostream);
- z8530_channel_load(&dev->chanB, z8530_hdlc_kilostream);
- } else {
- z8530_channel_load(&dev->chanA, z8530_hdlc_kilostream_85230);
- z8530_channel_load(&dev->chanB, z8530_hdlc_kilostream_85230);
- }
-
- /* Now we can take the IRQ */
-
- enable_irq(irq);
-
- if (slvl_setup(&b->dev[0], iobase, irq))
- goto free_hw;
- if (slvl_setup(&b->dev[1], iobase, irq))
- goto free_netdev0;
-
- z8530_describe(dev, "I/O", iobase);
- dev->active = 1;
- return b;
-
-free_netdev0:
- unregister_hdlc_device(b->dev[0].chan->netdevice);
- free_netdev(b->dev[0].chan->netdevice);
-free_hw:
- free_dma(dev->chanA.rxdma);
-err_dma_rx:
- free_dma(dev->chanA.txdma);
-err_dma_tx:
- free_irq(irq, dev);
-err_request_irq:
- kfree(b);
-err_kzalloc:
- release_region(iobase, 8);
- return NULL;
-}
-
-static void __exit slvl_shutdown(struct slvl_board *b)
-{
- int u;
-
- z8530_shutdown(&b->board);
-
- for (u = 0; u < 2; u++) {
- struct net_device *d = b->dev[u].chan->netdevice;
-
- unregister_hdlc_device(d);
- free_netdev(d);
- }
-
- free_irq(b->board.irq, &b->board);
- free_dma(b->board.chanA.rxdma);
- free_dma(b->board.chanA.txdma);
- /* DMA off on the card, drop DTR */
- outb(0, b->iobase);
- release_region(b->iobase, 8);
- kfree(b);
-}
-
-static int io = 0x238;
-static int txdma = 1;
-static int rxdma = 3;
-static int irq = 5;
-static bool slow;
-
-module_param_hw(io, int, ioport, 0);
-MODULE_PARM_DESC(io, "The I/O base of the Sealevel card");
-module_param_hw(txdma, int, dma, 0);
-MODULE_PARM_DESC(txdma, "Transmit DMA channel");
-module_param_hw(rxdma, int, dma, 0);
-MODULE_PARM_DESC(rxdma, "Receive DMA channel");
-module_param_hw(irq, int, irq, 0);
-MODULE_PARM_DESC(irq, "The interrupt line setting for the SeaLevel card");
-module_param(slow, bool, 0);
-MODULE_PARM_DESC(slow, "Set this for an older Sealevel card such as the 4012");
-
-MODULE_AUTHOR("Alan Cox");
-MODULE_LICENSE("GPL");
-MODULE_DESCRIPTION("Modular driver for the SeaLevel 4021");
-
-static struct slvl_board *slvl_unit;
-
-static int __init slvl_init_module(void)
-{
- slvl_unit = slvl_init(io, irq, txdma, rxdma, slow);
-
- return slvl_unit ? 0 : -ENODEV;
-}
-
-static void __exit slvl_cleanup_module(void)
-{
- if (slvl_unit)
- slvl_shutdown(slvl_unit);
-}
-
-module_init(slvl_init_module);
-module_exit(slvl_cleanup_module);
diff --git a/drivers/net/wan/z85230.c b/drivers/net/wan/z85230.c
deleted file mode 100644
index 982a03488a00..000000000000
--- a/drivers/net/wan/z85230.c
+++ /dev/null
@@ -1,1641 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/* (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
- * (c) Copyright 2000, 2001 Red Hat Inc
- *
- * Development of this driver was funded by Equiinet Ltd
- * http://www.equiinet.com
- *
- * ChangeLog:
- *
- * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
- * unification of all the Z85x30 asynchronous drivers for real.
- *
- * DMA now uses get_free_page as kmalloc buffers may span a 64K
- * boundary.
- *
- * Modified for SMP safety and SMP locking by Alan Cox
- * <alan@lxorguk.ukuu.org.uk>
- *
- * Performance
- *
- * Z85230:
- * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
- * X.25 is not unrealistic on all machines. DMA mode can in theory
- * handle T1/E1 quite nicely. In practice the limit seems to be about
- * 512Kbit->1Mbit depending on motherboard.
- *
- * Z85C30:
- * 64K will take DMA, 9600 baud X.25 should be ok.
- *
- * Z8530:
- * Synchronous mode without DMA is unlikely to pass about 2400 baud.
- */
-
-#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
-
-#include <linux/module.h>
-#include <linux/kernel.h>
-#include <linux/mm.h>
-#include <linux/net.h>
-#include <linux/skbuff.h>
-#include <linux/netdevice.h>
-#include <linux/if_arp.h>
-#include <linux/delay.h>
-#include <linux/hdlc.h>
-#include <linux/ioport.h>
-#include <linux/init.h>
-#include <linux/gfp.h>
-#include <asm/dma.h>
-#include <asm/io.h>
-#define RT_LOCK
-#define RT_UNLOCK
-#include <linux/spinlock.h>
-
-#include "z85230.h"
-
-/**
- * z8530_read_port - Architecture specific interface function
- * @p: port to read
- *
- * Provided port access methods. The Comtrol SV11 requires no delays
- * between accesses and uses PC I/O. Some drivers may need a 5uS delay
- *
- * In the longer term this should become an architecture specific
- * section so that this can become a generic driver interface for all
- * platforms. For now we only handle PC I/O ports with or without the
- * dread 5uS sanity delay.
- *
- * The caller must hold sufficient locks to avoid violating the horrible
- * 5uS delay rule.
- */
-
-static inline int z8530_read_port(unsigned long p)
-{
- u8 r = inb(Z8530_PORT_OF(p));
-
- if (p & Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */
- udelay(5);
- return r;
-}
-
-/**
- * z8530_write_port - Architecture specific interface function
- * @p: port to write
- * @d: value to write
- *
- * Write a value to a port with delays if need be. Note that the
- * caller must hold locks to avoid read/writes from other contexts
- * violating the 5uS rule
- *
- * In the longer term this should become an architecture specific
- * section so that this can become a generic driver interface for all
- * platforms. For now we only handle PC I/O ports with or without the
- * dread 5uS sanity delay.
- */
-
-static inline void z8530_write_port(unsigned long p, u8 d)
-{
- outb(d, Z8530_PORT_OF(p));
- if (p & Z8530_PORT_SLEEP)
- udelay(5);
-}
-
-static void z8530_rx_done(struct z8530_channel *c);
-static void z8530_tx_done(struct z8530_channel *c);
-
-/**
- * read_zsreg - Read a register from a Z85230
- * @c: Z8530 channel to read from (2 per chip)
- * @reg: Register to read
- * FIXME: Use a spinlock.
- *
- * Most of the Z8530 registers are indexed off the control registers.
- * A read is done by writing to the control register and reading the
- * register back. The caller must hold the lock
- */
-
-static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
-{
- if (reg)
- z8530_write_port(c->ctrlio, reg);
- return z8530_read_port(c->ctrlio);
-}
-
-/**
- * read_zsdata - Read the data port of a Z8530 channel
- * @c: The Z8530 channel to read the data port from
- *
- * The data port provides fast access to some things. We still
- * have all the 5uS delays to worry about.
- */
-
-static inline u8 read_zsdata(struct z8530_channel *c)
-{
- u8 r;
-
- r = z8530_read_port(c->dataio);
- return r;
-}
-
-/**
- * write_zsreg - Write to a Z8530 channel register
- * @c: The Z8530 channel
- * @reg: Register number
- * @val: Value to write
- *
- * Write a value to an indexed register. The caller must hold the lock
- * to honour the irritating delay rules. We know about register 0
- * being fast to access.
- *
- * Assumes c->lock is held.
- */
-static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
-{
- if (reg)
- z8530_write_port(c->ctrlio, reg);
- z8530_write_port(c->ctrlio, val);
-}
-
-/**
- * write_zsctrl - Write to a Z8530 control register
- * @c: The Z8530 channel
- * @val: Value to write
- *
- * Write directly to the control register on the Z8530
- */
-
-static inline void write_zsctrl(struct z8530_channel *c, u8 val)
-{
- z8530_write_port(c->ctrlio, val);
-}
-
-/**
- * write_zsdata - Write to a Z8530 control register
- * @c: The Z8530 channel
- * @val: Value to write
- *
- * Write directly to the data register on the Z8530
- */
-static inline void write_zsdata(struct z8530_channel *c, u8 val)
-{
- z8530_write_port(c->dataio, val);
-}
-
-/* Register loading parameters for a dead port
- */
-
-u8 z8530_dead_port[] = {
- 255
-};
-EXPORT_SYMBOL(z8530_dead_port);
-
-/* Register loading parameters for currently supported circuit types
- */
-
-/* Data clocked by telco end. This is the correct data for the UK
- * "kilostream" service, and most other similar services.
- */
-
-u8 z8530_hdlc_kilostream[] = {
- 4, SYNC_ENAB | SDLC | X1CLK,
- 2, 0, /* No vector */
- 1, 0,
- 3, ENT_HM | RxCRC_ENAB | Rx8,
- 5, TxCRC_ENAB | RTS | TxENAB | Tx8 | DTR,
- 9, 0, /* Disable interrupts */
- 6, 0xFF,
- 7, FLAG,
- 10, ABUNDER | NRZ | CRCPS,/*MARKIDLE ??*/
- 11, TCTRxCP,
- 14, DISDPLL,
- 15, DCDIE | SYNCIE | CTSIE | TxUIE | BRKIE,
- 1, EXT_INT_ENAB | TxINT_ENAB | INT_ALL_Rx,
- 9, NV | MIE | NORESET,
- 255
-};
-EXPORT_SYMBOL(z8530_hdlc_kilostream);
-
-/* As above but for enhanced chips.
- */
-
-u8 z8530_hdlc_kilostream_85230[] = {
- 4, SYNC_ENAB | SDLC | X1CLK,
- 2, 0, /* No vector */
- 1, 0,
- 3, ENT_HM | RxCRC_ENAB | Rx8,
- 5, TxCRC_ENAB | RTS | TxENAB | Tx8 | DTR,
- 9, 0, /* Disable interrupts */
- 6, 0xFF,
- 7, FLAG,
- 10, ABUNDER | NRZ | CRCPS, /* MARKIDLE?? */
- 11, TCTRxCP,
- 14, DISDPLL,
- 15, DCDIE | SYNCIE | CTSIE | TxUIE | BRKIE,
- 1, EXT_INT_ENAB | TxINT_ENAB | INT_ALL_Rx,
- 9, NV | MIE | NORESET,
- 23, 3, /* Extended mode AUTO TX and EOM*/
-
- 255
-};
-EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
-
-/**
- * z8530_flush_fifo - Flush on chip RX FIFO
- * @c: Channel to flush
- *
- * Flush the receive FIFO. There is no specific option for this, we
- * blindly read bytes and discard them. Reading when there is no data
- * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
- *
- * All locking is handled for the caller. On return data may still be
- * present if it arrived during the flush.
- */
-
-static void z8530_flush_fifo(struct z8530_channel *c)
-{
- read_zsreg(c, R1);
- read_zsreg(c, R1);
- read_zsreg(c, R1);
- read_zsreg(c, R1);
- if (c->dev->type == Z85230) {
- read_zsreg(c, R1);
- read_zsreg(c, R1);
- read_zsreg(c, R1);
- read_zsreg(c, R1);
- }
-}
-
-/**
- * z8530_rtsdtr - Control the outgoing DTS/RTS line
- * @c: The Z8530 channel to control;
- * @set: 1 to set, 0 to clear
- *
- * Sets or clears DTR/RTS on the requested line. All locking is handled
- * by the caller. For now we assume all boards use the actual RTS/DTR
- * on the chip. Apparently one or two don't. We'll scream about them
- * later.
- */
-
-static void z8530_rtsdtr(struct z8530_channel *c, int set)
-{
- if (set)
- c->regs[5] |= (RTS | DTR);
- else
- c->regs[5] &= ~(RTS | DTR);
- write_zsreg(c, R5, c->regs[5]);
-}
-
-/**
- * z8530_rx - Handle a PIO receive event
- * @c: Z8530 channel to process
- *
- * Receive handler for receiving in PIO mode. This is much like the
- * async one but not quite the same or as complex
- *
- * Note: Its intended that this handler can easily be separated from
- * the main code to run realtime. That'll be needed for some machines
- * (eg to ever clock 64kbits on a sparc ;)).
- *
- * The RT_LOCK macros don't do anything now. Keep the code covered
- * by them as short as possible in all circumstances - clocks cost
- * baud. The interrupt handler is assumed to be atomic w.r.t. to
- * other code - this is true in the RT case too.
- *
- * We only cover the sync cases for this. If you want 2Mbit async
- * do it yourself but consider medical assistance first. This non DMA
- * synchronous mode is portable code. The DMA mode assumes PCI like
- * ISA DMA
- *
- * Called with the device lock held
- */
-
-static void z8530_rx(struct z8530_channel *c)
-{
- u8 ch, stat;
-
- while (1) {
- /* FIFO empty ? */
- if (!(read_zsreg(c, R0) & 1))
- break;
- ch = read_zsdata(c);
- stat = read_zsreg(c, R1);
-
- /* Overrun ?
- */
- if (c->count < c->max) {
- *c->dptr++ = ch;
- c->count++;
- }
-
- if (stat & END_FR) {
- /* Error ?
- */
- if (stat & (Rx_OVR | CRC_ERR)) {
- /* Rewind the buffer and return */
- if (c->skb)
- c->dptr = c->skb->data;
- c->count = 0;
- if (stat & Rx_OVR) {
- pr_warn("%s: overrun\n", c->dev->name);
- c->rx_overrun++;
- }
- if (stat & CRC_ERR) {
- c->rx_crc_err++;
- /* printk("crc error\n"); */
- }
- /* Shove the frame upstream */
- } else {
- /* Drop the lock for RX processing, or
- * there are deadlocks
- */
- z8530_rx_done(c);
- write_zsctrl(c, RES_Rx_CRC);
- }
- }
- }
- /* Clear irq
- */
- write_zsctrl(c, ERR_RES);
- write_zsctrl(c, RES_H_IUS);
-}
-
-/**
- * z8530_tx - Handle a PIO transmit event
- * @c: Z8530 channel to process
- *
- * Z8530 transmit interrupt handler for the PIO mode. The basic
- * idea is to attempt to keep the FIFO fed. We fill as many bytes
- * in as possible, its quite possible that we won't keep up with the
- * data rate otherwise.
- */
-
-static void z8530_tx(struct z8530_channel *c)
-{
- while (c->txcount) {
- /* FIFO full ? */
- if (!(read_zsreg(c, R0) & 4))
- return;
- c->txcount--;
- /* Shovel out the byte
- */
- write_zsreg(c, R8, *c->tx_ptr++);
- write_zsctrl(c, RES_H_IUS);
- /* We are about to underflow */
- if (c->txcount == 0) {
- write_zsctrl(c, RES_EOM_L);
- write_zsreg(c, R10, c->regs[10] & ~ABUNDER);
- }
- }
-
- /* End of frame TX - fire another one
- */
-
- write_zsctrl(c, RES_Tx_P);
-
- z8530_tx_done(c);
- write_zsctrl(c, RES_H_IUS);
-}
-
-/**
- * z8530_status - Handle a PIO status exception
- * @chan: Z8530 channel to process
- *
- * A status event occurred in PIO synchronous mode. There are several
- * reasons the chip will bother us here. A transmit underrun means we
- * failed to feed the chip fast enough and just broke a packet. A DCD
- * change is a line up or down.
- */
-
-static void z8530_status(struct z8530_channel *chan)
-{
- u8 status, altered;
-
- status = read_zsreg(chan, R0);
- altered = chan->status ^ status;
-
- chan->status = status;
-
- if (status & TxEOM) {
-/* printk("%s: Tx underrun.\n", chan->dev->name); */
- chan->netdevice->stats.tx_fifo_errors++;
- write_zsctrl(chan, ERR_RES);
- z8530_tx_done(chan);
- }
-
- if (altered & chan->dcdcheck) {
- if (status & chan->dcdcheck) {
- pr_info("%s: DCD raised\n", chan->dev->name);
- write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
- if (chan->netdevice)
- netif_carrier_on(chan->netdevice);
- } else {
- pr_info("%s: DCD lost\n", chan->dev->name);
- write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
- z8530_flush_fifo(chan);
- if (chan->netdevice)
- netif_carrier_off(chan->netdevice);
- }
- }
- write_zsctrl(chan, RES_EXT_INT);
- write_zsctrl(chan, RES_H_IUS);
-}
-
-struct z8530_irqhandler z8530_sync = {
- .rx = z8530_rx,
- .tx = z8530_tx,
- .status = z8530_status,
-};
-EXPORT_SYMBOL(z8530_sync);
-
-/**
- * z8530_dma_rx - Handle a DMA RX event
- * @chan: Channel to handle
- *
- * Non bus mastering DMA interfaces for the Z8x30 devices. This
- * is really pretty PC specific. The DMA mode means that most receive
- * events are handled by the DMA hardware. We get a kick here only if
- * a frame ended.
- */
-
-static void z8530_dma_rx(struct z8530_channel *chan)
-{
- if (chan->rxdma_on) {
- /* Special condition check only */
- u8 status;
-
- read_zsreg(chan, R7);
- read_zsreg(chan, R6);
-
- status = read_zsreg(chan, R1);
-
- if (status & END_FR)
- z8530_rx_done(chan); /* Fire up the next one */
-
- write_zsctrl(chan, ERR_RES);
- write_zsctrl(chan, RES_H_IUS);
- } else {
- /* DMA is off right now, drain the slow way */
- z8530_rx(chan);
- }
-}
-
-/**
- * z8530_dma_tx - Handle a DMA TX event
- * @chan: The Z8530 channel to handle
- *
- * We have received an interrupt while doing DMA transmissions. It
- * shouldn't happen. Scream loudly if it does.
- */
-static void z8530_dma_tx(struct z8530_channel *chan)
-{
- if (!chan->dma_tx) {
- pr_warn("Hey who turned the DMA off?\n");
- z8530_tx(chan);
- return;
- }
- /* This shouldn't occur in DMA mode */
- pr_err("DMA tx - bogus event!\n");
- z8530_tx(chan);
-}
-
-/**
- * z8530_dma_status - Handle a DMA status exception
- * @chan: Z8530 channel to process
- *
- * A status event occurred on the Z8530. We receive these for two reasons
- * when in DMA mode. Firstly if we finished a packet transfer we get one
- * and kick the next packet out. Secondly we may see a DCD change.
- *
- */
-static void z8530_dma_status(struct z8530_channel *chan)
-{
- u8 status, altered;
-
- status = read_zsreg(chan, R0);
- altered = chan->status ^ status;
-
- chan->status = status;
-
- if (chan->dma_tx) {
- if (status & TxEOM) {
- unsigned long flags;
-
- flags = claim_dma_lock();
- disable_dma(chan->txdma);
- clear_dma_ff(chan->txdma);
- chan->txdma_on = 0;
- release_dma_lock(flags);
- z8530_tx_done(chan);
- }
- }
-
- if (altered & chan->dcdcheck) {
- if (status & chan->dcdcheck) {
- pr_info("%s: DCD raised\n", chan->dev->name);
- write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
- if (chan->netdevice)
- netif_carrier_on(chan->netdevice);
- } else {
- pr_info("%s: DCD lost\n", chan->dev->name);
- write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
- z8530_flush_fifo(chan);
- if (chan->netdevice)
- netif_carrier_off(chan->netdevice);
- }
- }
-
- write_zsctrl(chan, RES_EXT_INT);
- write_zsctrl(chan, RES_H_IUS);
-}
-
-static struct z8530_irqhandler z8530_dma_sync = {
- .rx = z8530_dma_rx,
- .tx = z8530_dma_tx,
- .status = z8530_dma_status,
-};
-
-static struct z8530_irqhandler z8530_txdma_sync = {
- .rx = z8530_rx,
- .tx = z8530_dma_tx,
- .status = z8530_dma_status,
-};
-
-/**
- * z8530_rx_clear - Handle RX events from a stopped chip
- * @c: Z8530 channel to shut up
- *
- * Receive interrupt vectors for a Z8530 that is in 'parked' mode.
- * For machines with PCI Z85x30 cards, or level triggered interrupts
- * (eg the MacII) we must clear the interrupt cause or die.
- */
-
-static void z8530_rx_clear(struct z8530_channel *c)
-{
- /* Data and status bytes
- */
- u8 stat;
-
- read_zsdata(c);
- stat = read_zsreg(c, R1);
-
- if (stat & END_FR)
- write_zsctrl(c, RES_Rx_CRC);
- /* Clear irq
- */
- write_zsctrl(c, ERR_RES);
- write_zsctrl(c, RES_H_IUS);
-}
-
-/**
- * z8530_tx_clear - Handle TX events from a stopped chip
- * @c: Z8530 channel to shut up
- *
- * Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
- * For machines with PCI Z85x30 cards, or level triggered interrupts
- * (eg the MacII) we must clear the interrupt cause or die.
- */
-
-static void z8530_tx_clear(struct z8530_channel *c)
-{
- write_zsctrl(c, RES_Tx_P);
- write_zsctrl(c, RES_H_IUS);
-}
-
-/**
- * z8530_status_clear - Handle status events from a stopped chip
- * @chan: Z8530 channel to shut up
- *
- * Status interrupt vectors for a Z8530 that is in 'parked' mode.
- * For machines with PCI Z85x30 cards, or level triggered interrupts
- * (eg the MacII) we must clear the interrupt cause or die.
- */
-
-static void z8530_status_clear(struct z8530_channel *chan)
-{
- u8 status = read_zsreg(chan, R0);
-
- if (status & TxEOM)
- write_zsctrl(chan, ERR_RES);
- write_zsctrl(chan, RES_EXT_INT);
- write_zsctrl(chan, RES_H_IUS);
-}
-
-struct z8530_irqhandler z8530_nop = {
- .rx = z8530_rx_clear,
- .tx = z8530_tx_clear,
- .status = z8530_status_clear,
-};
-EXPORT_SYMBOL(z8530_nop);
-
-/**
- * z8530_interrupt - Handle an interrupt from a Z8530
- * @irq: Interrupt number
- * @dev_id: The Z8530 device that is interrupting.
- *
- * A Z85[2]30 device has stuck its hand in the air for attention.
- * We scan both the channels on the chip for events and then call
- * the channel specific call backs for each channel that has events.
- * We have to use callback functions because the two channels can be
- * in different modes.
- *
- * Locking is done for the handlers. Note that locking is done
- * at the chip level (the 5uS delay issue is per chip not per
- * channel). c->lock for both channels points to dev->lock
- */
-
-irqreturn_t z8530_interrupt(int irq, void *dev_id)
-{
- struct z8530_dev *dev = dev_id;
- u8 intr;
- static volatile int locker=0;
- int work = 0;
- struct z8530_irqhandler *irqs;
-
- if (locker) {
- pr_err("IRQ re-enter\n");
- return IRQ_NONE;
- }
- locker = 1;
-
- spin_lock(&dev->lock);
-
- while (++work < 5000) {
- intr = read_zsreg(&dev->chanA, R3);
- if (!(intr &
- (CHARxIP | CHATxIP | CHAEXT | CHBRxIP | CHBTxIP | CHBEXT)))
- break;
-
- /* This holds the IRQ status. On the 8530 you must read it
- * from chan A even though it applies to the whole chip
- */
-
- /* Now walk the chip and see what it is wanting - it may be
- * an IRQ for someone else remember
- */
-
- irqs = dev->chanA.irqs;
-
- if (intr & (CHARxIP | CHATxIP | CHAEXT)) {
- if (intr & CHARxIP)
- irqs->rx(&dev->chanA);
- if (intr & CHATxIP)
- irqs->tx(&dev->chanA);
- if (intr & CHAEXT)
- irqs->status(&dev->chanA);
- }
-
- irqs = dev->chanB.irqs;
-
- if (intr & (CHBRxIP | CHBTxIP | CHBEXT)) {
- if (intr & CHBRxIP)
- irqs->rx(&dev->chanB);
- if (intr & CHBTxIP)
- irqs->tx(&dev->chanB);
- if (intr & CHBEXT)
- irqs->status(&dev->chanB);
- }
- }
- spin_unlock(&dev->lock);
- if (work == 5000)
- pr_err("%s: interrupt jammed - abort(0x%X)!\n",
- dev->name, intr);
- /* Ok all done */
- locker = 0;
- return IRQ_HANDLED;
-}
-EXPORT_SYMBOL(z8530_interrupt);
-
-static const u8 reg_init[16] = {
- 0, 0, 0, 0,
- 0, 0, 0, 0,
- 0, 0, 0, 0,
- 0x55, 0, 0, 0
-};
-
-/**
- * z8530_sync_open - Open a Z8530 channel for PIO
- * @dev: The network interface we are using
- * @c: The Z8530 channel to open in synchronous PIO mode
- *
- * Switch a Z8530 into synchronous mode without DMA assist. We
- * raise the RTS/DTR and commence network operation.
- */
-int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
-{
- unsigned long flags;
-
- spin_lock_irqsave(c->lock, flags);
-
- c->sync = 1;
- c->mtu = dev->mtu + 64;
- c->count = 0;
- c->skb = NULL;
- c->skb2 = NULL;
- c->irqs = &z8530_sync;
-
- /* This loads the double buffer up */
- z8530_rx_done(c); /* Load the frame ring */
- z8530_rx_done(c); /* Load the backup frame */
- z8530_rtsdtr(c, 1);
- c->dma_tx = 0;
- c->regs[R1] |= TxINT_ENAB;
- write_zsreg(c, R1, c->regs[R1]);
- write_zsreg(c, R3, c->regs[R3] | RxENABLE);
-
- spin_unlock_irqrestore(c->lock, flags);
- return 0;
-}
-EXPORT_SYMBOL(z8530_sync_open);
-
-/**
- * z8530_sync_close - Close a PIO Z8530 channel
- * @dev: Network device to close
- * @c: Z8530 channel to disassociate and move to idle
- *
- * Close down a Z8530 interface and switch its interrupt handlers
- * to discard future events.
- */
-int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
-{
- u8 chk;
- unsigned long flags;
-
- spin_lock_irqsave(c->lock, flags);
- c->irqs = &z8530_nop;
- c->max = 0;
- c->sync = 0;
-
- chk = read_zsreg(c, R0);
- write_zsreg(c, R3, c->regs[R3]);
- z8530_rtsdtr(c, 0);
-
- spin_unlock_irqrestore(c->lock, flags);
- return 0;
-}
-EXPORT_SYMBOL(z8530_sync_close);
-
-/**
- * z8530_sync_dma_open - Open a Z8530 for DMA I/O
- * @dev: The network device to attach
- * @c: The Z8530 channel to configure in sync DMA mode.
- *
- * Set up a Z85x30 device for synchronous DMA in both directions. Two
- * ISA DMA channels must be available for this to work. We assume ISA
- * DMA driven I/O and PC limits on access.
- */
-int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
-{
- unsigned long cflags, dflags;
-
- c->sync = 1;
- c->mtu = dev->mtu + 64;
- c->count = 0;
- c->skb = NULL;
- c->skb2 = NULL;
-
- /* Load the DMA interfaces up
- */
- c->rxdma_on = 0;
- c->txdma_on = 0;
-
- /* Allocate the DMA flip buffers. Limit by page size.
- * Everyone runs 1500 mtu or less on wan links so this
- * should be fine.
- */
-
- if (c->mtu > PAGE_SIZE / 2)
- return -EMSGSIZE;
-
- c->rx_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
- if (!c->rx_buf[0])
- return -ENOBUFS;
- c->rx_buf[1] = c->rx_buf[0] + PAGE_SIZE / 2;
-
- c->tx_dma_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
- if (!c->tx_dma_buf[0]) {
- free_page((unsigned long)c->rx_buf[0]);
- c->rx_buf[0] = NULL;
- return -ENOBUFS;
- }
- c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE / 2;
-
- c->tx_dma_used = 0;
- c->dma_tx = 1;
- c->dma_num = 0;
- c->dma_ready = 1;
-
- /* Enable DMA control mode
- */
-
- spin_lock_irqsave(c->lock, cflags);
-
- /* TX DMA via DIR/REQ
- */
-
- c->regs[R14] |= DTRREQ;
- write_zsreg(c, R14, c->regs[R14]);
-
- c->regs[R1] &= ~TxINT_ENAB;
- write_zsreg(c, R1, c->regs[R1]);
-
- /* RX DMA via W/Req
- */
-
- c->regs[R1] |= WT_FN_RDYFN;
- c->regs[R1] |= WT_RDY_RT;
- c->regs[R1] |= INT_ERR_Rx;
- c->regs[R1] &= ~TxINT_ENAB;
- write_zsreg(c, R1, c->regs[R1]);
- c->regs[R1] |= WT_RDY_ENAB;
- write_zsreg(c, R1, c->regs[R1]);
-
- /* DMA interrupts
- */
-
- /* Set up the DMA configuration
- */
-
- dflags = claim_dma_lock();
-
- disable_dma(c->rxdma);
- clear_dma_ff(c->rxdma);
- set_dma_mode(c->rxdma, DMA_MODE_READ | 0x10);
- set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
- set_dma_count(c->rxdma, c->mtu);
- enable_dma(c->rxdma);
-
- disable_dma(c->txdma);
- clear_dma_ff(c->txdma);
- set_dma_mode(c->txdma, DMA_MODE_WRITE);
- disable_dma(c->txdma);
-
- release_dma_lock(dflags);
-
- /* Select the DMA interrupt handlers
- */
-
- c->rxdma_on = 1;
- c->txdma_on = 1;
- c->tx_dma_used = 1;
-
- c->irqs = &z8530_dma_sync;
- z8530_rtsdtr(c, 1);
- write_zsreg(c, R3, c->regs[R3] | RxENABLE);
-
- spin_unlock_irqrestore(c->lock, cflags);
-
- return 0;
-}
-EXPORT_SYMBOL(z8530_sync_dma_open);
-
-/**
- * z8530_sync_dma_close - Close down DMA I/O
- * @dev: Network device to detach
- * @c: Z8530 channel to move into discard mode
- *
- * Shut down a DMA mode synchronous interface. Halt the DMA, and
- * free the buffers.
- */
-int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
-{
- u8 chk;
- unsigned long flags;
-
- c->irqs = &z8530_nop;
- c->max = 0;
- c->sync = 0;
-
- /* Disable the PC DMA channels
- */
-
- flags = claim_dma_lock();
- disable_dma(c->rxdma);
- clear_dma_ff(c->rxdma);
-
- c->rxdma_on = 0;
-
- disable_dma(c->txdma);
- clear_dma_ff(c->txdma);
- release_dma_lock(flags);
-
- c->txdma_on = 0;
- c->tx_dma_used = 0;
-
- spin_lock_irqsave(c->lock, flags);
-
- /* Disable DMA control mode
- */
-
- c->regs[R1] &= ~WT_RDY_ENAB;
- write_zsreg(c, R1, c->regs[R1]);
- c->regs[R1] &= ~(WT_RDY_RT | WT_FN_RDYFN | INT_ERR_Rx);
- c->regs[R1] |= INT_ALL_Rx;
- write_zsreg(c, R1, c->regs[R1]);
- c->regs[R14] &= ~DTRREQ;
- write_zsreg(c, R14, c->regs[R14]);
-
- if (c->rx_buf[0]) {
- free_page((unsigned long)c->rx_buf[0]);
- c->rx_buf[0] = NULL;
- }
- if (c->tx_dma_buf[0]) {
- free_page((unsigned long)c->tx_dma_buf[0]);
- c->tx_dma_buf[0] = NULL;
- }
- chk = read_zsreg(c, R0);
- write_zsreg(c, R3, c->regs[R3]);
- z8530_rtsdtr(c, 0);
-
- spin_unlock_irqrestore(c->lock, flags);
-
- return 0;
-}
-EXPORT_SYMBOL(z8530_sync_dma_close);
-
-/**
- * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
- * @dev: The network device to attach
- * @c: The Z8530 channel to configure in sync DMA mode.
- *
- * Set up a Z85x30 device for synchronous DMA transmission. One
- * ISA DMA channel must be available for this to work. The receive
- * side is run in PIO mode, but then it has the bigger FIFO.
- */
-
-int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
-{
- unsigned long cflags, dflags;
-
- printk("Opening sync interface for TX-DMA\n");
- c->sync = 1;
- c->mtu = dev->mtu + 64;
- c->count = 0;
- c->skb = NULL;
- c->skb2 = NULL;
-
- /* Allocate the DMA flip buffers. Limit by page size.
- * Everyone runs 1500 mtu or less on wan links so this
- * should be fine.
- */
-
- if (c->mtu > PAGE_SIZE / 2)
- return -EMSGSIZE;
-
- c->tx_dma_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
- if (!c->tx_dma_buf[0])
- return -ENOBUFS;
-
- c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE / 2;
-
- spin_lock_irqsave(c->lock, cflags);
-
- /* Load the PIO receive ring
- */
-
- z8530_rx_done(c);
- z8530_rx_done(c);
-
- /* Load the DMA interfaces up
- */
-
- c->rxdma_on = 0;
- c->txdma_on = 0;
-
- c->tx_dma_used = 0;
- c->dma_num = 0;
- c->dma_ready = 1;
- c->dma_tx = 1;
-
- /* Enable DMA control mode
- */
-
- /* TX DMA via DIR/REQ
- */
- c->regs[R14] |= DTRREQ;
- write_zsreg(c, R14, c->regs[R14]);
-
- c->regs[R1] &= ~TxINT_ENAB;
- write_zsreg(c, R1, c->regs[R1]);
-
- /* Set up the DMA configuration
- */
-
- dflags = claim_dma_lock();
-
- disable_dma(c->txdma);
- clear_dma_ff(c->txdma);
- set_dma_mode(c->txdma, DMA_MODE_WRITE);
- disable_dma(c->txdma);
-
- release_dma_lock(dflags);
-
- /* Select the DMA interrupt handlers
- */
-
- c->rxdma_on = 0;
- c->txdma_on = 1;
- c->tx_dma_used = 1;
-
- c->irqs = &z8530_txdma_sync;
- z8530_rtsdtr(c, 1);
- write_zsreg(c, R3, c->regs[R3] | RxENABLE);
- spin_unlock_irqrestore(c->lock, cflags);
-
- return 0;
-}
-EXPORT_SYMBOL(z8530_sync_txdma_open);
-
-/**
- * z8530_sync_txdma_close - Close down a TX driven DMA channel
- * @dev: Network device to detach
- * @c: Z8530 channel to move into discard mode
- *
- * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
- * and free the buffers.
- */
-
-int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
-{
- unsigned long dflags, cflags;
- u8 chk;
-
- spin_lock_irqsave(c->lock, cflags);
-
- c->irqs = &z8530_nop;
- c->max = 0;
- c->sync = 0;
-
- /* Disable the PC DMA channels
- */
-
- dflags = claim_dma_lock();
-
- disable_dma(c->txdma);
- clear_dma_ff(c->txdma);
- c->txdma_on = 0;
- c->tx_dma_used = 0;
-
- release_dma_lock(dflags);
-
- /* Disable DMA control mode
- */
-
- c->regs[R1] &= ~WT_RDY_ENAB;
- write_zsreg(c, R1, c->regs[R1]);
- c->regs[R1] &= ~(WT_RDY_RT | WT_FN_RDYFN | INT_ERR_Rx);
- c->regs[R1] |= INT_ALL_Rx;
- write_zsreg(c, R1, c->regs[R1]);
- c->regs[R14] &= ~DTRREQ;
- write_zsreg(c, R14, c->regs[R14]);
-
- if (c->tx_dma_buf[0]) {
- free_page((unsigned long)c->tx_dma_buf[0]);
- c->tx_dma_buf[0] = NULL;
- }
- chk = read_zsreg(c, R0);
- write_zsreg(c, R3, c->regs[R3]);
- z8530_rtsdtr(c, 0);
-
- spin_unlock_irqrestore(c->lock, cflags);
- return 0;
-}
-EXPORT_SYMBOL(z8530_sync_txdma_close);
-
-/* Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
- * it exists...
- */
-static const char * const z8530_type_name[] = {
- "Z8530",
- "Z85C30",
- "Z85230"
-};
-
-/**
- * z8530_describe - Uniformly describe a Z8530 port
- * @dev: Z8530 device to describe
- * @mapping: string holding mapping type (eg "I/O" or "Mem")
- * @io: the port value in question
- *
- * Describe a Z8530 in a standard format. We must pass the I/O as
- * the port offset isn't predictable. The main reason for this function
- * is to try and get a common format of report.
- */
-
-void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
-{
- pr_info("%s: %s found at %s 0x%lX, IRQ %d\n",
- dev->name,
- z8530_type_name[dev->type],
- mapping,
- Z8530_PORT_OF(io),
- dev->irq);
-}
-EXPORT_SYMBOL(z8530_describe);
-
-/* Locked operation part of the z8530 init code
- */
-static inline int do_z8530_init(struct z8530_dev *dev)
-{
- /* NOP the interrupt handlers first - we might get a
- * floating IRQ transition when we reset the chip
- */
- dev->chanA.irqs = &z8530_nop;
- dev->chanB.irqs = &z8530_nop;
- dev->chanA.dcdcheck = DCD;
- dev->chanB.dcdcheck = DCD;
-
- /* Reset the chip */
- write_zsreg(&dev->chanA, R9, 0xC0);
- udelay(200);
- /* Now check its valid */
- write_zsreg(&dev->chanA, R12, 0xAA);
- if (read_zsreg(&dev->chanA, R12) != 0xAA)
- return -ENODEV;
- write_zsreg(&dev->chanA, R12, 0x55);
- if (read_zsreg(&dev->chanA, R12) != 0x55)
- return -ENODEV;
-
- dev->type = Z8530;
-
- /* See the application note.
- */
-
- write_zsreg(&dev->chanA, R15, 0x01);
-
- /* If we can set the low bit of R15 then
- * the chip is enhanced.
- */
-
- if (read_zsreg(&dev->chanA, R15) == 0x01) {
- /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
- /* Put a char in the fifo */
- write_zsreg(&dev->chanA, R8, 0);
- if (read_zsreg(&dev->chanA, R0) & Tx_BUF_EMP)
- dev->type = Z85230; /* Has a FIFO */
- else
- dev->type = Z85C30; /* Z85C30, 1 byte FIFO */
- }
-
- /* The code assumes R7' and friends are
- * off. Use write_zsext() for these and keep
- * this bit clear.
- */
-
- write_zsreg(&dev->chanA, R15, 0);
-
- /* At this point it looks like the chip is behaving
- */
-
- memcpy(dev->chanA.regs, reg_init, 16);
- memcpy(dev->chanB.regs, reg_init, 16);
-
- return 0;
-}
-
-/**
- * z8530_init - Initialise a Z8530 device
- * @dev: Z8530 device to initialise.
- *
- * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
- * is present, identify the type and then program it to hopefully
- * keep quite and behave. This matters a lot, a Z8530 in the wrong
- * state will sometimes get into stupid modes generating 10Khz
- * interrupt streams and the like.
- *
- * We set the interrupt handler up to discard any events, in case
- * we get them during reset or setp.
- *
- * Return 0 for success, or a negative value indicating the problem
- * in errno form.
- */
-
-int z8530_init(struct z8530_dev *dev)
-{
- unsigned long flags;
- int ret;
-
- /* Set up the chip level lock */
- spin_lock_init(&dev->lock);
- dev->chanA.lock = &dev->lock;
- dev->chanB.lock = &dev->lock;
-
- spin_lock_irqsave(&dev->lock, flags);
- ret = do_z8530_init(dev);
- spin_unlock_irqrestore(&dev->lock, flags);
-
- return ret;
-}
-EXPORT_SYMBOL(z8530_init);
-
-/**
- * z8530_shutdown - Shutdown a Z8530 device
- * @dev: The Z8530 chip to shutdown
- *
- * We set the interrupt handlers to silence any interrupts. We then
- * reset the chip and wait 100uS to be sure the reset completed. Just
- * in case the caller then tries to do stuff.
- *
- * This is called without the lock held
- */
-int z8530_shutdown(struct z8530_dev *dev)
-{
- unsigned long flags;
- /* Reset the chip */
-
- spin_lock_irqsave(&dev->lock, flags);
- dev->chanA.irqs = &z8530_nop;
- dev->chanB.irqs = &z8530_nop;
- write_zsreg(&dev->chanA, R9, 0xC0);
- /* We must lock the udelay, the chip is offlimits here */
- udelay(100);
- spin_unlock_irqrestore(&dev->lock, flags);
- return 0;
-}
-EXPORT_SYMBOL(z8530_shutdown);
-
-/**
- * z8530_channel_load - Load channel data
- * @c: Z8530 channel to configure
- * @rtable: table of register, value pairs
- * FIXME: ioctl to allow user uploaded tables
- *
- * Load a Z8530 channel up from the system data. We use +16 to
- * indicate the "prime" registers. The value 255 terminates the
- * table.
- */
-
-int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
-{
- unsigned long flags;
-
- spin_lock_irqsave(c->lock, flags);
-
- while (*rtable != 255) {
- int reg = *rtable++;
-
- if (reg > 0x0F)
- write_zsreg(c, R15, c->regs[15] | 1);
- write_zsreg(c, reg & 0x0F, *rtable);
- if (reg > 0x0F)
- write_zsreg(c, R15, c->regs[15] & ~1);
- c->regs[reg] = *rtable++;
- }
- c->rx_function = z8530_null_rx;
- c->skb = NULL;
- c->tx_skb = NULL;
- c->tx_next_skb = NULL;
- c->mtu = 1500;
- c->max = 0;
- c->count = 0;
- c->status = read_zsreg(c, R0);
- c->sync = 1;
- write_zsreg(c, R3, c->regs[R3] | RxENABLE);
-
- spin_unlock_irqrestore(c->lock, flags);
- return 0;
-}
-EXPORT_SYMBOL(z8530_channel_load);
-
-/**
- * z8530_tx_begin - Begin packet transmission
- * @c: The Z8530 channel to kick
- *
- * This is the speed sensitive side of transmission. If we are called
- * and no buffer is being transmitted we commence the next buffer. If
- * nothing is queued we idle the sync.
- *
- * Note: We are handling this code path in the interrupt path, keep it
- * fast or bad things will happen.
- *
- * Called with the lock held.
- */
-
-static void z8530_tx_begin(struct z8530_channel *c)
-{
- unsigned long flags;
-
- if (c->tx_skb)
- return;
-
- c->tx_skb = c->tx_next_skb;
- c->tx_next_skb = NULL;
- c->tx_ptr = c->tx_next_ptr;
-
- if (!c->tx_skb) {
- /* Idle on */
- if (c->dma_tx) {
- flags = claim_dma_lock();
- disable_dma(c->txdma);
- /* Check if we crapped out.
- */
- if (get_dma_residue(c->txdma)) {
- c->netdevice->stats.tx_dropped++;
- c->netdevice->stats.tx_fifo_errors++;
- }
- release_dma_lock(flags);
- }
- c->txcount = 0;
- } else {
- c->txcount = c->tx_skb->len;
-
- if (c->dma_tx) {
- /* FIXME. DMA is broken for the original 8530,
- * on the older parts we need to set a flag and
- * wait for a further TX interrupt to fire this
- * stage off
- */
-
- flags = claim_dma_lock();
- disable_dma(c->txdma);
-
- /* These two are needed by the 8530/85C30
- * and must be issued when idling.
- */
- if (c->dev->type != Z85230) {
- write_zsctrl(c, RES_Tx_CRC);
- write_zsctrl(c, RES_EOM_L);
- }
- write_zsreg(c, R10, c->regs[10] & ~ABUNDER);
- clear_dma_ff(c->txdma);
- set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
- set_dma_count(c->txdma, c->txcount);
- enable_dma(c->txdma);
- release_dma_lock(flags);
- write_zsctrl(c, RES_EOM_L);
- write_zsreg(c, R5, c->regs[R5] | TxENAB);
- } else {
- /* ABUNDER off */
- write_zsreg(c, R10, c->regs[10]);
- write_zsctrl(c, RES_Tx_CRC);
-
- while (c->txcount && (read_zsreg(c, R0) & Tx_BUF_EMP)) {
- write_zsreg(c, R8, *c->tx_ptr++);
- c->txcount--;
- }
- }
- }
- /* Since we emptied tx_skb we can ask for more
- */
- netif_wake_queue(c->netdevice);
-}
-
-/**
- * z8530_tx_done - TX complete callback
- * @c: The channel that completed a transmit.
- *
- * This is called when we complete a packet send. We wake the queue,
- * start the next packet going and then free the buffer of the existing
- * packet. This code is fairly timing sensitive.
- *
- * Called with the register lock held.
- */
-
-static void z8530_tx_done(struct z8530_channel *c)
-{
- struct sk_buff *skb;
-
- /* Actually this can happen.*/
- if (!c->tx_skb)
- return;
-
- skb = c->tx_skb;
- c->tx_skb = NULL;
- z8530_tx_begin(c);
- c->netdevice->stats.tx_packets++;
- c->netdevice->stats.tx_bytes += skb->len;
- dev_consume_skb_irq(skb);
-}
-
-/**
- * z8530_null_rx - Discard a packet
- * @c: The channel the packet arrived on
- * @skb: The buffer
- *
- * We point the receive handler at this function when idle. Instead
- * of processing the frames we get to throw them away.
- */
-void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
-{
- dev_kfree_skb_any(skb);
-}
-EXPORT_SYMBOL(z8530_null_rx);
-
-/**
- * z8530_rx_done - Receive completion callback
- * @c: The channel that completed a receive
- *
- * A new packet is complete. Our goal here is to get back into receive
- * mode as fast as possible. On the Z85230 we could change to using
- * ESCC mode, but on the older chips we have no choice. We flip to the
- * new buffer immediately in DMA mode so that the DMA of the next
- * frame can occur while we are copying the previous buffer to an sk_buff
- *
- * Called with the lock held
- */
-static void z8530_rx_done(struct z8530_channel *c)
-{
- struct sk_buff *skb;
- int ct;
-
- /* Is our receive engine in DMA mode
- */
- if (c->rxdma_on) {
- /* Save the ready state and the buffer currently
- * being used as the DMA target
- */
- int ready = c->dma_ready;
- unsigned char *rxb = c->rx_buf[c->dma_num];
- unsigned long flags;
-
- /* Complete this DMA. Necessary to find the length
- */
- flags = claim_dma_lock();
-
- disable_dma(c->rxdma);
- clear_dma_ff(c->rxdma);
- c->rxdma_on = 0;
- ct = c->mtu - get_dma_residue(c->rxdma);
- if (ct < 0)
- ct = 2; /* Shit happens.. */
- c->dma_ready = 0;
-
- /* Normal case: the other slot is free, start the next DMA
- * into it immediately.
- */
-
- if (ready) {
- c->dma_num ^= 1;
- set_dma_mode(c->rxdma, DMA_MODE_READ | 0x10);
- set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
- set_dma_count(c->rxdma, c->mtu);
- c->rxdma_on = 1;
- enable_dma(c->rxdma);
- /* Stop any frames that we missed the head of
- * from passing
- */
- write_zsreg(c, R0, RES_Rx_CRC);
- } else {
- /* Can't occur as we dont reenable the DMA irq until
- * after the flip is done
- */
- netdev_warn(c->netdevice, "DMA flip overrun!\n");
- }
-
- release_dma_lock(flags);
-
- /* Shove the old buffer into an sk_buff. We can't DMA
- * directly into one on a PC - it might be above the 16Mb
- * boundary. Optimisation - we could check to see if we
- * can avoid the copy. Optimisation 2 - make the memcpy
- * a copychecksum.
- */
-
- skb = dev_alloc_skb(ct);
- if (!skb) {
- c->netdevice->stats.rx_dropped++;
- netdev_warn(c->netdevice, "Memory squeeze\n");
- } else {
- skb_put(skb, ct);
- skb_copy_to_linear_data(skb, rxb, ct);
- c->netdevice->stats.rx_packets++;
- c->netdevice->stats.rx_bytes += ct;
- }
- c->dma_ready = 1;
- } else {
- RT_LOCK;
- skb = c->skb;
-
- /* The game we play for non DMA is similar. We want to
- * get the controller set up for the next packet as fast
- * as possible. We potentially only have one byte + the
- * fifo length for this. Thus we want to flip to the new
- * buffer and then mess around copying and allocating
- * things. For the current case it doesn't matter but
- * if you build a system where the sync irq isn't blocked
- * by the kernel IRQ disable then you need only block the
- * sync IRQ for the RT_LOCK area.
- *
- */
- ct = c->count;
-
- c->skb = c->skb2;
- c->count = 0;
- c->max = c->mtu;
- if (c->skb) {
- c->dptr = c->skb->data;
- c->max = c->mtu;
- } else {
- c->count = 0;
- c->max = 0;
- }
- RT_UNLOCK;
-
- c->skb2 = dev_alloc_skb(c->mtu);
- if (c->skb2)
- skb_put(c->skb2, c->mtu);
-
- c->netdevice->stats.rx_packets++;
- c->netdevice->stats.rx_bytes += ct;
- }
- /* If we received a frame we must now process it.
- */
- if (skb) {
- skb_trim(skb, ct);
- c->rx_function(c, skb);
- } else {
- c->netdevice->stats.rx_dropped++;
- netdev_err(c->netdevice, "Lost a frame\n");
- }
-}
-
-/**
- * spans_boundary - Check a packet can be ISA DMA'd
- * @skb: The buffer to check
- *
- * Returns true if the buffer cross a DMA boundary on a PC. The poor
- * thing can only DMA within a 64K block not across the edges of it.
- */
-
-static inline int spans_boundary(struct sk_buff *skb)
-{
- unsigned long a = (unsigned long)skb->data;
-
- a ^= (a + skb->len);
- if (a & 0x00010000) /* If the 64K bit is different.. */
- return 1;
- return 0;
-}
-
-/**
- * z8530_queue_xmit - Queue a packet
- * @c: The channel to use
- * @skb: The packet to kick down the channel
- *
- * Queue a packet for transmission. Because we have rather
- * hard to hit interrupt latencies for the Z85230 per packet
- * even in DMA mode we do the flip to DMA buffer if needed here
- * not in the IRQ.
- *
- * Called from the network code. The lock is not held at this
- * point.
- */
-netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
-{
- unsigned long flags;
-
- netif_stop_queue(c->netdevice);
- if (c->tx_next_skb)
- return NETDEV_TX_BUSY;
-
- /* PC SPECIFIC - DMA limits */
- /* If we will DMA the transmit and its gone over the ISA bus
- * limit, then copy to the flip buffer
- */
-
- if (c->dma_tx &&
- ((unsigned long)(virt_to_bus(skb->data + skb->len)) >=
- 16 * 1024 * 1024 || spans_boundary(skb))) {
- /* Send the flip buffer, and flip the flippy bit.
- * We don't care which is used when just so long as
- * we never use the same buffer twice in a row. Since
- * only one buffer can be going out at a time the other
- * has to be safe.
- */
- c->tx_next_ptr = c->tx_dma_buf[c->tx_dma_used];
- c->tx_dma_used ^= 1; /* Flip temp buffer */
- skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
- } else {
- c->tx_next_ptr = skb->data;
- }
- RT_LOCK;
- c->tx_next_skb = skb;
- RT_UNLOCK;
-
- spin_lock_irqsave(c->lock, flags);
- z8530_tx_begin(c);
- spin_unlock_irqrestore(c->lock, flags);
-
- return NETDEV_TX_OK;
-}
-EXPORT_SYMBOL(z8530_queue_xmit);
-
-/* Module support
- */
-static const char banner[] __initconst =
- KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
-
-static int __init z85230_init_driver(void)
-{
- printk(banner);
- return 0;
-}
-module_init(z85230_init_driver);
-
-static void __exit z85230_cleanup_driver(void)
-{
-}
-module_exit(z85230_cleanup_driver);
-
-MODULE_AUTHOR("Red Hat Inc.");
-MODULE_DESCRIPTION("Z85x30 synchronous driver core");
-MODULE_LICENSE("GPL");
diff --git a/drivers/net/wan/z85230.h b/drivers/net/wan/z85230.h
deleted file mode 100644
index 462cb620bc5d..000000000000
--- a/drivers/net/wan/z85230.h
+++ /dev/null
@@ -1,407 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-/*
- * Description of Z8530 Z85C30 and Z85230 communications chips
- *
- * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
- * Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
- */
-
-#ifndef _Z8530_H
-#define _Z8530_H
-
-#include <linux/tty.h>
-#include <linux/interrupt.h>
-
-/* Conversion routines to/from brg time constants from/to bits
- * per second.
- */
-#define BRG_TO_BPS(brg, freq) ((freq) / 2 / ((brg) + 2))
-#define BPS_TO_BRG(bps, freq) ((((freq) + (bps)) / (2 * (bps))) - 2)
-
-/* The Zilog register set */
-
-#define FLAG 0x7e
-
-/* Write Register 0 */
-#define R0 0 /* Register selects */
-#define R1 1
-#define R2 2
-#define R3 3
-#define R4 4
-#define R5 5
-#define R6 6
-#define R7 7
-#define R8 8
-#define R9 9
-#define R10 10
-#define R11 11
-#define R12 12
-#define R13 13
-#define R14 14
-#define R15 15
-
-#define RPRIME 16 /* Indicate a prime register access on 230 */
-
-#define NULLCODE 0 /* Null Code */
-#define POINT_HIGH 0x8 /* Select upper half of registers */
-#define RES_EXT_INT 0x10 /* Reset Ext. Status Interrupts */
-#define SEND_ABORT 0x18 /* HDLC Abort */
-#define RES_RxINT_FC 0x20 /* Reset RxINT on First Character */
-#define RES_Tx_P 0x28 /* Reset TxINT Pending */
-#define ERR_RES 0x30 /* Error Reset */
-#define RES_H_IUS 0x38 /* Reset highest IUS */
-
-#define RES_Rx_CRC 0x40 /* Reset Rx CRC Checker */
-#define RES_Tx_CRC 0x80 /* Reset Tx CRC Checker */
-#define RES_EOM_L 0xC0 /* Reset EOM latch */
-
-/* Write Register 1 */
-
-#define EXT_INT_ENAB 0x1 /* Ext Int Enable */
-#define TxINT_ENAB 0x2 /* Tx Int Enable */
-#define PAR_SPEC 0x4 /* Parity is special condition */
-
-#define RxINT_DISAB 0 /* Rx Int Disable */
-#define RxINT_FCERR 0x8 /* Rx Int on First Character Only or Error */
-#define INT_ALL_Rx 0x10 /* Int on all Rx Characters or error */
-#define INT_ERR_Rx 0x18 /* Int on error only */
-
-#define WT_RDY_RT 0x20 /* Wait/Ready on R/T */
-#define WT_FN_RDYFN 0x40 /* Wait/FN/Ready FN */
-#define WT_RDY_ENAB 0x80 /* Wait/Ready Enable */
-
-/* Write Register #2 (Interrupt Vector) */
-
-/* Write Register 3 */
-
-#define RxENABLE 0x1 /* Rx Enable */
-#define SYNC_L_INH 0x2 /* Sync Character Load Inhibit */
-#define ADD_SM 0x4 /* Address Search Mode (SDLC) */
-#define RxCRC_ENAB 0x8 /* Rx CRC Enable */
-#define ENT_HM 0x10 /* Enter Hunt Mode */
-#define AUTO_ENAB 0x20 /* Auto Enables */
-#define Rx5 0x0 /* Rx 5 Bits/Character */
-#define Rx7 0x40 /* Rx 7 Bits/Character */
-#define Rx6 0x80 /* Rx 6 Bits/Character */
-#define Rx8 0xc0 /* Rx 8 Bits/Character */
-
-/* Write Register 4 */
-
-#define PAR_ENA 0x1 /* Parity Enable */
-#define PAR_EVEN 0x2 /* Parity Even/Odd* */
-
-#define SYNC_ENAB 0 /* Sync Modes Enable */
-#define SB1 0x4 /* 1 stop bit/char */
-#define SB15 0x8 /* 1.5 stop bits/char */
-#define SB2 0xc /* 2 stop bits/char */
-
-#define MONSYNC 0 /* 8 Bit Sync character */
-#define BISYNC 0x10 /* 16 bit sync character */
-#define SDLC 0x20 /* SDLC Mode (01111110 Sync Flag) */
-#define EXTSYNC 0x30 /* External Sync Mode */
-
-#define X1CLK 0x0 /* x1 clock mode */
-#define X16CLK 0x40 /* x16 clock mode */
-#define X32CLK 0x80 /* x32 clock mode */
-#define X64CLK 0xC0 /* x64 clock mode */
-
-/* Write Register 5 */
-
-#define TxCRC_ENAB 0x1 /* Tx CRC Enable */
-#define RTS 0x2 /* RTS */
-#define SDLC_CRC 0x4 /* SDLC/CRC-16 */
-#define TxENAB 0x8 /* Tx Enable */
-#define SND_BRK 0x10 /* Send Break */
-#define Tx5 0x0 /* Tx 5 bits (or less)/character */
-#define Tx7 0x20 /* Tx 7 bits/character */
-#define Tx6 0x40 /* Tx 6 bits/character */
-#define Tx8 0x60 /* Tx 8 bits/character */
-#define DTR 0x80 /* DTR */
-
-/* Write Register 6 (Sync bits 0-7/SDLC Address Field) */
-
-/* Write Register 7 (Sync bits 8-15/SDLC 01111110) */
-
-/* Write Register 8 (transmit buffer) */
-
-/* Write Register 9 (Master interrupt control) */
-#define VIS 1 /* Vector Includes Status */
-#define NV 2 /* No Vector */
-#define DLC 4 /* Disable Lower Chain */
-#define MIE 8 /* Master Interrupt Enable */
-#define STATHI 0x10 /* Status high */
-#define NORESET 0 /* No reset on write to R9 */
-#define CHRB 0x40 /* Reset channel B */
-#define CHRA 0x80 /* Reset channel A */
-#define FHWRES 0xc0 /* Force hardware reset */
-
-/* Write Register 10 (misc control bits) */
-#define BIT6 1 /* 6 bit/8bit sync */
-#define LOOPMODE 2 /* SDLC Loop mode */
-#define ABUNDER 4 /* Abort/flag on SDLC xmit underrun */
-#define MARKIDLE 8 /* Mark/flag on idle */
-#define GAOP 0x10 /* Go active on poll */
-#define NRZ 0 /* NRZ mode */
-#define NRZI 0x20 /* NRZI mode */
-#define FM1 0x40 /* FM1 (transition = 1) */
-#define FM0 0x60 /* FM0 (transition = 0) */
-#define CRCPS 0x80 /* CRC Preset I/O */
-
-/* Write Register 11 (Clock Mode control) */
-#define TRxCXT 0 /* TRxC = Xtal output */
-#define TRxCTC 1 /* TRxC = Transmit clock */
-#define TRxCBR 2 /* TRxC = BR Generator Output */
-#define TRxCDP 3 /* TRxC = DPLL output */
-#define TRxCOI 4 /* TRxC O/I */
-#define TCRTxCP 0 /* Transmit clock = RTxC pin */
-#define TCTRxCP 8 /* Transmit clock = TRxC pin */
-#define TCBR 0x10 /* Transmit clock = BR Generator output */
-#define TCDPLL 0x18 /* Transmit clock = DPLL output */
-#define RCRTxCP 0 /* Receive clock = RTxC pin */
-#define RCTRxCP 0x20 /* Receive clock = TRxC pin */
-#define RCBR 0x40 /* Receive clock = BR Generator output */
-#define RCDPLL 0x60 /* Receive clock = DPLL output */
-#define RTxCX 0x80 /* RTxC Xtal/No Xtal */
-
-/* Write Register 12 (lower byte of baud rate generator time constant) */
-
-/* Write Register 13 (upper byte of baud rate generator time constant) */
-
-/* Write Register 14 (Misc control bits) */
-#define BRENABL 1 /* Baud rate generator enable */
-#define BRSRC 2 /* Baud rate generator source */
-#define DTRREQ 4 /* DTR/Request function */
-#define AUTOECHO 8 /* Auto Echo */
-#define LOOPBAK 0x10 /* Local loopback */
-#define SEARCH 0x20 /* Enter search mode */
-#define RMC 0x40 /* Reset missing clock */
-#define DISDPLL 0x60 /* Disable DPLL */
-#define SSBR 0x80 /* Set DPLL source = BR generator */
-#define SSRTxC 0xa0 /* Set DPLL source = RTxC */
-#define SFMM 0xc0 /* Set FM mode */
-#define SNRZI 0xe0 /* Set NRZI mode */
-
-/* Write Register 15 (external/status interrupt control) */
-#define PRIME 1 /* R5' etc register access (Z85C30/230 only) */
-#define ZCIE 2 /* Zero count IE */
-#define FIFOE 4 /* Z85230 only */
-#define DCDIE 8 /* DCD IE */
-#define SYNCIE 0x10 /* Sync/hunt IE */
-#define CTSIE 0x20 /* CTS IE */
-#define TxUIE 0x40 /* Tx Underrun/EOM IE */
-#define BRKIE 0x80 /* Break/Abort IE */
-
-
-/* Read Register 0 */
-#define Rx_CH_AV 0x1 /* Rx Character Available */
-#define ZCOUNT 0x2 /* Zero count */
-#define Tx_BUF_EMP 0x4 /* Tx Buffer empty */
-#define DCD 0x8 /* DCD */
-#define SYNC_HUNT 0x10 /* Sync/hunt */
-#define CTS 0x20 /* CTS */
-#define TxEOM 0x40 /* Tx underrun */
-#define BRK_ABRT 0x80 /* Break/Abort */
-
-/* Read Register 1 */
-#define ALL_SNT 0x1 /* All sent */
-/* Residue Data for 8 Rx bits/char programmed */
-#define RES3 0x8 /* 0/3 */
-#define RES4 0x4 /* 0/4 */
-#define RES5 0xc /* 0/5 */
-#define RES6 0x2 /* 0/6 */
-#define RES7 0xa /* 0/7 */
-#define RES8 0x6 /* 0/8 */
-#define RES18 0xe /* 1/8 */
-#define RES28 0x0 /* 2/8 */
-/* Special Rx Condition Interrupts */
-#define PAR_ERR 0x10 /* Parity error */
-#define Rx_OVR 0x20 /* Rx Overrun Error */
-#define CRC_ERR 0x40 /* CRC/Framing Error */
-#define END_FR 0x80 /* End of Frame (SDLC) */
-
-/* Read Register 2 (channel b only) - Interrupt vector */
-
-/* Read Register 3 (interrupt pending register) ch a only */
-#define CHBEXT 0x1 /* Channel B Ext/Stat IP */
-#define CHBTxIP 0x2 /* Channel B Tx IP */
-#define CHBRxIP 0x4 /* Channel B Rx IP */
-#define CHAEXT 0x8 /* Channel A Ext/Stat IP */
-#define CHATxIP 0x10 /* Channel A Tx IP */
-#define CHARxIP 0x20 /* Channel A Rx IP */
-
-/* Read Register 8 (receive data register) */
-
-/* Read Register 10 (misc status bits) */
-#define ONLOOP 2 /* On loop */
-#define LOOPSEND 0x10 /* Loop sending */
-#define CLK2MIS 0x40 /* Two clocks missing */
-#define CLK1MIS 0x80 /* One clock missing */
-
-/* Read Register 12 (lower byte of baud rate generator constant) */
-
-/* Read Register 13 (upper byte of baud rate generator constant) */
-
-/* Read Register 15 (value of WR 15) */
-
-
-/*
- * Interrupt handling functions for this SCC
- */
-
-struct z8530_channel;
-
-struct z8530_irqhandler
-{
- void (*rx)(struct z8530_channel *);
- void (*tx)(struct z8530_channel *);
- void (*status)(struct z8530_channel *);
-};
-
-/*
- * A channel of the Z8530
- */
-
-struct z8530_channel
-{
- struct z8530_irqhandler *irqs; /* IRQ handlers */
- /*
- * Synchronous
- */
- u16 count; /* Buyes received */
- u16 max; /* Most we can receive this frame */
- u16 mtu; /* MTU of the device */
- u8 *dptr; /* Pointer into rx buffer */
- struct sk_buff *skb; /* Buffer dptr points into */
- struct sk_buff *skb2; /* Pending buffer */
- u8 status; /* Current DCD */
- u8 dcdcheck; /* which bit to check for line */
- u8 sync; /* Set if in sync mode */
-
- u8 regs[32]; /* Register map for the chip */
- u8 pendregs[32]; /* Pending register values */
-
- struct sk_buff *tx_skb; /* Buffer being transmitted */
- struct sk_buff *tx_next_skb; /* Next transmit buffer */
- u8 *tx_ptr; /* Byte pointer into the buffer */
- u8 *tx_next_ptr; /* Next pointer to use */
- u8 *tx_dma_buf[2]; /* TX flip buffers for DMA */
- u8 tx_dma_used; /* Flip buffer usage toggler */
- u16 txcount; /* Count of bytes to transmit */
-
- void (*rx_function)(struct z8530_channel *, struct sk_buff *);
-
- /*
- * Sync DMA
- */
-
- u8 rxdma; /* DMA channels */
- u8 txdma;
- u8 rxdma_on; /* DMA active if flag set */
- u8 txdma_on;
- u8 dma_num; /* Buffer we are DMAing into */
- u8 dma_ready; /* Is the other buffer free */
- u8 dma_tx; /* TX is to use DMA */
- u8 *rx_buf[2]; /* The flip buffers */
-
- /*
- * System
- */
-
- struct z8530_dev *dev; /* Z85230 chip instance we are from */
- unsigned long ctrlio; /* I/O ports */
- unsigned long dataio;
-
- /*
- * For PC we encode this way.
- */
-#define Z8530_PORT_SLEEP 0x80000000
-#define Z8530_PORT_OF(x) ((x)&0xFFFF)
-
- u32 rx_overrun; /* Overruns - not done yet */
- u32 rx_crc_err;
-
- /*
- * Bound device pointers
- */
-
- void *private; /* For our owner */
- struct net_device *netdevice; /* Network layer device */
-
- spinlock_t *lock; /* Device lock */
-};
-
-/*
- * Each Z853x0 device.
- */
-
-struct z8530_dev
-{
- char *name; /* Device instance name */
- struct z8530_channel chanA; /* SCC channel A */
- struct z8530_channel chanB; /* SCC channel B */
- int type;
-#define Z8530 0 /* NMOS dinosaur */
-#define Z85C30 1 /* CMOS - better */
-#define Z85230 2 /* CMOS with real FIFO */
- int irq; /* Interrupt for the device */
- int active; /* Soft interrupt enable - the Mac doesn't
- always have a hard disable on its 8530s... */
- spinlock_t lock;
-};
-
-
-/*
- * Functions
- */
-
-extern u8 z8530_dead_port[];
-extern u8 z8530_hdlc_kilostream_85230[];
-extern u8 z8530_hdlc_kilostream[];
-irqreturn_t z8530_interrupt(int, void *);
-void z8530_describe(struct z8530_dev *, char *mapping, unsigned long io);
-int z8530_init(struct z8530_dev *);
-int z8530_shutdown(struct z8530_dev *);
-int z8530_sync_open(struct net_device *, struct z8530_channel *);
-int z8530_sync_close(struct net_device *, struct z8530_channel *);
-int z8530_sync_dma_open(struct net_device *, struct z8530_channel *);
-int z8530_sync_dma_close(struct net_device *, struct z8530_channel *);
-int z8530_sync_txdma_open(struct net_device *, struct z8530_channel *);
-int z8530_sync_txdma_close(struct net_device *, struct z8530_channel *);
-int z8530_channel_load(struct z8530_channel *, u8 *);
-netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb);
-void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb);
-
-
-/*
- * Standard interrupt vector sets
- */
-
-extern struct z8530_irqhandler z8530_sync, z8530_async, z8530_nop;
-
-/*
- * Asynchronous Interfacing
- */
-
-/*
- * The size of the serial xmit buffer is 1 page, or 4096 bytes
- */
-
-#define SERIAL_XMIT_SIZE 4096
-#define WAKEUP_CHARS 256
-
-/*
- * Events are used to schedule things to happen at timer-interrupt
- * time, instead of at rs interrupt time.
- */
-#define RS_EVENT_WRITE_WAKEUP 0
-
-/* Internal flags used only by kernel/chr_drv/serial.c */
-#define ZILOG_INITIALIZED 0x80000000 /* Serial port was initialized */
-#define ZILOG_CALLOUT_ACTIVE 0x40000000 /* Call out device is active */
-#define ZILOG_NORMAL_ACTIVE 0x20000000 /* Normal device is active */
-#define ZILOG_BOOT_AUTOCONF 0x10000000 /* Autoconfigure port on bootup */
-#define ZILOG_CLOSING 0x08000000 /* Serial port is closing */
-#define ZILOG_CTS_FLOW 0x04000000 /* Do CTS flow control */
-#define ZILOG_CHECK_CD 0x02000000 /* i.e., CLOCAL */
-
-#endif /* !(_Z8530_H) */