summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorJaegeuk Kim <jaegeuk.kim@samsung.com>2012-11-02 09:08:18 +0100
committerJaegeuk Kim <jaegeuk.kim@samsung.com>2012-12-11 05:43:40 +0100
commit127e670abfa7fa150f6550d620ded930f5bdb4e7 (patch)
tree49f395d6e8bea5123a734e7d75953f694d90fd05
parentf2fs: add super block operations (diff)
downloadlinux-127e670abfa7fa150f6550d620ded930f5bdb4e7.tar.xz
linux-127e670abfa7fa150f6550d620ded930f5bdb4e7.zip
f2fs: add checkpoint operations
This adds functions required by the checkpoint operations. Basically, f2fs adopts a roll-back model with checkpoint blocks written in the CP area. The checkpoint procedure includes as follows. - write_checkpoint() 1. block_operations() freezes VFS calls. 2. submit cached bios. 3. flush_nat_entries() writes NAT pages updated by dirty NAT entries. 4. flush_sit_entries() writes SIT pages updated by dirty SIT entries. 5. do_checkpoint() writes, - checkpoint block (#0) - orphan inode blocks - summary blocks made by active logs - checkpoint block (copy of #0) 6. unblock_opeations() In order to provide an address space for meta pages, f2fs_sb_info has a special inode, namely meta_inode. This patch also adds the address space operations for meta_inode. Signed-off-by: Chul Lee <chur.lee@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
-rw-r--r--fs/f2fs/checkpoint.c792
1 files changed, 792 insertions, 0 deletions
diff --git a/fs/f2fs/checkpoint.c b/fs/f2fs/checkpoint.c
new file mode 100644
index 000000000000..ab743f92ee06
--- /dev/null
+++ b/fs/f2fs/checkpoint.c
@@ -0,0 +1,792 @@
+/**
+ * fs/f2fs/checkpoint.c
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/fs.h>
+#include <linux/bio.h>
+#include <linux/mpage.h>
+#include <linux/writeback.h>
+#include <linux/blkdev.h>
+#include <linux/f2fs_fs.h>
+#include <linux/pagevec.h>
+#include <linux/swap.h>
+
+#include "f2fs.h"
+#include "node.h"
+#include "segment.h"
+
+static struct kmem_cache *orphan_entry_slab;
+static struct kmem_cache *inode_entry_slab;
+
+/**
+ * We guarantee no failure on the returned page.
+ */
+struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
+{
+ struct address_space *mapping = sbi->meta_inode->i_mapping;
+ struct page *page = NULL;
+repeat:
+ page = grab_cache_page(mapping, index);
+ if (!page) {
+ cond_resched();
+ goto repeat;
+ }
+
+ /* We wait writeback only inside grab_meta_page() */
+ wait_on_page_writeback(page);
+ SetPageUptodate(page);
+ return page;
+}
+
+/**
+ * We guarantee no failure on the returned page.
+ */
+struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
+{
+ struct address_space *mapping = sbi->meta_inode->i_mapping;
+ struct page *page;
+repeat:
+ page = grab_cache_page(mapping, index);
+ if (!page) {
+ cond_resched();
+ goto repeat;
+ }
+ if (f2fs_readpage(sbi, page, index, READ_SYNC)) {
+ f2fs_put_page(page, 1);
+ goto repeat;
+ }
+ mark_page_accessed(page);
+
+ /* We do not allow returning an errorneous page */
+ return page;
+}
+
+static int f2fs_write_meta_page(struct page *page,
+ struct writeback_control *wbc)
+{
+ struct inode *inode = page->mapping->host;
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ int err;
+
+ wait_on_page_writeback(page);
+
+ err = write_meta_page(sbi, page, wbc);
+ if (err) {
+ wbc->pages_skipped++;
+ set_page_dirty(page);
+ }
+
+ dec_page_count(sbi, F2FS_DIRTY_META);
+
+ /* In this case, we should not unlock this page */
+ if (err != AOP_WRITEPAGE_ACTIVATE)
+ unlock_page(page);
+ return err;
+}
+
+static int f2fs_write_meta_pages(struct address_space *mapping,
+ struct writeback_control *wbc)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
+ struct block_device *bdev = sbi->sb->s_bdev;
+ long written;
+
+ if (wbc->for_kupdate)
+ return 0;
+
+ if (get_pages(sbi, F2FS_DIRTY_META) == 0)
+ return 0;
+
+ /* if mounting is failed, skip writing node pages */
+ mutex_lock(&sbi->cp_mutex);
+ written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
+ mutex_unlock(&sbi->cp_mutex);
+ wbc->nr_to_write -= written;
+ return 0;
+}
+
+long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
+ long nr_to_write)
+{
+ struct address_space *mapping = sbi->meta_inode->i_mapping;
+ pgoff_t index = 0, end = LONG_MAX;
+ struct pagevec pvec;
+ long nwritten = 0;
+ struct writeback_control wbc = {
+ .for_reclaim = 0,
+ };
+
+ pagevec_init(&pvec, 0);
+
+ while (index <= end) {
+ int i, nr_pages;
+ nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
+ PAGECACHE_TAG_DIRTY,
+ min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
+ if (nr_pages == 0)
+ break;
+
+ for (i = 0; i < nr_pages; i++) {
+ struct page *page = pvec.pages[i];
+ lock_page(page);
+ BUG_ON(page->mapping != mapping);
+ BUG_ON(!PageDirty(page));
+ clear_page_dirty_for_io(page);
+ f2fs_write_meta_page(page, &wbc);
+ if (nwritten++ >= nr_to_write)
+ break;
+ }
+ pagevec_release(&pvec);
+ cond_resched();
+ }
+
+ if (nwritten)
+ f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
+
+ return nwritten;
+}
+
+static int f2fs_set_meta_page_dirty(struct page *page)
+{
+ struct address_space *mapping = page->mapping;
+ struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
+
+ SetPageUptodate(page);
+ if (!PageDirty(page)) {
+ __set_page_dirty_nobuffers(page);
+ inc_page_count(sbi, F2FS_DIRTY_META);
+ F2FS_SET_SB_DIRT(sbi);
+ return 1;
+ }
+ return 0;
+}
+
+const struct address_space_operations f2fs_meta_aops = {
+ .writepage = f2fs_write_meta_page,
+ .writepages = f2fs_write_meta_pages,
+ .set_page_dirty = f2fs_set_meta_page_dirty,
+};
+
+int check_orphan_space(struct f2fs_sb_info *sbi)
+{
+ unsigned int max_orphans;
+ int err = 0;
+
+ /*
+ * considering 512 blocks in a segment 5 blocks are needed for cp
+ * and log segment summaries. Remaining blocks are used to keep
+ * orphan entries with the limitation one reserved segment
+ * for cp pack we can have max 1020*507 orphan entries
+ */
+ max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
+ mutex_lock(&sbi->orphan_inode_mutex);
+ if (sbi->n_orphans >= max_orphans)
+ err = -ENOSPC;
+ mutex_unlock(&sbi->orphan_inode_mutex);
+ return err;
+}
+
+void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
+{
+ struct list_head *head, *this;
+ struct orphan_inode_entry *new = NULL, *orphan = NULL;
+
+ mutex_lock(&sbi->orphan_inode_mutex);
+ head = &sbi->orphan_inode_list;
+ list_for_each(this, head) {
+ orphan = list_entry(this, struct orphan_inode_entry, list);
+ if (orphan->ino == ino)
+ goto out;
+ if (orphan->ino > ino)
+ break;
+ orphan = NULL;
+ }
+retry:
+ new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
+ if (!new) {
+ cond_resched();
+ goto retry;
+ }
+ new->ino = ino;
+ INIT_LIST_HEAD(&new->list);
+
+ /* add new_oentry into list which is sorted by inode number */
+ if (orphan) {
+ struct orphan_inode_entry *prev;
+
+ /* get previous entry */
+ prev = list_entry(orphan->list.prev, typeof(*prev), list);
+ if (&prev->list != head)
+ /* insert new orphan inode entry */
+ list_add(&new->list, &prev->list);
+ else
+ list_add(&new->list, head);
+ } else {
+ list_add_tail(&new->list, head);
+ }
+ sbi->n_orphans++;
+out:
+ mutex_unlock(&sbi->orphan_inode_mutex);
+}
+
+void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
+{
+ struct list_head *this, *next, *head;
+ struct orphan_inode_entry *orphan;
+
+ mutex_lock(&sbi->orphan_inode_mutex);
+ head = &sbi->orphan_inode_list;
+ list_for_each_safe(this, next, head) {
+ orphan = list_entry(this, struct orphan_inode_entry, list);
+ if (orphan->ino == ino) {
+ list_del(&orphan->list);
+ kmem_cache_free(orphan_entry_slab, orphan);
+ sbi->n_orphans--;
+ break;
+ }
+ }
+ mutex_unlock(&sbi->orphan_inode_mutex);
+}
+
+static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
+{
+ struct inode *inode = f2fs_iget(sbi->sb, ino);
+ BUG_ON(IS_ERR(inode));
+ clear_nlink(inode);
+
+ /* truncate all the data during iput */
+ iput(inode);
+}
+
+int recover_orphan_inodes(struct f2fs_sb_info *sbi)
+{
+ block_t start_blk, orphan_blkaddr, i, j;
+
+ if (!(F2FS_CKPT(sbi)->ckpt_flags & CP_ORPHAN_PRESENT_FLAG))
+ return 0;
+
+ sbi->por_doing = 1;
+ start_blk = __start_cp_addr(sbi) + 1;
+ orphan_blkaddr = __start_sum_addr(sbi) - 1;
+
+ for (i = 0; i < orphan_blkaddr; i++) {
+ struct page *page = get_meta_page(sbi, start_blk + i);
+ struct f2fs_orphan_block *orphan_blk;
+
+ orphan_blk = (struct f2fs_orphan_block *)page_address(page);
+ for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
+ nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
+ recover_orphan_inode(sbi, ino);
+ }
+ f2fs_put_page(page, 1);
+ }
+ /* clear Orphan Flag */
+ F2FS_CKPT(sbi)->ckpt_flags &= (~CP_ORPHAN_PRESENT_FLAG);
+ sbi->por_doing = 0;
+ return 0;
+}
+
+static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
+{
+ struct list_head *head, *this, *next;
+ struct f2fs_orphan_block *orphan_blk = NULL;
+ struct page *page = NULL;
+ unsigned int nentries = 0;
+ unsigned short index = 1;
+ unsigned short orphan_blocks;
+
+ orphan_blocks = (unsigned short)((sbi->n_orphans +
+ (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
+
+ mutex_lock(&sbi->orphan_inode_mutex);
+ head = &sbi->orphan_inode_list;
+
+ /* loop for each orphan inode entry and write them in Jornal block */
+ list_for_each_safe(this, next, head) {
+ struct orphan_inode_entry *orphan;
+
+ orphan = list_entry(this, struct orphan_inode_entry, list);
+
+ if (nentries == F2FS_ORPHANS_PER_BLOCK) {
+ /*
+ * an orphan block is full of 1020 entries,
+ * then we need to flush current orphan blocks
+ * and bring another one in memory
+ */
+ orphan_blk->blk_addr = cpu_to_le16(index);
+ orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
+ orphan_blk->entry_count = cpu_to_le32(nentries);
+ set_page_dirty(page);
+ f2fs_put_page(page, 1);
+ index++;
+ start_blk++;
+ nentries = 0;
+ page = NULL;
+ }
+ if (page)
+ goto page_exist;
+
+ page = grab_meta_page(sbi, start_blk);
+ orphan_blk = (struct f2fs_orphan_block *)page_address(page);
+ memset(orphan_blk, 0, sizeof(*orphan_blk));
+page_exist:
+ orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
+ }
+ if (!page)
+ goto end;
+
+ orphan_blk->blk_addr = cpu_to_le16(index);
+ orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
+ orphan_blk->entry_count = cpu_to_le32(nentries);
+ set_page_dirty(page);
+ f2fs_put_page(page, 1);
+end:
+ mutex_unlock(&sbi->orphan_inode_mutex);
+}
+
+static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
+ block_t cp_addr, unsigned long long *version)
+{
+ struct page *cp_page_1, *cp_page_2 = NULL;
+ unsigned long blk_size = sbi->blocksize;
+ struct f2fs_checkpoint *cp_block;
+ unsigned long long cur_version = 0, pre_version = 0;
+ unsigned int crc = 0;
+ size_t crc_offset;
+
+ /* Read the 1st cp block in this CP pack */
+ cp_page_1 = get_meta_page(sbi, cp_addr);
+
+ /* get the version number */
+ cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
+ crc_offset = le32_to_cpu(cp_block->checksum_offset);
+ if (crc_offset >= blk_size)
+ goto invalid_cp1;
+
+ crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
+ if (!f2fs_crc_valid(crc, cp_block, crc_offset))
+ goto invalid_cp1;
+
+ pre_version = le64_to_cpu(cp_block->checkpoint_ver);
+
+ /* Read the 2nd cp block in this CP pack */
+ cp_addr += le64_to_cpu(cp_block->cp_pack_total_block_count) - 1;
+ cp_page_2 = get_meta_page(sbi, cp_addr);
+
+ cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
+ crc_offset = le32_to_cpu(cp_block->checksum_offset);
+ if (crc_offset >= blk_size)
+ goto invalid_cp2;
+
+ crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
+ if (!f2fs_crc_valid(crc, cp_block, crc_offset))
+ goto invalid_cp2;
+
+ cur_version = le64_to_cpu(cp_block->checkpoint_ver);
+
+ if (cur_version == pre_version) {
+ *version = cur_version;
+ f2fs_put_page(cp_page_2, 1);
+ return cp_page_1;
+ }
+invalid_cp2:
+ f2fs_put_page(cp_page_2, 1);
+invalid_cp1:
+ f2fs_put_page(cp_page_1, 1);
+ return NULL;
+}
+
+int get_valid_checkpoint(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_checkpoint *cp_block;
+ struct f2fs_super_block *fsb = sbi->raw_super;
+ struct page *cp1, *cp2, *cur_page;
+ unsigned long blk_size = sbi->blocksize;
+ unsigned long long cp1_version = 0, cp2_version = 0;
+ unsigned long long cp_start_blk_no;
+
+ sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
+ if (!sbi->ckpt)
+ return -ENOMEM;
+ /*
+ * Finding out valid cp block involves read both
+ * sets( cp pack1 and cp pack 2)
+ */
+ cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
+ cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
+
+ /* The second checkpoint pack should start at the next segment */
+ cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
+ cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
+
+ if (cp1 && cp2) {
+ if (ver_after(cp2_version, cp1_version))
+ cur_page = cp2;
+ else
+ cur_page = cp1;
+ } else if (cp1) {
+ cur_page = cp1;
+ } else if (cp2) {
+ cur_page = cp2;
+ } else {
+ goto fail_no_cp;
+ }
+
+ cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
+ memcpy(sbi->ckpt, cp_block, blk_size);
+
+ f2fs_put_page(cp1, 1);
+ f2fs_put_page(cp2, 1);
+ return 0;
+
+fail_no_cp:
+ kfree(sbi->ckpt);
+ return -EINVAL;
+}
+
+void set_dirty_dir_page(struct inode *inode, struct page *page)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct list_head *head = &sbi->dir_inode_list;
+ struct dir_inode_entry *new;
+ struct list_head *this;
+
+ if (!S_ISDIR(inode->i_mode))
+ return;
+retry:
+ new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
+ if (!new) {
+ cond_resched();
+ goto retry;
+ }
+ new->inode = inode;
+ INIT_LIST_HEAD(&new->list);
+
+ spin_lock(&sbi->dir_inode_lock);
+ list_for_each(this, head) {
+ struct dir_inode_entry *entry;
+ entry = list_entry(this, struct dir_inode_entry, list);
+ if (entry->inode == inode) {
+ kmem_cache_free(inode_entry_slab, new);
+ goto out;
+ }
+ }
+ list_add_tail(&new->list, head);
+ sbi->n_dirty_dirs++;
+
+ BUG_ON(!S_ISDIR(inode->i_mode));
+out:
+ inc_page_count(sbi, F2FS_DIRTY_DENTS);
+ inode_inc_dirty_dents(inode);
+ SetPagePrivate(page);
+
+ spin_unlock(&sbi->dir_inode_lock);
+}
+
+void remove_dirty_dir_inode(struct inode *inode)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct list_head *head = &sbi->dir_inode_list;
+ struct list_head *this;
+
+ if (!S_ISDIR(inode->i_mode))
+ return;
+
+ spin_lock(&sbi->dir_inode_lock);
+ if (atomic_read(&F2FS_I(inode)->dirty_dents))
+ goto out;
+
+ list_for_each(this, head) {
+ struct dir_inode_entry *entry;
+ entry = list_entry(this, struct dir_inode_entry, list);
+ if (entry->inode == inode) {
+ list_del(&entry->list);
+ kmem_cache_free(inode_entry_slab, entry);
+ sbi->n_dirty_dirs--;
+ break;
+ }
+ }
+out:
+ spin_unlock(&sbi->dir_inode_lock);
+}
+
+void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
+{
+ struct list_head *head = &sbi->dir_inode_list;
+ struct dir_inode_entry *entry;
+ struct inode *inode;
+retry:
+ spin_lock(&sbi->dir_inode_lock);
+ if (list_empty(head)) {
+ spin_unlock(&sbi->dir_inode_lock);
+ return;
+ }
+ entry = list_entry(head->next, struct dir_inode_entry, list);
+ inode = igrab(entry->inode);
+ spin_unlock(&sbi->dir_inode_lock);
+ if (inode) {
+ filemap_flush(inode->i_mapping);
+ iput(inode);
+ } else {
+ /*
+ * We should submit bio, since it exists several
+ * wribacking dentry pages in the freeing inode.
+ */
+ f2fs_submit_bio(sbi, DATA, true);
+ }
+ goto retry;
+}
+
+/**
+ * Freeze all the FS-operations for checkpoint.
+ */
+void block_operations(struct f2fs_sb_info *sbi)
+{
+ int t;
+ struct writeback_control wbc = {
+ .sync_mode = WB_SYNC_ALL,
+ .nr_to_write = LONG_MAX,
+ .for_reclaim = 0,
+ };
+
+ /* Stop renaming operation */
+ mutex_lock_op(sbi, RENAME);
+ mutex_lock_op(sbi, DENTRY_OPS);
+
+retry_dents:
+ /* write all the dirty dentry pages */
+ sync_dirty_dir_inodes(sbi);
+
+ mutex_lock_op(sbi, DATA_WRITE);
+ if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
+ mutex_unlock_op(sbi, DATA_WRITE);
+ goto retry_dents;
+ }
+
+ /* block all the operations */
+ for (t = DATA_NEW; t <= NODE_TRUNC; t++)
+ mutex_lock_op(sbi, t);
+
+ mutex_lock(&sbi->write_inode);
+
+ /*
+ * POR: we should ensure that there is no dirty node pages
+ * until finishing nat/sit flush.
+ */
+retry:
+ sync_node_pages(sbi, 0, &wbc);
+
+ mutex_lock_op(sbi, NODE_WRITE);
+
+ if (get_pages(sbi, F2FS_DIRTY_NODES)) {
+ mutex_unlock_op(sbi, NODE_WRITE);
+ goto retry;
+ }
+ mutex_unlock(&sbi->write_inode);
+}
+
+static void unblock_operations(struct f2fs_sb_info *sbi)
+{
+ int t;
+ for (t = NODE_WRITE; t >= RENAME; t--)
+ mutex_unlock_op(sbi, t);
+}
+
+static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
+{
+ struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
+ nid_t last_nid = 0;
+ block_t start_blk;
+ struct page *cp_page;
+ unsigned int data_sum_blocks, orphan_blocks;
+ void *kaddr;
+ __u32 crc32 = 0;
+ int i;
+
+ /* Flush all the NAT/SIT pages */
+ while (get_pages(sbi, F2FS_DIRTY_META))
+ sync_meta_pages(sbi, META, LONG_MAX);
+
+ next_free_nid(sbi, &last_nid);
+
+ /*
+ * modify checkpoint
+ * version number is already updated
+ */
+ ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
+ ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
+ ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
+ for (i = 0; i < 3; i++) {
+ ckpt->cur_node_segno[i] =
+ cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
+ ckpt->cur_node_blkoff[i] =
+ cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
+ ckpt->alloc_type[i + CURSEG_HOT_NODE] =
+ curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
+ }
+ for (i = 0; i < 3; i++) {
+ ckpt->cur_data_segno[i] =
+ cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
+ ckpt->cur_data_blkoff[i] =
+ cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
+ ckpt->alloc_type[i + CURSEG_HOT_DATA] =
+ curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
+ }
+
+ ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
+ ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
+ ckpt->next_free_nid = cpu_to_le32(last_nid);
+
+ /* 2 cp + n data seg summary + orphan inode blocks */
+ data_sum_blocks = npages_for_summary_flush(sbi);
+ if (data_sum_blocks < 3)
+ ckpt->ckpt_flags |= CP_COMPACT_SUM_FLAG;
+ else
+ ckpt->ckpt_flags &= (~CP_COMPACT_SUM_FLAG);
+
+ orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
+ / F2FS_ORPHANS_PER_BLOCK;
+ ckpt->cp_pack_start_sum = 1 + orphan_blocks;
+ ckpt->cp_pack_total_block_count = 2 + data_sum_blocks + orphan_blocks;
+
+ if (is_umount) {
+ ckpt->ckpt_flags |= CP_UMOUNT_FLAG;
+ ckpt->cp_pack_total_block_count += NR_CURSEG_NODE_TYPE;
+ } else {
+ ckpt->ckpt_flags &= (~CP_UMOUNT_FLAG);
+ }
+
+ if (sbi->n_orphans)
+ ckpt->ckpt_flags |= CP_ORPHAN_PRESENT_FLAG;
+ else
+ ckpt->ckpt_flags &= (~CP_ORPHAN_PRESENT_FLAG);
+
+ /* update SIT/NAT bitmap */
+ get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
+ get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
+
+ crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
+ *(__u32 *)((unsigned char *)ckpt +
+ le32_to_cpu(ckpt->checksum_offset))
+ = cpu_to_le32(crc32);
+
+ start_blk = __start_cp_addr(sbi);
+
+ /* write out checkpoint buffer at block 0 */
+ cp_page = grab_meta_page(sbi, start_blk++);
+ kaddr = page_address(cp_page);
+ memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
+ set_page_dirty(cp_page);
+ f2fs_put_page(cp_page, 1);
+
+ if (sbi->n_orphans) {
+ write_orphan_inodes(sbi, start_blk);
+ start_blk += orphan_blocks;
+ }
+
+ write_data_summaries(sbi, start_blk);
+ start_blk += data_sum_blocks;
+ if (is_umount) {
+ write_node_summaries(sbi, start_blk);
+ start_blk += NR_CURSEG_NODE_TYPE;
+ }
+
+ /* writeout checkpoint block */
+ cp_page = grab_meta_page(sbi, start_blk);
+ kaddr = page_address(cp_page);
+ memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
+ set_page_dirty(cp_page);
+ f2fs_put_page(cp_page, 1);
+
+ /* wait for previous submitted node/meta pages writeback */
+ while (get_pages(sbi, F2FS_WRITEBACK))
+ congestion_wait(BLK_RW_ASYNC, HZ / 50);
+
+ filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
+ filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
+
+ /* update user_block_counts */
+ sbi->last_valid_block_count = sbi->total_valid_block_count;
+ sbi->alloc_valid_block_count = 0;
+
+ /* Here, we only have one bio having CP pack */
+ if (sbi->ckpt->ckpt_flags & CP_ERROR_FLAG)
+ sbi->sb->s_flags |= MS_RDONLY;
+ else
+ sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
+
+ clear_prefree_segments(sbi);
+ F2FS_RESET_SB_DIRT(sbi);
+}
+
+/**
+ * We guarantee that this checkpoint procedure should not fail.
+ */
+void write_checkpoint(struct f2fs_sb_info *sbi, bool blocked, bool is_umount)
+{
+ struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
+ unsigned long long ckpt_ver;
+
+ if (!blocked) {
+ mutex_lock(&sbi->cp_mutex);
+ block_operations(sbi);
+ }
+
+ f2fs_submit_bio(sbi, DATA, true);
+ f2fs_submit_bio(sbi, NODE, true);
+ f2fs_submit_bio(sbi, META, true);
+
+ /*
+ * update checkpoint pack index
+ * Increase the version number so that
+ * SIT entries and seg summaries are written at correct place
+ */
+ ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
+ ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
+
+ /* write cached NAT/SIT entries to NAT/SIT area */
+ flush_nat_entries(sbi);
+ flush_sit_entries(sbi);
+
+ reset_victim_segmap(sbi);
+
+ /* unlock all the fs_lock[] in do_checkpoint() */
+ do_checkpoint(sbi, is_umount);
+
+ unblock_operations(sbi);
+ mutex_unlock(&sbi->cp_mutex);
+}
+
+void init_orphan_info(struct f2fs_sb_info *sbi)
+{
+ mutex_init(&sbi->orphan_inode_mutex);
+ INIT_LIST_HEAD(&sbi->orphan_inode_list);
+ sbi->n_orphans = 0;
+}
+
+int create_checkpoint_caches(void)
+{
+ orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
+ sizeof(struct orphan_inode_entry), NULL);
+ if (unlikely(!orphan_entry_slab))
+ return -ENOMEM;
+ inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
+ sizeof(struct dir_inode_entry), NULL);
+ if (unlikely(!inode_entry_slab)) {
+ kmem_cache_destroy(orphan_entry_slab);
+ return -ENOMEM;
+ }
+ return 0;
+}
+
+void destroy_checkpoint_caches(void)
+{
+ kmem_cache_destroy(orphan_entry_slab);
+ kmem_cache_destroy(inode_entry_slab);
+}