diff options
author | Jakub Kicinski <kuba@kernel.org> | 2022-04-26 19:54:35 +0200 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2022-04-27 13:22:56 +0200 |
commit | bc6df26f1f785be9b4c10d37e50ac40b46428984 (patch) | |
tree | e4c2b07114fba91352da734347d6d4f9ae5d6ecf | |
parent | net: wan: remove support for COSA and SRP synchronous serial boards (diff) | |
download | linux-bc6df26f1f785be9b4c10d37e50ac40b46428984.tar.xz linux-bc6df26f1f785be9b4c10d37e50ac40b46428984.zip |
net: wan: remove support for Z85230-based devices
Looks like all the changes to this driver had been automated
churn since git era begun. The driver is using virt_to_bus(),
it's just a maintenance burden unlikely to have any users.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
-rw-r--r-- | Documentation/networking/device_drivers/index.rst | 1 | ||||
-rw-r--r-- | Documentation/networking/device_drivers/wan/index.rst | 18 | ||||
-rw-r--r-- | Documentation/networking/device_drivers/wan/z8530book.rst | 256 | ||||
-rw-r--r-- | drivers/net/wan/Kconfig | 22 | ||||
-rw-r--r-- | drivers/net/wan/Makefile | 2 | ||||
-rw-r--r-- | drivers/net/wan/hostess_sv11.c | 336 | ||||
-rw-r--r-- | drivers/net/wan/sealevel.c | 352 | ||||
-rw-r--r-- | drivers/net/wan/z85230.c | 1641 | ||||
-rw-r--r-- | drivers/net/wan/z85230.h | 407 |
9 files changed, 0 insertions, 3035 deletions
diff --git a/Documentation/networking/device_drivers/index.rst b/Documentation/networking/device_drivers/index.rst index 5f5cfdb2a300..601eacaf12f3 100644 --- a/Documentation/networking/device_drivers/index.rst +++ b/Documentation/networking/device_drivers/index.rst @@ -17,7 +17,6 @@ Contents: fddi/index hamradio/index qlogic/index - wan/index wifi/index wwan/index diff --git a/Documentation/networking/device_drivers/wan/index.rst b/Documentation/networking/device_drivers/wan/index.rst deleted file mode 100644 index 9d9ae94f00b4..000000000000 --- a/Documentation/networking/device_drivers/wan/index.rst +++ /dev/null @@ -1,18 +0,0 @@ -.. SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) - -Classic WAN Device Drivers -========================== - -Contents: - -.. toctree:: - :maxdepth: 2 - - z8530book - -.. only:: subproject and html - - Indices - ======= - - * :ref:`genindex` diff --git a/Documentation/networking/device_drivers/wan/z8530book.rst b/Documentation/networking/device_drivers/wan/z8530book.rst deleted file mode 100644 index fea2c40e7973..000000000000 --- a/Documentation/networking/device_drivers/wan/z8530book.rst +++ /dev/null @@ -1,256 +0,0 @@ -======================= -Z8530 Programming Guide -======================= - -:Author: Alan Cox - -Introduction -============ - -The Z85x30 family synchronous/asynchronous controller chips are used on -a large number of cheap network interface cards. The kernel provides a -core interface layer that is designed to make it easy to provide WAN -services using this chip. - -The current driver only support synchronous operation. Merging the -asynchronous driver support into this code to allow any Z85x30 device to -be used as both a tty interface and as a synchronous controller is a -project for Linux post the 2.4 release - -Driver Modes -============ - -The Z85230 driver layer can drive Z8530, Z85C30 and Z85230 devices in -three different modes. Each mode can be applied to an individual channel -on the chip (each chip has two channels). - -The PIO synchronous mode supports the most common Z8530 wiring. Here the -chip is interface to the I/O and interrupt facilities of the host -machine but not to the DMA subsystem. When running PIO the Z8530 has -extremely tight timing requirements. Doing high speeds, even with a -Z85230 will be tricky. Typically you should expect to achieve at best -9600 baud with a Z8C530 and 64Kbits with a Z85230. - -The DMA mode supports the chip when it is configured to use dual DMA -channels on an ISA bus. The better cards tend to support this mode of -operation for a single channel. With DMA running the Z85230 tops out -when it starts to hit ISA DMA constraints at about 512Kbits. It is worth -noting here that many PC machines hang or crash when the chip is driven -fast enough to hold the ISA bus solid. - -Transmit DMA mode uses a single DMA channel. The DMA channel is used for -transmission as the transmit FIFO is smaller than the receive FIFO. it -gives better performance than pure PIO mode but is nowhere near as ideal -as pure DMA mode. - -Using the Z85230 driver -======================= - -The Z85230 driver provides the back end interface to your board. To -configure a Z8530 interface you need to detect the board and to identify -its ports and interrupt resources. It is also your problem to verify the -resources are available. - -Having identified the chip you need to fill in a struct z8530_dev, -which describes each chip. This object must exist until you finally -shutdown the board. Firstly zero the active field. This ensures nothing -goes off without you intending it. The irq field should be set to the -interrupt number of the chip. (Each chip has a single interrupt source -rather than each channel). You are responsible for allocating the -interrupt line. The interrupt handler should be set to -:c:func:`z8530_interrupt()`. The device id should be set to the -z8530_dev structure pointer. Whether the interrupt can be shared or not -is board dependent, and up to you to initialise. - -The structure holds two channel structures. Initialise chanA.ctrlio and -chanA.dataio with the address of the control and data ports. You can or -this with Z8530_PORT_SLEEP to indicate your interface needs the 5uS -delay for chip settling done in software. The PORT_SLEEP option is -architecture specific. Other flags may become available on future -platforms, eg for MMIO. Initialise the chanA.irqs to &z8530_nop to -start the chip up as disabled and discarding interrupt events. This -ensures that stray interrupts will be mopped up and not hang the bus. -Set chanA.dev to point to the device structure itself. The private and -name field you may use as you wish. The private field is unused by the -Z85230 layer. The name is used for error reporting and it may thus make -sense to make it match the network name. - -Repeat the same operation with the B channel if your chip has both -channels wired to something useful. This isn't always the case. If it is -not wired then the I/O values do not matter, but you must initialise -chanB.dev. - -If your board has DMA facilities then initialise the txdma and rxdma -fields for the relevant channels. You must also allocate the ISA DMA -channels and do any necessary board level initialisation to configure -them. The low level driver will do the Z8530 and DMA controller -programming but not board specific magic. - -Having initialised the device you can then call -:c:func:`z8530_init()`. This will probe the chip and reset it into -a known state. An identification sequence is then run to identify the -chip type. If the checks fail to pass the function returns a non zero -error code. Typically this indicates that the port given is not valid. -After this call the type field of the z8530_dev structure is -initialised to either Z8530, Z85C30 or Z85230 according to the chip -found. - -Once you have called z8530_init you can also make use of the utility -function :c:func:`z8530_describe()`. This provides a consistent -reporting format for the Z8530 devices, and allows all the drivers to -provide consistent reporting. - -Attaching Network Interfaces -============================ - -If you wish to use the network interface facilities of the driver, then -you need to attach a network device to each channel that is present and -in use. In addition to use the generic HDLC you need to follow some -additional plumbing rules. They may seem complex but a look at the -example hostess_sv11 driver should reassure you. - -The network device used for each channel should be pointed to by the -netdevice field of each channel. The hdlc-> priv field of the network -device points to your private data - you will need to be able to find -your private data from this. - -The way most drivers approach this particular problem is to create a -structure holding the Z8530 device definition and put that into the -private field of the network device. The network device fields of the -channels then point back to the network devices. - -If you wish to use the generic HDLC then you need to register the HDLC -device. - -Before you register your network device you will also need to provide -suitable handlers for most of the network device callbacks. See the -network device documentation for more details on this. - -Configuring And Activating The Port -=================================== - -The Z85230 driver provides helper functions and tables to load the port -registers on the Z8530 chips. When programming the register settings for -a channel be aware that the documentation recommends initialisation -orders. Strange things happen when these are not followed. - -:c:func:`z8530_channel_load()` takes an array of pairs of -initialisation values in an array of u8 type. The first value is the -Z8530 register number. Add 16 to indicate the alternate register bank on -the later chips. The array is terminated by a 255. - -The driver provides a pair of public tables. The z8530_hdlc_kilostream -table is for the UK 'Kilostream' service and also happens to cover most -other end host configurations. The z8530_hdlc_kilostream_85230 table -is the same configuration using the enhancements of the 85230 chip. The -configuration loaded is standard NRZ encoded synchronous data with HDLC -bitstuffing. All of the timing is taken from the other end of the link. - -When writing your own tables be aware that the driver internally tracks -register values. It may need to reload values. You should therefore be -sure to set registers 1-7, 9-11, 14 and 15 in all configurations. Where -the register settings depend on DMA selection the driver will update the -bits itself when you open or close. Loading a new table with the -interface open is not recommended. - -There are three standard configurations supported by the core code. In -PIO mode the interface is programmed up to use interrupt driven PIO. -This places high demands on the host processor to avoid latency. The -driver is written to take account of latency issues but it cannot avoid -latencies caused by other drivers, notably IDE in PIO mode. Because the -drivers allocate buffers you must also prevent MTU changes while the -port is open. - -Once the port is open it will call the rx_function of each channel -whenever a completed packet arrived. This is invoked from interrupt -context and passes you the channel and a network buffer (struct -sk_buff) holding the data. The data includes the CRC bytes so most -users will want to trim the last two bytes before processing the data. -This function is very timing critical. When you wish to simply discard -data the support code provides the function -:c:func:`z8530_null_rx()` to discard the data. - -To active PIO mode sending and receiving the ``z8530_sync_open`` is called. -This expects to be passed the network device and the channel. Typically -this is called from your network device open callback. On a failure a -non zero error status is returned. -The :c:func:`z8530_sync_close()` function shuts down a PIO -channel. This must be done before the channel is opened again and before -the driver shuts down and unloads. - -The ideal mode of operation is dual channel DMA mode. Here the kernel -driver will configure the board for DMA in both directions. The driver -also handles ISA DMA issues such as controller programming and the -memory range limit for you. This mode is activated by calling the -:c:func:`z8530_sync_dma_open()` function. On failure a non zero -error value is returned. Once this mode is activated it can be shut down -by calling the :c:func:`z8530_sync_dma_close()`. You must call -the close function matching the open mode you used. - -The final supported mode uses a single DMA channel to drive the transmit -side. As the Z85C30 has a larger FIFO on the receive channel this tends -to increase the maximum speed a little. This is activated by calling the -``z8530_sync_txdma_open``. This returns a non zero error code on failure. The -:c:func:`z8530_sync_txdma_close()` function closes down the Z8530 -interface from this mode. - -Network Layer Functions -======================= - -The Z8530 layer provides functions to queue packets for transmission. -The driver internally buffers the frame currently being transmitted and -one further frame (in order to keep back to back transmission running). -Any further buffering is up to the caller. - -The function :c:func:`z8530_queue_xmit()` takes a network buffer -in sk_buff format and queues it for transmission. The caller must -provide the entire packet with the exception of the bitstuffing and CRC. -This is normally done by the caller via the generic HDLC interface -layer. It returns 0 if the buffer has been queued and non zero values -for queue full. If the function accepts the buffer it becomes property -of the Z8530 layer and the caller should not free it. - -The function :c:func:`z8530_get_stats()` returns a pointer to an -internally maintained per interface statistics block. This provides most -of the interface code needed to implement the network layer get_stats -callback. - -Porting The Z8530 Driver -======================== - -The Z8530 driver is written to be portable. In DMA mode it makes -assumptions about the use of ISA DMA. These are probably warranted in -most cases as the Z85230 in particular was designed to glue to PC type -machines. The PIO mode makes no real assumptions. - -Should you need to retarget the Z8530 driver to another architecture the -only code that should need changing are the port I/O functions. At the -moment these assume PC I/O port accesses. This may not be appropriate -for all platforms. Replacing :c:func:`z8530_read_port()` and -``z8530_write_port`` is intended to be all that is required to port -this driver layer. - -Known Bugs And Assumptions -========================== - -Interrupt Locking - The locking in the driver is done via the global cli/sti lock. This - makes for relatively poor SMP performance. Switching this to use a - per device spin lock would probably materially improve performance. - -Occasional Failures - We have reports of occasional failures when run for very long - periods of time and the driver starts to receive junk frames. At the - moment the cause of this is not clear. - -Public Functions Provided -========================= - -.. kernel-doc:: drivers/net/wan/z85230.c - :export: - -Internal Functions -================== - -.. kernel-doc:: drivers/net/wan/z85230.c - :internal: diff --git a/drivers/net/wan/Kconfig b/drivers/net/wan/Kconfig index 12c5b6c67ab2..dcb069dde66b 100644 --- a/drivers/net/wan/Kconfig +++ b/drivers/net/wan/Kconfig @@ -23,28 +23,6 @@ menuconfig WAN if WAN -# There is no way to detect a comtrol sv11 - force it modular for now. -config HOSTESS_SV11 - tristate "Comtrol Hostess SV-11 support" - depends on ISA && m && ISA_DMA_API && INET && HDLC && VIRT_TO_BUS - help - Driver for Comtrol Hostess SV-11 network card which - operates on low speed synchronous serial links at up to - 256Kbps, supporting PPP and Cisco HDLC. - - The driver will be compiled as a module: the - module will be called hostess_sv11. - -# There is no way to detect a Sealevel board. Force it modular -config SEALEVEL_4021 - tristate "Sealevel Systems 4021 support" - depends on ISA && m && ISA_DMA_API && INET && HDLC && VIRT_TO_BUS - help - This is a driver for the Sealevel Systems ACB 56 serial I/O adapter. - - The driver will be compiled as a module: the - module will be called sealevel. - # Generic HDLC config HDLC tristate "Generic HDLC layer" diff --git a/drivers/net/wan/Makefile b/drivers/net/wan/Makefile index 901a094c061c..5bec8fae47f8 100644 --- a/drivers/net/wan/Makefile +++ b/drivers/net/wan/Makefile @@ -14,8 +14,6 @@ obj-$(CONFIG_HDLC_FR) += hdlc_fr.o obj-$(CONFIG_HDLC_PPP) += hdlc_ppp.o obj-$(CONFIG_HDLC_X25) += hdlc_x25.o -obj-$(CONFIG_HOSTESS_SV11) += z85230.o hostess_sv11.o -obj-$(CONFIG_SEALEVEL_4021) += z85230.o sealevel.o obj-$(CONFIG_FARSYNC) += farsync.o obj-$(CONFIG_LAPBETHER) += lapbether.o diff --git a/drivers/net/wan/hostess_sv11.c b/drivers/net/wan/hostess_sv11.c deleted file mode 100644 index e985e54ba75d..000000000000 --- a/drivers/net/wan/hostess_sv11.c +++ /dev/null @@ -1,336 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0-only -/* Comtrol SV11 card driver - * - * This is a slightly odd Z85230 synchronous driver. All you need to - * know basically is - * - * Its a genuine Z85230 - * - * It supports DMA using two DMA channels in SYNC mode. The driver doesn't - * use these facilities - * - * The control port is at io+1, the data at io+3 and turning off the DMA - * is done by writing 0 to io+4 - * - * The hardware does the bus handling to avoid the need for delays between - * touching control registers. - * - * Port B isn't wired (why - beats me) - * - * Generic HDLC port Copyright (C) 2008 Krzysztof Halasa <khc@pm.waw.pl> - */ - -#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt - -#include <linux/module.h> -#include <linux/kernel.h> -#include <linux/mm.h> -#include <linux/net.h> -#include <linux/skbuff.h> -#include <linux/netdevice.h> -#include <linux/if_arp.h> -#include <linux/delay.h> -#include <linux/hdlc.h> -#include <linux/ioport.h> -#include <linux/slab.h> -#include <net/arp.h> - -#include <asm/irq.h> -#include <asm/io.h> -#include <asm/dma.h> -#include <asm/byteorder.h> -#include "z85230.h" - -static int dma; - -/* Network driver support routines - */ - -static inline struct z8530_dev *dev_to_sv(struct net_device *dev) -{ - return (struct z8530_dev *)dev_to_hdlc(dev)->priv; -} - -/* Frame receive. Simple for our card as we do HDLC and there - * is no funny garbage involved - */ - -static void hostess_input(struct z8530_channel *c, struct sk_buff *skb) -{ - /* Drop the CRC - it's not a good idea to try and negotiate it ;) */ - skb_trim(skb, skb->len - 2); - skb->protocol = hdlc_type_trans(skb, c->netdevice); - skb_reset_mac_header(skb); - skb->dev = c->netdevice; - /* Send it to the PPP layer. We don't have time to process - * it right now. - */ - netif_rx(skb); -} - -/* We've been placed in the UP state - */ - -static int hostess_open(struct net_device *d) -{ - struct z8530_dev *sv11 = dev_to_sv(d); - int err = -1; - - /* Link layer up - */ - switch (dma) { - case 0: - err = z8530_sync_open(d, &sv11->chanA); - break; - case 1: - err = z8530_sync_dma_open(d, &sv11->chanA); - break; - case 2: - err = z8530_sync_txdma_open(d, &sv11->chanA); - break; - } - - if (err) - return err; - - err = hdlc_open(d); - if (err) { - switch (dma) { - case 0: - z8530_sync_close(d, &sv11->chanA); - break; - case 1: - z8530_sync_dma_close(d, &sv11->chanA); - break; - case 2: - z8530_sync_txdma_close(d, &sv11->chanA); - break; - } - return err; - } - sv11->chanA.rx_function = hostess_input; - - /* - * Go go go - */ - - netif_start_queue(d); - return 0; -} - -static int hostess_close(struct net_device *d) -{ - struct z8530_dev *sv11 = dev_to_sv(d); - /* Discard new frames - */ - sv11->chanA.rx_function = z8530_null_rx; - - hdlc_close(d); - netif_stop_queue(d); - - switch (dma) { - case 0: - z8530_sync_close(d, &sv11->chanA); - break; - case 1: - z8530_sync_dma_close(d, &sv11->chanA); - break; - case 2: - z8530_sync_txdma_close(d, &sv11->chanA); - break; - } - return 0; -} - -/* Passed network frames, fire them downwind. - */ - -static netdev_tx_t hostess_queue_xmit(struct sk_buff *skb, - struct net_device *d) -{ - return z8530_queue_xmit(&dev_to_sv(d)->chanA, skb); -} - -static int hostess_attach(struct net_device *dev, unsigned short encoding, - unsigned short parity) -{ - if (encoding == ENCODING_NRZ && parity == PARITY_CRC16_PR1_CCITT) - return 0; - return -EINVAL; -} - -/* Description block for a Comtrol Hostess SV11 card - */ - -static const struct net_device_ops hostess_ops = { - .ndo_open = hostess_open, - .ndo_stop = hostess_close, - .ndo_start_xmit = hdlc_start_xmit, - .ndo_siocwandev = hdlc_ioctl, -}; - -static struct z8530_dev *sv11_init(int iobase, int irq) -{ - struct z8530_dev *sv; - struct net_device *netdev; - /* Get the needed I/O space - */ - - if (!request_region(iobase, 8, "Comtrol SV11")) { - pr_warn("I/O 0x%X already in use\n", iobase); - return NULL; - } - - sv = kzalloc(sizeof(struct z8530_dev), GFP_KERNEL); - if (!sv) - goto err_kzalloc; - - /* Stuff in the I/O addressing - */ - - sv->active = 0; - - sv->chanA.ctrlio = iobase + 1; - sv->chanA.dataio = iobase + 3; - sv->chanB.ctrlio = -1; - sv->chanB.dataio = -1; - sv->chanA.irqs = &z8530_nop; - sv->chanB.irqs = &z8530_nop; - - outb(0, iobase + 4); /* DMA off */ - - /* We want a fast IRQ for this device. Actually we'd like an even faster - * IRQ ;) - This is one driver RtLinux is made for - */ - - if (request_irq(irq, z8530_interrupt, 0, - "Hostess SV11", sv) < 0) { - pr_warn("IRQ %d already in use\n", irq); - goto err_irq; - } - - sv->irq = irq; - sv->chanA.private = sv; - sv->chanA.dev = sv; - sv->chanB.dev = sv; - - if (dma) { - /* You can have DMA off or 1 and 3 thats the lot - * on the Comtrol. - */ - sv->chanA.txdma = 3; - sv->chanA.rxdma = 1; - outb(0x03 | 0x08, iobase + 4); /* DMA on */ - if (request_dma(sv->chanA.txdma, "Hostess SV/11 (TX)")) - goto err_txdma; - - if (dma == 1) - if (request_dma(sv->chanA.rxdma, "Hostess SV/11 (RX)")) - goto err_rxdma; - } - - /* Kill our private IRQ line the hostess can end up chattering - * until the configuration is set - */ - disable_irq(irq); - - /* Begin normal initialise - */ - - if (z8530_init(sv)) { - pr_err("Z8530 series device not found\n"); - enable_irq(irq); - goto free_dma; - } - z8530_channel_load(&sv->chanB, z8530_dead_port); - if (sv->type == Z85C30) - z8530_channel_load(&sv->chanA, z8530_hdlc_kilostream); - else - z8530_channel_load(&sv->chanA, z8530_hdlc_kilostream_85230); - - enable_irq(irq); - - /* Now we can take the IRQ - */ - - sv->chanA.netdevice = netdev = alloc_hdlcdev(sv); - if (!netdev) - goto free_dma; - - dev_to_hdlc(netdev)->attach = hostess_attach; - dev_to_hdlc(netdev)->xmit = hostess_queue_xmit; - netdev->netdev_ops = &hostess_ops; - netdev->base_addr = iobase; - netdev->irq = irq; - - if (register_hdlc_device(netdev)) { - pr_err("unable to register HDLC device\n"); - free_netdev(netdev); - goto free_dma; - } - - z8530_describe(sv, "I/O", iobase); - sv->active = 1; - return sv; - -free_dma: - if (dma == 1) - free_dma(sv->chanA.rxdma); -err_rxdma: - if (dma) - free_dma(sv->chanA.txdma); -err_txdma: - free_irq(irq, sv); -err_irq: - kfree(sv); -err_kzalloc: - release_region(iobase, 8); - return NULL; -} - -static void sv11_shutdown(struct z8530_dev *dev) -{ - unregister_hdlc_device(dev->chanA.netdevice); - z8530_shutdown(dev); - free_irq(dev->irq, dev); - if (dma) { - if (dma == 1) - free_dma(dev->chanA.rxdma); - free_dma(dev->chanA.txdma); - } - release_region(dev->chanA.ctrlio - 1, 8); - free_netdev(dev->chanA.netdevice); - kfree(dev); -} - -static int io = 0x200; -static int irq = 9; - -module_param_hw(io, int, ioport, 0); -MODULE_PARM_DESC(io, "The I/O base of the Comtrol Hostess SV11 card"); -module_param_hw(dma, int, dma, 0); -MODULE_PARM_DESC(dma, "Set this to 1 to use DMA1/DMA3 for TX/RX"); -module_param_hw(irq, int, irq, 0); -MODULE_PARM_DESC(irq, "The interrupt line setting for the Comtrol Hostess SV11 card"); - -MODULE_AUTHOR("Alan Cox"); -MODULE_LICENSE("GPL"); -MODULE_DESCRIPTION("Modular driver for the Comtrol Hostess SV11"); - -static struct z8530_dev *sv11_unit; - -static int sv11_module_init(void) -{ - sv11_unit = sv11_init(io, irq); - if (!sv11_unit) - return -ENODEV; - return 0; -} -module_init(sv11_module_init); - -static void sv11_module_cleanup(void) -{ - if (sv11_unit) - sv11_shutdown(sv11_unit); -} -module_exit(sv11_module_cleanup); diff --git a/drivers/net/wan/sealevel.c b/drivers/net/wan/sealevel.c deleted file mode 100644 index eddd20aab691..000000000000 --- a/drivers/net/wan/sealevel.c +++ /dev/null @@ -1,352 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0-or-later -/* Sealevel Systems 4021 driver. - * - * (c) Copyright 1999, 2001 Alan Cox - * (c) Copyright 2001 Red Hat Inc. - * Generic HDLC port Copyright (C) 2008 Krzysztof Halasa <khc@pm.waw.pl> - */ - -#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt - -#include <linux/module.h> -#include <linux/kernel.h> -#include <linux/mm.h> -#include <linux/net.h> -#include <linux/skbuff.h> -#include <linux/netdevice.h> -#include <linux/if_arp.h> -#include <linux/delay.h> -#include <linux/hdlc.h> -#include <linux/ioport.h> -#include <linux/init.h> -#include <linux/slab.h> -#include <net/arp.h> - -#include <asm/irq.h> -#include <asm/io.h> -#include <asm/dma.h> -#include <asm/byteorder.h> -#include "z85230.h" - -struct slvl_device { - struct z8530_channel *chan; - int channel; -}; - -struct slvl_board { - struct slvl_device dev[2]; - struct z8530_dev board; - int iobase; -}; - - /* Network driver support routines */ - -static inline struct slvl_device *dev_to_chan(struct net_device *dev) -{ - return (struct slvl_device *)dev_to_hdlc(dev)->priv; -} - -/* Frame receive. Simple for our card as we do HDLC and there - * is no funny garbage involved - */ - -static void sealevel_input(struct z8530_channel *c, struct sk_buff *skb) -{ - /* Drop the CRC - it's not a good idea to try and negotiate it ;) */ - skb_trim(skb, skb->len - 2); - skb->protocol = hdlc_type_trans(skb, c->netdevice); - skb_reset_mac_header(skb); - skb->dev = c->netdevice; - netif_rx(skb); -} - - /* We've been placed in the UP state */ - -static int sealevel_open(struct net_device *d) -{ - struct slvl_device *slvl = dev_to_chan(d); - int err = -1; - int unit = slvl->channel; - - /* Link layer up. */ - - switch (unit) { - case 0: - err = z8530_sync_dma_open(d, slvl->chan); - break; - case 1: - err = z8530_sync_open(d, slvl->chan); - break; - } - - if (err) - return err; - - err = hdlc_open(d); - if (err) { - switch (unit) { - case 0: - z8530_sync_dma_close(d, slvl->chan); - break; - case 1: - z8530_sync_close(d, slvl->chan); - break; - } - return err; - } - - slvl->chan->rx_function = sealevel_input; - - netif_start_queue(d); - return 0; -} - -static int sealevel_close(struct net_device *d) -{ - struct slvl_device *slvl = dev_to_chan(d); - int unit = slvl->channel; - - /* Discard new frames */ - - slvl->chan->rx_function = z8530_null_rx; - - hdlc_close(d); - netif_stop_queue(d); - - switch (unit) { - case 0: - z8530_sync_dma_close(d, slvl->chan); - break; - case 1: - z8530_sync_close(d, slvl->chan); - break; - } - return 0; -} - -/* Passed network frames, fire them downwind. */ - -static netdev_tx_t sealevel_queue_xmit(struct sk_buff *skb, - struct net_device *d) -{ - return z8530_queue_xmit(dev_to_chan(d)->chan, skb); -} - -static int sealevel_attach(struct net_device *dev, unsigned short encoding, - unsigned short parity) -{ - if (encoding == ENCODING_NRZ && parity == PARITY_CRC16_PR1_CCITT) - return 0; - return -EINVAL; -} - -static const struct net_device_ops sealevel_ops = { - .ndo_open = sealevel_open, - .ndo_stop = sealevel_close, - .ndo_start_xmit = hdlc_start_xmit, - .ndo_siocwandev = hdlc_ioctl, -}; - -static int slvl_setup(struct slvl_device *sv, int iobase, int irq) -{ - struct net_device *dev = alloc_hdlcdev(sv); - - if (!dev) - return -1; - - dev_to_hdlc(dev)->attach = sealevel_attach; - dev_to_hdlc(dev)->xmit = sealevel_queue_xmit; - dev->netdev_ops = &sealevel_ops; - dev->base_addr = iobase; - dev->irq = irq; - - if (register_hdlc_device(dev)) { - pr_err("unable to register HDLC device\n"); - free_netdev(dev); - return -1; - } - - sv->chan->netdevice = dev; - return 0; -} - -/* Allocate and setup Sealevel board. */ - -static __init struct slvl_board *slvl_init(int iobase, int irq, - int txdma, int rxdma, int slow) -{ - struct z8530_dev *dev; - struct slvl_board *b; - - /* Get the needed I/O space */ - - if (!request_region(iobase, 8, "Sealevel 4021")) { - pr_warn("I/O 0x%X already in use\n", iobase); - return NULL; - } - - b = kzalloc(sizeof(struct slvl_board), GFP_KERNEL); - if (!b) - goto err_kzalloc; - - b->dev[0].chan = &b->board.chanA; - b->dev[0].channel = 0; - - b->dev[1].chan = &b->board.chanB; - b->dev[1].channel = 1; - - dev = &b->board; - - /* Stuff in the I/O addressing */ - - dev->active = 0; - - b->iobase = iobase; - - /* Select 8530 delays for the old board */ - - if (slow) - iobase |= Z8530_PORT_SLEEP; - - dev->chanA.ctrlio = iobase + 1; - dev->chanA.dataio = iobase; - dev->chanB.ctrlio = iobase + 3; - dev->chanB.dataio = iobase + 2; - - dev->chanA.irqs = &z8530_nop; - dev->chanB.irqs = &z8530_nop; - - /* Assert DTR enable DMA */ - - outb(3 | (1 << 7), b->iobase + 4); - - /* We want a fast IRQ for this device. Actually we'd like an even faster - * IRQ ;) - This is one driver RtLinux is made for - */ - - if (request_irq(irq, z8530_interrupt, 0, - "SeaLevel", dev) < 0) { - pr_warn("IRQ %d already in use\n", irq); - goto err_request_irq; - } - - dev->irq = irq; - dev->chanA.private = &b->dev[0]; - dev->chanB.private = &b->dev[1]; - dev->chanA.dev = dev; - dev->chanB.dev = dev; - - dev->chanA.txdma = 3; - dev->chanA.rxdma = 1; - if (request_dma(dev->chanA.txdma, "SeaLevel (TX)")) - goto err_dma_tx; - - if (request_dma(dev->chanA.rxdma, "SeaLevel (RX)")) - goto err_dma_rx; - - disable_irq(irq); - - /* Begin normal initialise */ - - if (z8530_init(dev) != 0) { - pr_err("Z8530 series device not found\n"); - enable_irq(irq); - goto free_hw; - } - if (dev->type == Z85C30) { - z8530_channel_load(&dev->chanA, z8530_hdlc_kilostream); - z8530_channel_load(&dev->chanB, z8530_hdlc_kilostream); - } else { - z8530_channel_load(&dev->chanA, z8530_hdlc_kilostream_85230); - z8530_channel_load(&dev->chanB, z8530_hdlc_kilostream_85230); - } - - /* Now we can take the IRQ */ - - enable_irq(irq); - - if (slvl_setup(&b->dev[0], iobase, irq)) - goto free_hw; - if (slvl_setup(&b->dev[1], iobase, irq)) - goto free_netdev0; - - z8530_describe(dev, "I/O", iobase); - dev->active = 1; - return b; - -free_netdev0: - unregister_hdlc_device(b->dev[0].chan->netdevice); - free_netdev(b->dev[0].chan->netdevice); -free_hw: - free_dma(dev->chanA.rxdma); -err_dma_rx: - free_dma(dev->chanA.txdma); -err_dma_tx: - free_irq(irq, dev); -err_request_irq: - kfree(b); -err_kzalloc: - release_region(iobase, 8); - return NULL; -} - -static void __exit slvl_shutdown(struct slvl_board *b) -{ - int u; - - z8530_shutdown(&b->board); - - for (u = 0; u < 2; u++) { - struct net_device *d = b->dev[u].chan->netdevice; - - unregister_hdlc_device(d); - free_netdev(d); - } - - free_irq(b->board.irq, &b->board); - free_dma(b->board.chanA.rxdma); - free_dma(b->board.chanA.txdma); - /* DMA off on the card, drop DTR */ - outb(0, b->iobase); - release_region(b->iobase, 8); - kfree(b); -} - -static int io = 0x238; -static int txdma = 1; -static int rxdma = 3; -static int irq = 5; -static bool slow; - -module_param_hw(io, int, ioport, 0); -MODULE_PARM_DESC(io, "The I/O base of the Sealevel card"); -module_param_hw(txdma, int, dma, 0); -MODULE_PARM_DESC(txdma, "Transmit DMA channel"); -module_param_hw(rxdma, int, dma, 0); -MODULE_PARM_DESC(rxdma, "Receive DMA channel"); -module_param_hw(irq, int, irq, 0); -MODULE_PARM_DESC(irq, "The interrupt line setting for the SeaLevel card"); -module_param(slow, bool, 0); -MODULE_PARM_DESC(slow, "Set this for an older Sealevel card such as the 4012"); - -MODULE_AUTHOR("Alan Cox"); -MODULE_LICENSE("GPL"); -MODULE_DESCRIPTION("Modular driver for the SeaLevel 4021"); - -static struct slvl_board *slvl_unit; - -static int __init slvl_init_module(void) -{ - slvl_unit = slvl_init(io, irq, txdma, rxdma, slow); - - return slvl_unit ? 0 : -ENODEV; -} - -static void __exit slvl_cleanup_module(void) -{ - if (slvl_unit) - slvl_shutdown(slvl_unit); -} - -module_init(slvl_init_module); -module_exit(slvl_cleanup_module); diff --git a/drivers/net/wan/z85230.c b/drivers/net/wan/z85230.c deleted file mode 100644 index 982a03488a00..000000000000 --- a/drivers/net/wan/z85230.c +++ /dev/null @@ -1,1641 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0-or-later -/* (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk> - * (c) Copyright 2000, 2001 Red Hat Inc - * - * Development of this driver was funded by Equiinet Ltd - * http://www.equiinet.com - * - * ChangeLog: - * - * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the - * unification of all the Z85x30 asynchronous drivers for real. - * - * DMA now uses get_free_page as kmalloc buffers may span a 64K - * boundary. - * - * Modified for SMP safety and SMP locking by Alan Cox - * <alan@lxorguk.ukuu.org.uk> - * - * Performance - * - * Z85230: - * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud - * X.25 is not unrealistic on all machines. DMA mode can in theory - * handle T1/E1 quite nicely. In practice the limit seems to be about - * 512Kbit->1Mbit depending on motherboard. - * - * Z85C30: - * 64K will take DMA, 9600 baud X.25 should be ok. - * - * Z8530: - * Synchronous mode without DMA is unlikely to pass about 2400 baud. - */ - -#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt - -#include <linux/module.h> -#include <linux/kernel.h> -#include <linux/mm.h> -#include <linux/net.h> -#include <linux/skbuff.h> -#include <linux/netdevice.h> -#include <linux/if_arp.h> -#include <linux/delay.h> -#include <linux/hdlc.h> -#include <linux/ioport.h> -#include <linux/init.h> -#include <linux/gfp.h> -#include <asm/dma.h> -#include <asm/io.h> -#define RT_LOCK -#define RT_UNLOCK -#include <linux/spinlock.h> - -#include "z85230.h" - -/** - * z8530_read_port - Architecture specific interface function - * @p: port to read - * - * Provided port access methods. The Comtrol SV11 requires no delays - * between accesses and uses PC I/O. Some drivers may need a 5uS delay - * - * In the longer term this should become an architecture specific - * section so that this can become a generic driver interface for all - * platforms. For now we only handle PC I/O ports with or without the - * dread 5uS sanity delay. - * - * The caller must hold sufficient locks to avoid violating the horrible - * 5uS delay rule. - */ - -static inline int z8530_read_port(unsigned long p) -{ - u8 r = inb(Z8530_PORT_OF(p)); - - if (p & Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */ - udelay(5); - return r; -} - -/** - * z8530_write_port - Architecture specific interface function - * @p: port to write - * @d: value to write - * - * Write a value to a port with delays if need be. Note that the - * caller must hold locks to avoid read/writes from other contexts - * violating the 5uS rule - * - * In the longer term this should become an architecture specific - * section so that this can become a generic driver interface for all - * platforms. For now we only handle PC I/O ports with or without the - * dread 5uS sanity delay. - */ - -static inline void z8530_write_port(unsigned long p, u8 d) -{ - outb(d, Z8530_PORT_OF(p)); - if (p & Z8530_PORT_SLEEP) - udelay(5); -} - -static void z8530_rx_done(struct z8530_channel *c); -static void z8530_tx_done(struct z8530_channel *c); - -/** - * read_zsreg - Read a register from a Z85230 - * @c: Z8530 channel to read from (2 per chip) - * @reg: Register to read - * FIXME: Use a spinlock. - * - * Most of the Z8530 registers are indexed off the control registers. - * A read is done by writing to the control register and reading the - * register back. The caller must hold the lock - */ - -static inline u8 read_zsreg(struct z8530_channel *c, u8 reg) -{ - if (reg) - z8530_write_port(c->ctrlio, reg); - return z8530_read_port(c->ctrlio); -} - -/** - * read_zsdata - Read the data port of a Z8530 channel - * @c: The Z8530 channel to read the data port from - * - * The data port provides fast access to some things. We still - * have all the 5uS delays to worry about. - */ - -static inline u8 read_zsdata(struct z8530_channel *c) -{ - u8 r; - - r = z8530_read_port(c->dataio); - return r; -} - -/** - * write_zsreg - Write to a Z8530 channel register - * @c: The Z8530 channel - * @reg: Register number - * @val: Value to write - * - * Write a value to an indexed register. The caller must hold the lock - * to honour the irritating delay rules. We know about register 0 - * being fast to access. - * - * Assumes c->lock is held. - */ -static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val) -{ - if (reg) - z8530_write_port(c->ctrlio, reg); - z8530_write_port(c->ctrlio, val); -} - -/** - * write_zsctrl - Write to a Z8530 control register - * @c: The Z8530 channel - * @val: Value to write - * - * Write directly to the control register on the Z8530 - */ - -static inline void write_zsctrl(struct z8530_channel *c, u8 val) -{ - z8530_write_port(c->ctrlio, val); -} - -/** - * write_zsdata - Write to a Z8530 control register - * @c: The Z8530 channel - * @val: Value to write - * - * Write directly to the data register on the Z8530 - */ -static inline void write_zsdata(struct z8530_channel *c, u8 val) -{ - z8530_write_port(c->dataio, val); -} - -/* Register loading parameters for a dead port - */ - -u8 z8530_dead_port[] = { - 255 -}; -EXPORT_SYMBOL(z8530_dead_port); - -/* Register loading parameters for currently supported circuit types - */ - -/* Data clocked by telco end. This is the correct data for the UK - * "kilostream" service, and most other similar services. - */ - -u8 z8530_hdlc_kilostream[] = { - 4, SYNC_ENAB | SDLC | X1CLK, - 2, 0, /* No vector */ - 1, 0, - 3, ENT_HM | RxCRC_ENAB | Rx8, - 5, TxCRC_ENAB | RTS | TxENAB | Tx8 | DTR, - 9, 0, /* Disable interrupts */ - 6, 0xFF, - 7, FLAG, - 10, ABUNDER | NRZ | CRCPS,/*MARKIDLE ??*/ - 11, TCTRxCP, - 14, DISDPLL, - 15, DCDIE | SYNCIE | CTSIE | TxUIE | BRKIE, - 1, EXT_INT_ENAB | TxINT_ENAB | INT_ALL_Rx, - 9, NV | MIE | NORESET, - 255 -}; -EXPORT_SYMBOL(z8530_hdlc_kilostream); - -/* As above but for enhanced chips. - */ - -u8 z8530_hdlc_kilostream_85230[] = { - 4, SYNC_ENAB | SDLC | X1CLK, - 2, 0, /* No vector */ - 1, 0, - 3, ENT_HM | RxCRC_ENAB | Rx8, - 5, TxCRC_ENAB | RTS | TxENAB | Tx8 | DTR, - 9, 0, /* Disable interrupts */ - 6, 0xFF, - 7, FLAG, - 10, ABUNDER | NRZ | CRCPS, /* MARKIDLE?? */ - 11, TCTRxCP, - 14, DISDPLL, - 15, DCDIE | SYNCIE | CTSIE | TxUIE | BRKIE, - 1, EXT_INT_ENAB | TxINT_ENAB | INT_ALL_Rx, - 9, NV | MIE | NORESET, - 23, 3, /* Extended mode AUTO TX and EOM*/ - - 255 -}; -EXPORT_SYMBOL(z8530_hdlc_kilostream_85230); - -/** - * z8530_flush_fifo - Flush on chip RX FIFO - * @c: Channel to flush - * - * Flush the receive FIFO. There is no specific option for this, we - * blindly read bytes and discard them. Reading when there is no data - * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes. - * - * All locking is handled for the caller. On return data may still be - * present if it arrived during the flush. - */ - -static void z8530_flush_fifo(struct z8530_channel *c) -{ - read_zsreg(c, R1); - read_zsreg(c, R1); - read_zsreg(c, R1); - read_zsreg(c, R1); - if (c->dev->type == Z85230) { - read_zsreg(c, R1); - read_zsreg(c, R1); - read_zsreg(c, R1); - read_zsreg(c, R1); - } -} - -/** - * z8530_rtsdtr - Control the outgoing DTS/RTS line - * @c: The Z8530 channel to control; - * @set: 1 to set, 0 to clear - * - * Sets or clears DTR/RTS on the requested line. All locking is handled - * by the caller. For now we assume all boards use the actual RTS/DTR - * on the chip. Apparently one or two don't. We'll scream about them - * later. - */ - -static void z8530_rtsdtr(struct z8530_channel *c, int set) -{ - if (set) - c->regs[5] |= (RTS | DTR); - else - c->regs[5] &= ~(RTS | DTR); - write_zsreg(c, R5, c->regs[5]); -} - -/** - * z8530_rx - Handle a PIO receive event - * @c: Z8530 channel to process - * - * Receive handler for receiving in PIO mode. This is much like the - * async one but not quite the same or as complex - * - * Note: Its intended that this handler can easily be separated from - * the main code to run realtime. That'll be needed for some machines - * (eg to ever clock 64kbits on a sparc ;)). - * - * The RT_LOCK macros don't do anything now. Keep the code covered - * by them as short as possible in all circumstances - clocks cost - * baud. The interrupt handler is assumed to be atomic w.r.t. to - * other code - this is true in the RT case too. - * - * We only cover the sync cases for this. If you want 2Mbit async - * do it yourself but consider medical assistance first. This non DMA - * synchronous mode is portable code. The DMA mode assumes PCI like - * ISA DMA - * - * Called with the device lock held - */ - -static void z8530_rx(struct z8530_channel *c) -{ - u8 ch, stat; - - while (1) { - /* FIFO empty ? */ - if (!(read_zsreg(c, R0) & 1)) - break; - ch = read_zsdata(c); - stat = read_zsreg(c, R1); - - /* Overrun ? - */ - if (c->count < c->max) { - *c->dptr++ = ch; - c->count++; - } - - if (stat & END_FR) { - /* Error ? - */ - if (stat & (Rx_OVR | CRC_ERR)) { - /* Rewind the buffer and return */ - if (c->skb) - c->dptr = c->skb->data; - c->count = 0; - if (stat & Rx_OVR) { - pr_warn("%s: overrun\n", c->dev->name); - c->rx_overrun++; - } - if (stat & CRC_ERR) { - c->rx_crc_err++; - /* printk("crc error\n"); */ - } - /* Shove the frame upstream */ - } else { - /* Drop the lock for RX processing, or - * there are deadlocks - */ - z8530_rx_done(c); - write_zsctrl(c, RES_Rx_CRC); - } - } - } - /* Clear irq - */ - write_zsctrl(c, ERR_RES); - write_zsctrl(c, RES_H_IUS); -} - -/** - * z8530_tx - Handle a PIO transmit event - * @c: Z8530 channel to process - * - * Z8530 transmit interrupt handler for the PIO mode. The basic - * idea is to attempt to keep the FIFO fed. We fill as many bytes - * in as possible, its quite possible that we won't keep up with the - * data rate otherwise. - */ - -static void z8530_tx(struct z8530_channel *c) -{ - while (c->txcount) { - /* FIFO full ? */ - if (!(read_zsreg(c, R0) & 4)) - return; - c->txcount--; - /* Shovel out the byte - */ - write_zsreg(c, R8, *c->tx_ptr++); - write_zsctrl(c, RES_H_IUS); - /* We are about to underflow */ - if (c->txcount == 0) { - write_zsctrl(c, RES_EOM_L); - write_zsreg(c, R10, c->regs[10] & ~ABUNDER); - } - } - - /* End of frame TX - fire another one - */ - - write_zsctrl(c, RES_Tx_P); - - z8530_tx_done(c); - write_zsctrl(c, RES_H_IUS); -} - -/** - * z8530_status - Handle a PIO status exception - * @chan: Z8530 channel to process - * - * A status event occurred in PIO synchronous mode. There are several - * reasons the chip will bother us here. A transmit underrun means we - * failed to feed the chip fast enough and just broke a packet. A DCD - * change is a line up or down. - */ - -static void z8530_status(struct z8530_channel *chan) -{ - u8 status, altered; - - status = read_zsreg(chan, R0); - altered = chan->status ^ status; - - chan->status = status; - - if (status & TxEOM) { -/* printk("%s: Tx underrun.\n", chan->dev->name); */ - chan->netdevice->stats.tx_fifo_errors++; - write_zsctrl(chan, ERR_RES); - z8530_tx_done(chan); - } - - if (altered & chan->dcdcheck) { - if (status & chan->dcdcheck) { - pr_info("%s: DCD raised\n", chan->dev->name); - write_zsreg(chan, R3, chan->regs[3] | RxENABLE); - if (chan->netdevice) - netif_carrier_on(chan->netdevice); - } else { - pr_info("%s: DCD lost\n", chan->dev->name); - write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE); - z8530_flush_fifo(chan); - if (chan->netdevice) - netif_carrier_off(chan->netdevice); - } - } - write_zsctrl(chan, RES_EXT_INT); - write_zsctrl(chan, RES_H_IUS); -} - -struct z8530_irqhandler z8530_sync = { - .rx = z8530_rx, - .tx = z8530_tx, - .status = z8530_status, -}; -EXPORT_SYMBOL(z8530_sync); - -/** - * z8530_dma_rx - Handle a DMA RX event - * @chan: Channel to handle - * - * Non bus mastering DMA interfaces for the Z8x30 devices. This - * is really pretty PC specific. The DMA mode means that most receive - * events are handled by the DMA hardware. We get a kick here only if - * a frame ended. - */ - -static void z8530_dma_rx(struct z8530_channel *chan) -{ - if (chan->rxdma_on) { - /* Special condition check only */ - u8 status; - - read_zsreg(chan, R7); - read_zsreg(chan, R6); - - status = read_zsreg(chan, R1); - - if (status & END_FR) - z8530_rx_done(chan); /* Fire up the next one */ - - write_zsctrl(chan, ERR_RES); - write_zsctrl(chan, RES_H_IUS); - } else { - /* DMA is off right now, drain the slow way */ - z8530_rx(chan); - } -} - -/** - * z8530_dma_tx - Handle a DMA TX event - * @chan: The Z8530 channel to handle - * - * We have received an interrupt while doing DMA transmissions. It - * shouldn't happen. Scream loudly if it does. - */ -static void z8530_dma_tx(struct z8530_channel *chan) -{ - if (!chan->dma_tx) { - pr_warn("Hey who turned the DMA off?\n"); - z8530_tx(chan); - return; - } - /* This shouldn't occur in DMA mode */ - pr_err("DMA tx - bogus event!\n"); - z8530_tx(chan); -} - -/** - * z8530_dma_status - Handle a DMA status exception - * @chan: Z8530 channel to process - * - * A status event occurred on the Z8530. We receive these for two reasons - * when in DMA mode. Firstly if we finished a packet transfer we get one - * and kick the next packet out. Secondly we may see a DCD change. - * - */ -static void z8530_dma_status(struct z8530_channel *chan) -{ - u8 status, altered; - - status = read_zsreg(chan, R0); - altered = chan->status ^ status; - - chan->status = status; - - if (chan->dma_tx) { - if (status & TxEOM) { - unsigned long flags; - - flags = claim_dma_lock(); - disable_dma(chan->txdma); - clear_dma_ff(chan->txdma); - chan->txdma_on = 0; - release_dma_lock(flags); - z8530_tx_done(chan); - } - } - - if (altered & chan->dcdcheck) { - if (status & chan->dcdcheck) { - pr_info("%s: DCD raised\n", chan->dev->name); - write_zsreg(chan, R3, chan->regs[3] | RxENABLE); - if (chan->netdevice) - netif_carrier_on(chan->netdevice); - } else { - pr_info("%s: DCD lost\n", chan->dev->name); - write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE); - z8530_flush_fifo(chan); - if (chan->netdevice) - netif_carrier_off(chan->netdevice); - } - } - - write_zsctrl(chan, RES_EXT_INT); - write_zsctrl(chan, RES_H_IUS); -} - -static struct z8530_irqhandler z8530_dma_sync = { - .rx = z8530_dma_rx, - .tx = z8530_dma_tx, - .status = z8530_dma_status, -}; - -static struct z8530_irqhandler z8530_txdma_sync = { - .rx = z8530_rx, - .tx = z8530_dma_tx, - .status = z8530_dma_status, -}; - -/** - * z8530_rx_clear - Handle RX events from a stopped chip - * @c: Z8530 channel to shut up - * - * Receive interrupt vectors for a Z8530 that is in 'parked' mode. - * For machines with PCI Z85x30 cards, or level triggered interrupts - * (eg the MacII) we must clear the interrupt cause or die. - */ - -static void z8530_rx_clear(struct z8530_channel *c) -{ - /* Data and status bytes - */ - u8 stat; - - read_zsdata(c); - stat = read_zsreg(c, R1); - - if (stat & END_FR) - write_zsctrl(c, RES_Rx_CRC); - /* Clear irq - */ - write_zsctrl(c, ERR_RES); - write_zsctrl(c, RES_H_IUS); -} - -/** - * z8530_tx_clear - Handle TX events from a stopped chip - * @c: Z8530 channel to shut up - * - * Transmit interrupt vectors for a Z8530 that is in 'parked' mode. - * For machines with PCI Z85x30 cards, or level triggered interrupts - * (eg the MacII) we must clear the interrupt cause or die. - */ - -static void z8530_tx_clear(struct z8530_channel *c) -{ - write_zsctrl(c, RES_Tx_P); - write_zsctrl(c, RES_H_IUS); -} - -/** - * z8530_status_clear - Handle status events from a stopped chip - * @chan: Z8530 channel to shut up - * - * Status interrupt vectors for a Z8530 that is in 'parked' mode. - * For machines with PCI Z85x30 cards, or level triggered interrupts - * (eg the MacII) we must clear the interrupt cause or die. - */ - -static void z8530_status_clear(struct z8530_channel *chan) -{ - u8 status = read_zsreg(chan, R0); - - if (status & TxEOM) - write_zsctrl(chan, ERR_RES); - write_zsctrl(chan, RES_EXT_INT); - write_zsctrl(chan, RES_H_IUS); -} - -struct z8530_irqhandler z8530_nop = { - .rx = z8530_rx_clear, - .tx = z8530_tx_clear, - .status = z8530_status_clear, -}; -EXPORT_SYMBOL(z8530_nop); - -/** - * z8530_interrupt - Handle an interrupt from a Z8530 - * @irq: Interrupt number - * @dev_id: The Z8530 device that is interrupting. - * - * A Z85[2]30 device has stuck its hand in the air for attention. - * We scan both the channels on the chip for events and then call - * the channel specific call backs for each channel that has events. - * We have to use callback functions because the two channels can be - * in different modes. - * - * Locking is done for the handlers. Note that locking is done - * at the chip level (the 5uS delay issue is per chip not per - * channel). c->lock for both channels points to dev->lock - */ - -irqreturn_t z8530_interrupt(int irq, void *dev_id) -{ - struct z8530_dev *dev = dev_id; - u8 intr; - static volatile int locker=0; - int work = 0; - struct z8530_irqhandler *irqs; - - if (locker) { - pr_err("IRQ re-enter\n"); - return IRQ_NONE; - } - locker = 1; - - spin_lock(&dev->lock); - - while (++work < 5000) { - intr = read_zsreg(&dev->chanA, R3); - if (!(intr & - (CHARxIP | CHATxIP | CHAEXT | CHBRxIP | CHBTxIP | CHBEXT))) - break; - - /* This holds the IRQ status. On the 8530 you must read it - * from chan A even though it applies to the whole chip - */ - - /* Now walk the chip and see what it is wanting - it may be - * an IRQ for someone else remember - */ - - irqs = dev->chanA.irqs; - - if (intr & (CHARxIP | CHATxIP | CHAEXT)) { - if (intr & CHARxIP) - irqs->rx(&dev->chanA); - if (intr & CHATxIP) - irqs->tx(&dev->chanA); - if (intr & CHAEXT) - irqs->status(&dev->chanA); - } - - irqs = dev->chanB.irqs; - - if (intr & (CHBRxIP | CHBTxIP | CHBEXT)) { - if (intr & CHBRxIP) - irqs->rx(&dev->chanB); - if (intr & CHBTxIP) - irqs->tx(&dev->chanB); - if (intr & CHBEXT) - irqs->status(&dev->chanB); - } - } - spin_unlock(&dev->lock); - if (work == 5000) - pr_err("%s: interrupt jammed - abort(0x%X)!\n", - dev->name, intr); - /* Ok all done */ - locker = 0; - return IRQ_HANDLED; -} -EXPORT_SYMBOL(z8530_interrupt); - -static const u8 reg_init[16] = { - 0, 0, 0, 0, - 0, 0, 0, 0, - 0, 0, 0, 0, - 0x55, 0, 0, 0 -}; - -/** - * z8530_sync_open - Open a Z8530 channel for PIO - * @dev: The network interface we are using - * @c: The Z8530 channel to open in synchronous PIO mode - * - * Switch a Z8530 into synchronous mode without DMA assist. We - * raise the RTS/DTR and commence network operation. - */ -int z8530_sync_open(struct net_device *dev, struct z8530_channel *c) -{ - unsigned long flags; - - spin_lock_irqsave(c->lock, flags); - - c->sync = 1; - c->mtu = dev->mtu + 64; - c->count = 0; - c->skb = NULL; - c->skb2 = NULL; - c->irqs = &z8530_sync; - - /* This loads the double buffer up */ - z8530_rx_done(c); /* Load the frame ring */ - z8530_rx_done(c); /* Load the backup frame */ - z8530_rtsdtr(c, 1); - c->dma_tx = 0; - c->regs[R1] |= TxINT_ENAB; - write_zsreg(c, R1, c->regs[R1]); - write_zsreg(c, R3, c->regs[R3] | RxENABLE); - - spin_unlock_irqrestore(c->lock, flags); - return 0; -} -EXPORT_SYMBOL(z8530_sync_open); - -/** - * z8530_sync_close - Close a PIO Z8530 channel - * @dev: Network device to close - * @c: Z8530 channel to disassociate and move to idle - * - * Close down a Z8530 interface and switch its interrupt handlers - * to discard future events. - */ -int z8530_sync_close(struct net_device *dev, struct z8530_channel *c) -{ - u8 chk; - unsigned long flags; - - spin_lock_irqsave(c->lock, flags); - c->irqs = &z8530_nop; - c->max = 0; - c->sync = 0; - - chk = read_zsreg(c, R0); - write_zsreg(c, R3, c->regs[R3]); - z8530_rtsdtr(c, 0); - - spin_unlock_irqrestore(c->lock, flags); - return 0; -} -EXPORT_SYMBOL(z8530_sync_close); - -/** - * z8530_sync_dma_open - Open a Z8530 for DMA I/O - * @dev: The network device to attach - * @c: The Z8530 channel to configure in sync DMA mode. - * - * Set up a Z85x30 device for synchronous DMA in both directions. Two - * ISA DMA channels must be available for this to work. We assume ISA - * DMA driven I/O and PC limits on access. - */ -int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c) -{ - unsigned long cflags, dflags; - - c->sync = 1; - c->mtu = dev->mtu + 64; - c->count = 0; - c->skb = NULL; - c->skb2 = NULL; - - /* Load the DMA interfaces up - */ - c->rxdma_on = 0; - c->txdma_on = 0; - - /* Allocate the DMA flip buffers. Limit by page size. - * Everyone runs 1500 mtu or less on wan links so this - * should be fine. - */ - - if (c->mtu > PAGE_SIZE / 2) - return -EMSGSIZE; - - c->rx_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA); - if (!c->rx_buf[0]) - return -ENOBUFS; - c->rx_buf[1] = c->rx_buf[0] + PAGE_SIZE / 2; - - c->tx_dma_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA); - if (!c->tx_dma_buf[0]) { - free_page((unsigned long)c->rx_buf[0]); - c->rx_buf[0] = NULL; - return -ENOBUFS; - } - c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE / 2; - - c->tx_dma_used = 0; - c->dma_tx = 1; - c->dma_num = 0; - c->dma_ready = 1; - - /* Enable DMA control mode - */ - - spin_lock_irqsave(c->lock, cflags); - - /* TX DMA via DIR/REQ - */ - - c->regs[R14] |= DTRREQ; - write_zsreg(c, R14, c->regs[R14]); - - c->regs[R1] &= ~TxINT_ENAB; - write_zsreg(c, R1, c->regs[R1]); - - /* RX DMA via W/Req - */ - - c->regs[R1] |= WT_FN_RDYFN; - c->regs[R1] |= WT_RDY_RT; - c->regs[R1] |= INT_ERR_Rx; - c->regs[R1] &= ~TxINT_ENAB; - write_zsreg(c, R1, c->regs[R1]); - c->regs[R1] |= WT_RDY_ENAB; - write_zsreg(c, R1, c->regs[R1]); - - /* DMA interrupts - */ - - /* Set up the DMA configuration - */ - - dflags = claim_dma_lock(); - - disable_dma(c->rxdma); - clear_dma_ff(c->rxdma); - set_dma_mode(c->rxdma, DMA_MODE_READ | 0x10); - set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0])); - set_dma_count(c->rxdma, c->mtu); - enable_dma(c->rxdma); - - disable_dma(c->txdma); - clear_dma_ff(c->txdma); - set_dma_mode(c->txdma, DMA_MODE_WRITE); - disable_dma(c->txdma); - - release_dma_lock(dflags); - - /* Select the DMA interrupt handlers - */ - - c->rxdma_on = 1; - c->txdma_on = 1; - c->tx_dma_used = 1; - - c->irqs = &z8530_dma_sync; - z8530_rtsdtr(c, 1); - write_zsreg(c, R3, c->regs[R3] | RxENABLE); - - spin_unlock_irqrestore(c->lock, cflags); - - return 0; -} -EXPORT_SYMBOL(z8530_sync_dma_open); - -/** - * z8530_sync_dma_close - Close down DMA I/O - * @dev: Network device to detach - * @c: Z8530 channel to move into discard mode - * - * Shut down a DMA mode synchronous interface. Halt the DMA, and - * free the buffers. - */ -int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c) -{ - u8 chk; - unsigned long flags; - - c->irqs = &z8530_nop; - c->max = 0; - c->sync = 0; - - /* Disable the PC DMA channels - */ - - flags = claim_dma_lock(); - disable_dma(c->rxdma); - clear_dma_ff(c->rxdma); - - c->rxdma_on = 0; - - disable_dma(c->txdma); - clear_dma_ff(c->txdma); - release_dma_lock(flags); - - c->txdma_on = 0; - c->tx_dma_used = 0; - - spin_lock_irqsave(c->lock, flags); - - /* Disable DMA control mode - */ - - c->regs[R1] &= ~WT_RDY_ENAB; - write_zsreg(c, R1, c->regs[R1]); - c->regs[R1] &= ~(WT_RDY_RT | WT_FN_RDYFN | INT_ERR_Rx); - c->regs[R1] |= INT_ALL_Rx; - write_zsreg(c, R1, c->regs[R1]); - c->regs[R14] &= ~DTRREQ; - write_zsreg(c, R14, c->regs[R14]); - - if (c->rx_buf[0]) { - free_page((unsigned long)c->rx_buf[0]); - c->rx_buf[0] = NULL; - } - if (c->tx_dma_buf[0]) { - free_page((unsigned long)c->tx_dma_buf[0]); - c->tx_dma_buf[0] = NULL; - } - chk = read_zsreg(c, R0); - write_zsreg(c, R3, c->regs[R3]); - z8530_rtsdtr(c, 0); - - spin_unlock_irqrestore(c->lock, flags); - - return 0; -} -EXPORT_SYMBOL(z8530_sync_dma_close); - -/** - * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA - * @dev: The network device to attach - * @c: The Z8530 channel to configure in sync DMA mode. - * - * Set up a Z85x30 device for synchronous DMA transmission. One - * ISA DMA channel must be available for this to work. The receive - * side is run in PIO mode, but then it has the bigger FIFO. - */ - -int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c) -{ - unsigned long cflags, dflags; - - printk("Opening sync interface for TX-DMA\n"); - c->sync = 1; - c->mtu = dev->mtu + 64; - c->count = 0; - c->skb = NULL; - c->skb2 = NULL; - - /* Allocate the DMA flip buffers. Limit by page size. - * Everyone runs 1500 mtu or less on wan links so this - * should be fine. - */ - - if (c->mtu > PAGE_SIZE / 2) - return -EMSGSIZE; - - c->tx_dma_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA); - if (!c->tx_dma_buf[0]) - return -ENOBUFS; - - c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE / 2; - - spin_lock_irqsave(c->lock, cflags); - - /* Load the PIO receive ring - */ - - z8530_rx_done(c); - z8530_rx_done(c); - - /* Load the DMA interfaces up - */ - - c->rxdma_on = 0; - c->txdma_on = 0; - - c->tx_dma_used = 0; - c->dma_num = 0; - c->dma_ready = 1; - c->dma_tx = 1; - - /* Enable DMA control mode - */ - - /* TX DMA via DIR/REQ - */ - c->regs[R14] |= DTRREQ; - write_zsreg(c, R14, c->regs[R14]); - - c->regs[R1] &= ~TxINT_ENAB; - write_zsreg(c, R1, c->regs[R1]); - - /* Set up the DMA configuration - */ - - dflags = claim_dma_lock(); - - disable_dma(c->txdma); - clear_dma_ff(c->txdma); - set_dma_mode(c->txdma, DMA_MODE_WRITE); - disable_dma(c->txdma); - - release_dma_lock(dflags); - - /* Select the DMA interrupt handlers - */ - - c->rxdma_on = 0; - c->txdma_on = 1; - c->tx_dma_used = 1; - - c->irqs = &z8530_txdma_sync; - z8530_rtsdtr(c, 1); - write_zsreg(c, R3, c->regs[R3] | RxENABLE); - spin_unlock_irqrestore(c->lock, cflags); - - return 0; -} -EXPORT_SYMBOL(z8530_sync_txdma_open); - -/** - * z8530_sync_txdma_close - Close down a TX driven DMA channel - * @dev: Network device to detach - * @c: Z8530 channel to move into discard mode - * - * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, - * and free the buffers. - */ - -int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c) -{ - unsigned long dflags, cflags; - u8 chk; - - spin_lock_irqsave(c->lock, cflags); - - c->irqs = &z8530_nop; - c->max = 0; - c->sync = 0; - - /* Disable the PC DMA channels - */ - - dflags = claim_dma_lock(); - - disable_dma(c->txdma); - clear_dma_ff(c->txdma); - c->txdma_on = 0; - c->tx_dma_used = 0; - - release_dma_lock(dflags); - - /* Disable DMA control mode - */ - - c->regs[R1] &= ~WT_RDY_ENAB; - write_zsreg(c, R1, c->regs[R1]); - c->regs[R1] &= ~(WT_RDY_RT | WT_FN_RDYFN | INT_ERR_Rx); - c->regs[R1] |= INT_ALL_Rx; - write_zsreg(c, R1, c->regs[R1]); - c->regs[R14] &= ~DTRREQ; - write_zsreg(c, R14, c->regs[R14]); - - if (c->tx_dma_buf[0]) { - free_page((unsigned long)c->tx_dma_buf[0]); - c->tx_dma_buf[0] = NULL; - } - chk = read_zsreg(c, R0); - write_zsreg(c, R3, c->regs[R3]); - z8530_rtsdtr(c, 0); - - spin_unlock_irqrestore(c->lock, cflags); - return 0; -} -EXPORT_SYMBOL(z8530_sync_txdma_close); - -/* Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny - * it exists... - */ -static const char * const z8530_type_name[] = { - "Z8530", - "Z85C30", - "Z85230" -}; - -/** - * z8530_describe - Uniformly describe a Z8530 port - * @dev: Z8530 device to describe - * @mapping: string holding mapping type (eg "I/O" or "Mem") - * @io: the port value in question - * - * Describe a Z8530 in a standard format. We must pass the I/O as - * the port offset isn't predictable. The main reason for this function - * is to try and get a common format of report. - */ - -void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io) -{ - pr_info("%s: %s found at %s 0x%lX, IRQ %d\n", - dev->name, - z8530_type_name[dev->type], - mapping, - Z8530_PORT_OF(io), - dev->irq); -} -EXPORT_SYMBOL(z8530_describe); - -/* Locked operation part of the z8530 init code - */ -static inline int do_z8530_init(struct z8530_dev *dev) -{ - /* NOP the interrupt handlers first - we might get a - * floating IRQ transition when we reset the chip - */ - dev->chanA.irqs = &z8530_nop; - dev->chanB.irqs = &z8530_nop; - dev->chanA.dcdcheck = DCD; - dev->chanB.dcdcheck = DCD; - - /* Reset the chip */ - write_zsreg(&dev->chanA, R9, 0xC0); - udelay(200); - /* Now check its valid */ - write_zsreg(&dev->chanA, R12, 0xAA); - if (read_zsreg(&dev->chanA, R12) != 0xAA) - return -ENODEV; - write_zsreg(&dev->chanA, R12, 0x55); - if (read_zsreg(&dev->chanA, R12) != 0x55) - return -ENODEV; - - dev->type = Z8530; - - /* See the application note. - */ - - write_zsreg(&dev->chanA, R15, 0x01); - - /* If we can set the low bit of R15 then - * the chip is enhanced. - */ - - if (read_zsreg(&dev->chanA, R15) == 0x01) { - /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */ - /* Put a char in the fifo */ - write_zsreg(&dev->chanA, R8, 0); - if (read_zsreg(&dev->chanA, R0) & Tx_BUF_EMP) - dev->type = Z85230; /* Has a FIFO */ - else - dev->type = Z85C30; /* Z85C30, 1 byte FIFO */ - } - - /* The code assumes R7' and friends are - * off. Use write_zsext() for these and keep - * this bit clear. - */ - - write_zsreg(&dev->chanA, R15, 0); - - /* At this point it looks like the chip is behaving - */ - - memcpy(dev->chanA.regs, reg_init, 16); - memcpy(dev->chanB.regs, reg_init, 16); - - return 0; -} - -/** - * z8530_init - Initialise a Z8530 device - * @dev: Z8530 device to initialise. - * - * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device - * is present, identify the type and then program it to hopefully - * keep quite and behave. This matters a lot, a Z8530 in the wrong - * state will sometimes get into stupid modes generating 10Khz - * interrupt streams and the like. - * - * We set the interrupt handler up to discard any events, in case - * we get them during reset or setp. - * - * Return 0 for success, or a negative value indicating the problem - * in errno form. - */ - -int z8530_init(struct z8530_dev *dev) -{ - unsigned long flags; - int ret; - - /* Set up the chip level lock */ - spin_lock_init(&dev->lock); - dev->chanA.lock = &dev->lock; - dev->chanB.lock = &dev->lock; - - spin_lock_irqsave(&dev->lock, flags); - ret = do_z8530_init(dev); - spin_unlock_irqrestore(&dev->lock, flags); - - return ret; -} -EXPORT_SYMBOL(z8530_init); - -/** - * z8530_shutdown - Shutdown a Z8530 device - * @dev: The Z8530 chip to shutdown - * - * We set the interrupt handlers to silence any interrupts. We then - * reset the chip and wait 100uS to be sure the reset completed. Just - * in case the caller then tries to do stuff. - * - * This is called without the lock held - */ -int z8530_shutdown(struct z8530_dev *dev) -{ - unsigned long flags; - /* Reset the chip */ - - spin_lock_irqsave(&dev->lock, flags); - dev->chanA.irqs = &z8530_nop; - dev->chanB.irqs = &z8530_nop; - write_zsreg(&dev->chanA, R9, 0xC0); - /* We must lock the udelay, the chip is offlimits here */ - udelay(100); - spin_unlock_irqrestore(&dev->lock, flags); - return 0; -} -EXPORT_SYMBOL(z8530_shutdown); - -/** - * z8530_channel_load - Load channel data - * @c: Z8530 channel to configure - * @rtable: table of register, value pairs - * FIXME: ioctl to allow user uploaded tables - * - * Load a Z8530 channel up from the system data. We use +16 to - * indicate the "prime" registers. The value 255 terminates the - * table. - */ - -int z8530_channel_load(struct z8530_channel *c, u8 *rtable) -{ - unsigned long flags; - - spin_lock_irqsave(c->lock, flags); - - while (*rtable != 255) { - int reg = *rtable++; - - if (reg > 0x0F) - write_zsreg(c, R15, c->regs[15] | 1); - write_zsreg(c, reg & 0x0F, *rtable); - if (reg > 0x0F) - write_zsreg(c, R15, c->regs[15] & ~1); - c->regs[reg] = *rtable++; - } - c->rx_function = z8530_null_rx; - c->skb = NULL; - c->tx_skb = NULL; - c->tx_next_skb = NULL; - c->mtu = 1500; - c->max = 0; - c->count = 0; - c->status = read_zsreg(c, R0); - c->sync = 1; - write_zsreg(c, R3, c->regs[R3] | RxENABLE); - - spin_unlock_irqrestore(c->lock, flags); - return 0; -} -EXPORT_SYMBOL(z8530_channel_load); - -/** - * z8530_tx_begin - Begin packet transmission - * @c: The Z8530 channel to kick - * - * This is the speed sensitive side of transmission. If we are called - * and no buffer is being transmitted we commence the next buffer. If - * nothing is queued we idle the sync. - * - * Note: We are handling this code path in the interrupt path, keep it - * fast or bad things will happen. - * - * Called with the lock held. - */ - -static void z8530_tx_begin(struct z8530_channel *c) -{ - unsigned long flags; - - if (c->tx_skb) - return; - - c->tx_skb = c->tx_next_skb; - c->tx_next_skb = NULL; - c->tx_ptr = c->tx_next_ptr; - - if (!c->tx_skb) { - /* Idle on */ - if (c->dma_tx) { - flags = claim_dma_lock(); - disable_dma(c->txdma); - /* Check if we crapped out. - */ - if (get_dma_residue(c->txdma)) { - c->netdevice->stats.tx_dropped++; - c->netdevice->stats.tx_fifo_errors++; - } - release_dma_lock(flags); - } - c->txcount = 0; - } else { - c->txcount = c->tx_skb->len; - - if (c->dma_tx) { - /* FIXME. DMA is broken for the original 8530, - * on the older parts we need to set a flag and - * wait for a further TX interrupt to fire this - * stage off - */ - - flags = claim_dma_lock(); - disable_dma(c->txdma); - - /* These two are needed by the 8530/85C30 - * and must be issued when idling. - */ - if (c->dev->type != Z85230) { - write_zsctrl(c, RES_Tx_CRC); - write_zsctrl(c, RES_EOM_L); - } - write_zsreg(c, R10, c->regs[10] & ~ABUNDER); - clear_dma_ff(c->txdma); - set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr)); - set_dma_count(c->txdma, c->txcount); - enable_dma(c->txdma); - release_dma_lock(flags); - write_zsctrl(c, RES_EOM_L); - write_zsreg(c, R5, c->regs[R5] | TxENAB); - } else { - /* ABUNDER off */ - write_zsreg(c, R10, c->regs[10]); - write_zsctrl(c, RES_Tx_CRC); - - while (c->txcount && (read_zsreg(c, R0) & Tx_BUF_EMP)) { - write_zsreg(c, R8, *c->tx_ptr++); - c->txcount--; - } - } - } - /* Since we emptied tx_skb we can ask for more - */ - netif_wake_queue(c->netdevice); -} - -/** - * z8530_tx_done - TX complete callback - * @c: The channel that completed a transmit. - * - * This is called when we complete a packet send. We wake the queue, - * start the next packet going and then free the buffer of the existing - * packet. This code is fairly timing sensitive. - * - * Called with the register lock held. - */ - -static void z8530_tx_done(struct z8530_channel *c) -{ - struct sk_buff *skb; - - /* Actually this can happen.*/ - if (!c->tx_skb) - return; - - skb = c->tx_skb; - c->tx_skb = NULL; - z8530_tx_begin(c); - c->netdevice->stats.tx_packets++; - c->netdevice->stats.tx_bytes += skb->len; - dev_consume_skb_irq(skb); -} - -/** - * z8530_null_rx - Discard a packet - * @c: The channel the packet arrived on - * @skb: The buffer - * - * We point the receive handler at this function when idle. Instead - * of processing the frames we get to throw them away. - */ -void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb) -{ - dev_kfree_skb_any(skb); -} -EXPORT_SYMBOL(z8530_null_rx); - -/** - * z8530_rx_done - Receive completion callback - * @c: The channel that completed a receive - * - * A new packet is complete. Our goal here is to get back into receive - * mode as fast as possible. On the Z85230 we could change to using - * ESCC mode, but on the older chips we have no choice. We flip to the - * new buffer immediately in DMA mode so that the DMA of the next - * frame can occur while we are copying the previous buffer to an sk_buff - * - * Called with the lock held - */ -static void z8530_rx_done(struct z8530_channel *c) -{ - struct sk_buff *skb; - int ct; - - /* Is our receive engine in DMA mode - */ - if (c->rxdma_on) { - /* Save the ready state and the buffer currently - * being used as the DMA target - */ - int ready = c->dma_ready; - unsigned char *rxb = c->rx_buf[c->dma_num]; - unsigned long flags; - - /* Complete this DMA. Necessary to find the length - */ - flags = claim_dma_lock(); - - disable_dma(c->rxdma); - clear_dma_ff(c->rxdma); - c->rxdma_on = 0; - ct = c->mtu - get_dma_residue(c->rxdma); - if (ct < 0) - ct = 2; /* Shit happens.. */ - c->dma_ready = 0; - - /* Normal case: the other slot is free, start the next DMA - * into it immediately. - */ - - if (ready) { - c->dma_num ^= 1; - set_dma_mode(c->rxdma, DMA_MODE_READ | 0x10); - set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num])); - set_dma_count(c->rxdma, c->mtu); - c->rxdma_on = 1; - enable_dma(c->rxdma); - /* Stop any frames that we missed the head of - * from passing - */ - write_zsreg(c, R0, RES_Rx_CRC); - } else { - /* Can't occur as we dont reenable the DMA irq until - * after the flip is done - */ - netdev_warn(c->netdevice, "DMA flip overrun!\n"); - } - - release_dma_lock(flags); - - /* Shove the old buffer into an sk_buff. We can't DMA - * directly into one on a PC - it might be above the 16Mb - * boundary. Optimisation - we could check to see if we - * can avoid the copy. Optimisation 2 - make the memcpy - * a copychecksum. - */ - - skb = dev_alloc_skb(ct); - if (!skb) { - c->netdevice->stats.rx_dropped++; - netdev_warn(c->netdevice, "Memory squeeze\n"); - } else { - skb_put(skb, ct); - skb_copy_to_linear_data(skb, rxb, ct); - c->netdevice->stats.rx_packets++; - c->netdevice->stats.rx_bytes += ct; - } - c->dma_ready = 1; - } else { - RT_LOCK; - skb = c->skb; - - /* The game we play for non DMA is similar. We want to - * get the controller set up for the next packet as fast - * as possible. We potentially only have one byte + the - * fifo length for this. Thus we want to flip to the new - * buffer and then mess around copying and allocating - * things. For the current case it doesn't matter but - * if you build a system where the sync irq isn't blocked - * by the kernel IRQ disable then you need only block the - * sync IRQ for the RT_LOCK area. - * - */ - ct = c->count; - - c->skb = c->skb2; - c->count = 0; - c->max = c->mtu; - if (c->skb) { - c->dptr = c->skb->data; - c->max = c->mtu; - } else { - c->count = 0; - c->max = 0; - } - RT_UNLOCK; - - c->skb2 = dev_alloc_skb(c->mtu); - if (c->skb2) - skb_put(c->skb2, c->mtu); - - c->netdevice->stats.rx_packets++; - c->netdevice->stats.rx_bytes += ct; - } - /* If we received a frame we must now process it. - */ - if (skb) { - skb_trim(skb, ct); - c->rx_function(c, skb); - } else { - c->netdevice->stats.rx_dropped++; - netdev_err(c->netdevice, "Lost a frame\n"); - } -} - -/** - * spans_boundary - Check a packet can be ISA DMA'd - * @skb: The buffer to check - * - * Returns true if the buffer cross a DMA boundary on a PC. The poor - * thing can only DMA within a 64K block not across the edges of it. - */ - -static inline int spans_boundary(struct sk_buff *skb) -{ - unsigned long a = (unsigned long)skb->data; - - a ^= (a + skb->len); - if (a & 0x00010000) /* If the 64K bit is different.. */ - return 1; - return 0; -} - -/** - * z8530_queue_xmit - Queue a packet - * @c: The channel to use - * @skb: The packet to kick down the channel - * - * Queue a packet for transmission. Because we have rather - * hard to hit interrupt latencies for the Z85230 per packet - * even in DMA mode we do the flip to DMA buffer if needed here - * not in the IRQ. - * - * Called from the network code. The lock is not held at this - * point. - */ -netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb) -{ - unsigned long flags; - - netif_stop_queue(c->netdevice); - if (c->tx_next_skb) - return NETDEV_TX_BUSY; - - /* PC SPECIFIC - DMA limits */ - /* If we will DMA the transmit and its gone over the ISA bus - * limit, then copy to the flip buffer - */ - - if (c->dma_tx && - ((unsigned long)(virt_to_bus(skb->data + skb->len)) >= - 16 * 1024 * 1024 || spans_boundary(skb))) { - /* Send the flip buffer, and flip the flippy bit. - * We don't care which is used when just so long as - * we never use the same buffer twice in a row. Since - * only one buffer can be going out at a time the other - * has to be safe. - */ - c->tx_next_ptr = c->tx_dma_buf[c->tx_dma_used]; - c->tx_dma_used ^= 1; /* Flip temp buffer */ - skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len); - } else { - c->tx_next_ptr = skb->data; - } - RT_LOCK; - c->tx_next_skb = skb; - RT_UNLOCK; - - spin_lock_irqsave(c->lock, flags); - z8530_tx_begin(c); - spin_unlock_irqrestore(c->lock, flags); - - return NETDEV_TX_OK; -} -EXPORT_SYMBOL(z8530_queue_xmit); - -/* Module support - */ -static const char banner[] __initconst = - KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n"; - -static int __init z85230_init_driver(void) -{ - printk(banner); - return 0; -} -module_init(z85230_init_driver); - -static void __exit z85230_cleanup_driver(void) -{ -} -module_exit(z85230_cleanup_driver); - -MODULE_AUTHOR("Red Hat Inc."); -MODULE_DESCRIPTION("Z85x30 synchronous driver core"); -MODULE_LICENSE("GPL"); diff --git a/drivers/net/wan/z85230.h b/drivers/net/wan/z85230.h deleted file mode 100644 index 462cb620bc5d..000000000000 --- a/drivers/net/wan/z85230.h +++ /dev/null @@ -1,407 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/* - * Description of Z8530 Z85C30 and Z85230 communications chips - * - * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) - * Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk> - */ - -#ifndef _Z8530_H -#define _Z8530_H - -#include <linux/tty.h> -#include <linux/interrupt.h> - -/* Conversion routines to/from brg time constants from/to bits - * per second. - */ -#define BRG_TO_BPS(brg, freq) ((freq) / 2 / ((brg) + 2)) -#define BPS_TO_BRG(bps, freq) ((((freq) + (bps)) / (2 * (bps))) - 2) - -/* The Zilog register set */ - -#define FLAG 0x7e - -/* Write Register 0 */ -#define R0 0 /* Register selects */ -#define R1 1 -#define R2 2 -#define R3 3 -#define R4 4 -#define R5 5 -#define R6 6 -#define R7 7 -#define R8 8 -#define R9 9 -#define R10 10 -#define R11 11 -#define R12 12 -#define R13 13 -#define R14 14 -#define R15 15 - -#define RPRIME 16 /* Indicate a prime register access on 230 */ - -#define NULLCODE 0 /* Null Code */ -#define POINT_HIGH 0x8 /* Select upper half of registers */ -#define RES_EXT_INT 0x10 /* Reset Ext. Status Interrupts */ -#define SEND_ABORT 0x18 /* HDLC Abort */ -#define RES_RxINT_FC 0x20 /* Reset RxINT on First Character */ -#define RES_Tx_P 0x28 /* Reset TxINT Pending */ -#define ERR_RES 0x30 /* Error Reset */ -#define RES_H_IUS 0x38 /* Reset highest IUS */ - -#define RES_Rx_CRC 0x40 /* Reset Rx CRC Checker */ -#define RES_Tx_CRC 0x80 /* Reset Tx CRC Checker */ -#define RES_EOM_L 0xC0 /* Reset EOM latch */ - -/* Write Register 1 */ - -#define EXT_INT_ENAB 0x1 /* Ext Int Enable */ -#define TxINT_ENAB 0x2 /* Tx Int Enable */ -#define PAR_SPEC 0x4 /* Parity is special condition */ - -#define RxINT_DISAB 0 /* Rx Int Disable */ -#define RxINT_FCERR 0x8 /* Rx Int on First Character Only or Error */ -#define INT_ALL_Rx 0x10 /* Int on all Rx Characters or error */ -#define INT_ERR_Rx 0x18 /* Int on error only */ - -#define WT_RDY_RT 0x20 /* Wait/Ready on R/T */ -#define WT_FN_RDYFN 0x40 /* Wait/FN/Ready FN */ -#define WT_RDY_ENAB 0x80 /* Wait/Ready Enable */ - -/* Write Register #2 (Interrupt Vector) */ - -/* Write Register 3 */ - -#define RxENABLE 0x1 /* Rx Enable */ -#define SYNC_L_INH 0x2 /* Sync Character Load Inhibit */ -#define ADD_SM 0x4 /* Address Search Mode (SDLC) */ -#define RxCRC_ENAB 0x8 /* Rx CRC Enable */ -#define ENT_HM 0x10 /* Enter Hunt Mode */ -#define AUTO_ENAB 0x20 /* Auto Enables */ -#define Rx5 0x0 /* Rx 5 Bits/Character */ -#define Rx7 0x40 /* Rx 7 Bits/Character */ -#define Rx6 0x80 /* Rx 6 Bits/Character */ -#define Rx8 0xc0 /* Rx 8 Bits/Character */ - -/* Write Register 4 */ - -#define PAR_ENA 0x1 /* Parity Enable */ -#define PAR_EVEN 0x2 /* Parity Even/Odd* */ - -#define SYNC_ENAB 0 /* Sync Modes Enable */ -#define SB1 0x4 /* 1 stop bit/char */ -#define SB15 0x8 /* 1.5 stop bits/char */ -#define SB2 0xc /* 2 stop bits/char */ - -#define MONSYNC 0 /* 8 Bit Sync character */ -#define BISYNC 0x10 /* 16 bit sync character */ -#define SDLC 0x20 /* SDLC Mode (01111110 Sync Flag) */ -#define EXTSYNC 0x30 /* External Sync Mode */ - -#define X1CLK 0x0 /* x1 clock mode */ -#define X16CLK 0x40 /* x16 clock mode */ -#define X32CLK 0x80 /* x32 clock mode */ -#define X64CLK 0xC0 /* x64 clock mode */ - -/* Write Register 5 */ - -#define TxCRC_ENAB 0x1 /* Tx CRC Enable */ -#define RTS 0x2 /* RTS */ -#define SDLC_CRC 0x4 /* SDLC/CRC-16 */ -#define TxENAB 0x8 /* Tx Enable */ -#define SND_BRK 0x10 /* Send Break */ -#define Tx5 0x0 /* Tx 5 bits (or less)/character */ -#define Tx7 0x20 /* Tx 7 bits/character */ -#define Tx6 0x40 /* Tx 6 bits/character */ -#define Tx8 0x60 /* Tx 8 bits/character */ -#define DTR 0x80 /* DTR */ - -/* Write Register 6 (Sync bits 0-7/SDLC Address Field) */ - -/* Write Register 7 (Sync bits 8-15/SDLC 01111110) */ - -/* Write Register 8 (transmit buffer) */ - -/* Write Register 9 (Master interrupt control) */ -#define VIS 1 /* Vector Includes Status */ -#define NV 2 /* No Vector */ -#define DLC 4 /* Disable Lower Chain */ -#define MIE 8 /* Master Interrupt Enable */ -#define STATHI 0x10 /* Status high */ -#define NORESET 0 /* No reset on write to R9 */ -#define CHRB 0x40 /* Reset channel B */ -#define CHRA 0x80 /* Reset channel A */ -#define FHWRES 0xc0 /* Force hardware reset */ - -/* Write Register 10 (misc control bits) */ -#define BIT6 1 /* 6 bit/8bit sync */ -#define LOOPMODE 2 /* SDLC Loop mode */ -#define ABUNDER 4 /* Abort/flag on SDLC xmit underrun */ -#define MARKIDLE 8 /* Mark/flag on idle */ -#define GAOP 0x10 /* Go active on poll */ -#define NRZ 0 /* NRZ mode */ -#define NRZI 0x20 /* NRZI mode */ -#define FM1 0x40 /* FM1 (transition = 1) */ -#define FM0 0x60 /* FM0 (transition = 0) */ -#define CRCPS 0x80 /* CRC Preset I/O */ - -/* Write Register 11 (Clock Mode control) */ -#define TRxCXT 0 /* TRxC = Xtal output */ -#define TRxCTC 1 /* TRxC = Transmit clock */ -#define TRxCBR 2 /* TRxC = BR Generator Output */ -#define TRxCDP 3 /* TRxC = DPLL output */ -#define TRxCOI 4 /* TRxC O/I */ -#define TCRTxCP 0 /* Transmit clock = RTxC pin */ -#define TCTRxCP 8 /* Transmit clock = TRxC pin */ -#define TCBR 0x10 /* Transmit clock = BR Generator output */ -#define TCDPLL 0x18 /* Transmit clock = DPLL output */ -#define RCRTxCP 0 /* Receive clock = RTxC pin */ -#define RCTRxCP 0x20 /* Receive clock = TRxC pin */ -#define RCBR 0x40 /* Receive clock = BR Generator output */ -#define RCDPLL 0x60 /* Receive clock = DPLL output */ -#define RTxCX 0x80 /* RTxC Xtal/No Xtal */ - -/* Write Register 12 (lower byte of baud rate generator time constant) */ - -/* Write Register 13 (upper byte of baud rate generator time constant) */ - -/* Write Register 14 (Misc control bits) */ -#define BRENABL 1 /* Baud rate generator enable */ -#define BRSRC 2 /* Baud rate generator source */ -#define DTRREQ 4 /* DTR/Request function */ -#define AUTOECHO 8 /* Auto Echo */ -#define LOOPBAK 0x10 /* Local loopback */ -#define SEARCH 0x20 /* Enter search mode */ -#define RMC 0x40 /* Reset missing clock */ -#define DISDPLL 0x60 /* Disable DPLL */ -#define SSBR 0x80 /* Set DPLL source = BR generator */ -#define SSRTxC 0xa0 /* Set DPLL source = RTxC */ -#define SFMM 0xc0 /* Set FM mode */ -#define SNRZI 0xe0 /* Set NRZI mode */ - -/* Write Register 15 (external/status interrupt control) */ -#define PRIME 1 /* R5' etc register access (Z85C30/230 only) */ -#define ZCIE 2 /* Zero count IE */ -#define FIFOE 4 /* Z85230 only */ -#define DCDIE 8 /* DCD IE */ -#define SYNCIE 0x10 /* Sync/hunt IE */ -#define CTSIE 0x20 /* CTS IE */ -#define TxUIE 0x40 /* Tx Underrun/EOM IE */ -#define BRKIE 0x80 /* Break/Abort IE */ - - -/* Read Register 0 */ -#define Rx_CH_AV 0x1 /* Rx Character Available */ -#define ZCOUNT 0x2 /* Zero count */ -#define Tx_BUF_EMP 0x4 /* Tx Buffer empty */ -#define DCD 0x8 /* DCD */ -#define SYNC_HUNT 0x10 /* Sync/hunt */ -#define CTS 0x20 /* CTS */ -#define TxEOM 0x40 /* Tx underrun */ -#define BRK_ABRT 0x80 /* Break/Abort */ - -/* Read Register 1 */ -#define ALL_SNT 0x1 /* All sent */ -/* Residue Data for 8 Rx bits/char programmed */ -#define RES3 0x8 /* 0/3 */ -#define RES4 0x4 /* 0/4 */ -#define RES5 0xc /* 0/5 */ -#define RES6 0x2 /* 0/6 */ -#define RES7 0xa /* 0/7 */ -#define RES8 0x6 /* 0/8 */ -#define RES18 0xe /* 1/8 */ -#define RES28 0x0 /* 2/8 */ -/* Special Rx Condition Interrupts */ -#define PAR_ERR 0x10 /* Parity error */ -#define Rx_OVR 0x20 /* Rx Overrun Error */ -#define CRC_ERR 0x40 /* CRC/Framing Error */ -#define END_FR 0x80 /* End of Frame (SDLC) */ - -/* Read Register 2 (channel b only) - Interrupt vector */ - -/* Read Register 3 (interrupt pending register) ch a only */ -#define CHBEXT 0x1 /* Channel B Ext/Stat IP */ -#define CHBTxIP 0x2 /* Channel B Tx IP */ -#define CHBRxIP 0x4 /* Channel B Rx IP */ -#define CHAEXT 0x8 /* Channel A Ext/Stat IP */ -#define CHATxIP 0x10 /* Channel A Tx IP */ -#define CHARxIP 0x20 /* Channel A Rx IP */ - -/* Read Register 8 (receive data register) */ - -/* Read Register 10 (misc status bits) */ -#define ONLOOP 2 /* On loop */ -#define LOOPSEND 0x10 /* Loop sending */ -#define CLK2MIS 0x40 /* Two clocks missing */ -#define CLK1MIS 0x80 /* One clock missing */ - -/* Read Register 12 (lower byte of baud rate generator constant) */ - -/* Read Register 13 (upper byte of baud rate generator constant) */ - -/* Read Register 15 (value of WR 15) */ - - -/* - * Interrupt handling functions for this SCC - */ - -struct z8530_channel; - -struct z8530_irqhandler -{ - void (*rx)(struct z8530_channel *); - void (*tx)(struct z8530_channel *); - void (*status)(struct z8530_channel *); -}; - -/* - * A channel of the Z8530 - */ - -struct z8530_channel -{ - struct z8530_irqhandler *irqs; /* IRQ handlers */ - /* - * Synchronous - */ - u16 count; /* Buyes received */ - u16 max; /* Most we can receive this frame */ - u16 mtu; /* MTU of the device */ - u8 *dptr; /* Pointer into rx buffer */ - struct sk_buff *skb; /* Buffer dptr points into */ - struct sk_buff *skb2; /* Pending buffer */ - u8 status; /* Current DCD */ - u8 dcdcheck; /* which bit to check for line */ - u8 sync; /* Set if in sync mode */ - - u8 regs[32]; /* Register map for the chip */ - u8 pendregs[32]; /* Pending register values */ - - struct sk_buff *tx_skb; /* Buffer being transmitted */ - struct sk_buff *tx_next_skb; /* Next transmit buffer */ - u8 *tx_ptr; /* Byte pointer into the buffer */ - u8 *tx_next_ptr; /* Next pointer to use */ - u8 *tx_dma_buf[2]; /* TX flip buffers for DMA */ - u8 tx_dma_used; /* Flip buffer usage toggler */ - u16 txcount; /* Count of bytes to transmit */ - - void (*rx_function)(struct z8530_channel *, struct sk_buff *); - - /* - * Sync DMA - */ - - u8 rxdma; /* DMA channels */ - u8 txdma; - u8 rxdma_on; /* DMA active if flag set */ - u8 txdma_on; - u8 dma_num; /* Buffer we are DMAing into */ - u8 dma_ready; /* Is the other buffer free */ - u8 dma_tx; /* TX is to use DMA */ - u8 *rx_buf[2]; /* The flip buffers */ - - /* - * System - */ - - struct z8530_dev *dev; /* Z85230 chip instance we are from */ - unsigned long ctrlio; /* I/O ports */ - unsigned long dataio; - - /* - * For PC we encode this way. - */ -#define Z8530_PORT_SLEEP 0x80000000 -#define Z8530_PORT_OF(x) ((x)&0xFFFF) - - u32 rx_overrun; /* Overruns - not done yet */ - u32 rx_crc_err; - - /* - * Bound device pointers - */ - - void *private; /* For our owner */ - struct net_device *netdevice; /* Network layer device */ - - spinlock_t *lock; /* Device lock */ -}; - -/* - * Each Z853x0 device. - */ - -struct z8530_dev -{ - char *name; /* Device instance name */ - struct z8530_channel chanA; /* SCC channel A */ - struct z8530_channel chanB; /* SCC channel B */ - int type; -#define Z8530 0 /* NMOS dinosaur */ -#define Z85C30 1 /* CMOS - better */ -#define Z85230 2 /* CMOS with real FIFO */ - int irq; /* Interrupt for the device */ - int active; /* Soft interrupt enable - the Mac doesn't - always have a hard disable on its 8530s... */ - spinlock_t lock; -}; - - -/* - * Functions - */ - -extern u8 z8530_dead_port[]; -extern u8 z8530_hdlc_kilostream_85230[]; -extern u8 z8530_hdlc_kilostream[]; -irqreturn_t z8530_interrupt(int, void *); -void z8530_describe(struct z8530_dev *, char *mapping, unsigned long io); -int z8530_init(struct z8530_dev *); -int z8530_shutdown(struct z8530_dev *); -int z8530_sync_open(struct net_device *, struct z8530_channel *); -int z8530_sync_close(struct net_device *, struct z8530_channel *); -int z8530_sync_dma_open(struct net_device *, struct z8530_channel *); -int z8530_sync_dma_close(struct net_device *, struct z8530_channel *); -int z8530_sync_txdma_open(struct net_device *, struct z8530_channel *); -int z8530_sync_txdma_close(struct net_device *, struct z8530_channel *); -int z8530_channel_load(struct z8530_channel *, u8 *); -netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb); -void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb); - - -/* - * Standard interrupt vector sets - */ - -extern struct z8530_irqhandler z8530_sync, z8530_async, z8530_nop; - -/* - * Asynchronous Interfacing - */ - -/* - * The size of the serial xmit buffer is 1 page, or 4096 bytes - */ - -#define SERIAL_XMIT_SIZE 4096 -#define WAKEUP_CHARS 256 - -/* - * Events are used to schedule things to happen at timer-interrupt - * time, instead of at rs interrupt time. - */ -#define RS_EVENT_WRITE_WAKEUP 0 - -/* Internal flags used only by kernel/chr_drv/serial.c */ -#define ZILOG_INITIALIZED 0x80000000 /* Serial port was initialized */ -#define ZILOG_CALLOUT_ACTIVE 0x40000000 /* Call out device is active */ -#define ZILOG_NORMAL_ACTIVE 0x20000000 /* Normal device is active */ -#define ZILOG_BOOT_AUTOCONF 0x10000000 /* Autoconfigure port on bootup */ -#define ZILOG_CLOSING 0x08000000 /* Serial port is closing */ -#define ZILOG_CTS_FLOW 0x04000000 /* Do CTS flow control */ -#define ZILOG_CHECK_CD 0x02000000 /* i.e., CLOCAL */ - -#endif /* !(_Z8530_H) */ |