diff options
author | Mauro Carvalho Chehab <mchehab@osg.samsung.com> | 2015-04-21 11:33:03 +0200 |
---|---|---|
committer | Mauro Carvalho Chehab <mchehab@osg.samsung.com> | 2015-04-21 14:44:55 +0200 |
commit | 64131a87f2aae2ed9e05d8227c5b009ca6c50d98 (patch) | |
tree | fdea23fd59216120bf54a48c60ca24489a733f14 /Documentation/DocBook | |
parent | Merge branch 'patchwork' into v4l_for_linus (diff) | |
parent | Merge Linus master into drm-next (diff) | |
download | linux-64131a87f2aae2ed9e05d8227c5b009ca6c50d98.tar.xz linux-64131a87f2aae2ed9e05d8227c5b009ca6c50d98.zip |
Merge branch 'drm-next-merged' of git://people.freedesktop.org/~airlied/linux into v4l_for_linus
* 'drm-next-merged' of git://people.freedesktop.org/~airlied/linux: (9717 commits)
media-bus: Fixup RGB444_1X12, RGB565_1X16, and YUV8_1X24 media bus format
hexdump: avoid warning in test function
fs: take i_mutex during prepare_binprm for set[ug]id executables
smp: Fix error case handling in smp_call_function_*()
iommu-common: Fix PARISC compile-time warnings
sparc: Make LDC use common iommu poll management functions
sparc: Make sparc64 use scalable lib/iommu-common.c functions
Break up monolithic iommu table/lock into finer graularity pools and lock
sparc: Revert generic IOMMU allocator.
tools/power turbostat: correct dumped pkg-cstate-limit value
tools/power turbostat: calculate TSC frequency from CPUID(0x15) on SKL
tools/power turbostat: correct DRAM RAPL units on recent Xeon processors
tools/power turbostat: Initial Skylake support
tools/power turbostat: Use $(CURDIR) instead of $(PWD) and add support for O= option in Makefile
tools/power turbostat: modprobe msr, if needed
tools/power turbostat: dump MSR_TURBO_RATIO_LIMIT2
tools/power turbostat: use new MSR_TURBO_RATIO_LIMIT names
Bluetooth: hidp: Fix regression with older userspace and flags validation
config: Enable NEED_DMA_MAP_STATE by default when SWIOTLB is selected
perf/x86/intel/pt: Fix and clean up error handling in pt_event_add()
...
That solves several merge conflicts:
Documentation/DocBook/media/v4l/subdev-formats.xml
Documentation/devicetree/bindings/vendor-prefixes.txt
drivers/staging/media/mn88473/mn88473.c
include/linux/kconfig.h
include/uapi/linux/media-bus-format.h
The ones at subdev-formats.xml and media-bus-format.h are not trivial.
That's why we opted to merge from DRM.
Diffstat (limited to 'Documentation/DocBook')
-rw-r--r-- | Documentation/DocBook/crypto-API.tmpl | 860 | ||||
-rw-r--r-- | Documentation/DocBook/drm.tmpl | 31 | ||||
-rw-r--r-- | Documentation/DocBook/media/v4l/subdev-formats.xml | 426 |
3 files changed, 1314 insertions, 3 deletions
diff --git a/Documentation/DocBook/crypto-API.tmpl b/Documentation/DocBook/crypto-API.tmpl index 04a8c24ead47..efc8d90a9a3f 100644 --- a/Documentation/DocBook/crypto-API.tmpl +++ b/Documentation/DocBook/crypto-API.tmpl @@ -509,6 +509,270 @@ select it due to the used type and mask field. </para> </sect1> + + <sect1><title>Internal Structure of Kernel Crypto API</title> + + <para> + The kernel crypto API has an internal structure where a cipher + implementation may use many layers and indirections. This section + shall help to clarify how the kernel crypto API uses + various components to implement the complete cipher. + </para> + + <para> + The following subsections explain the internal structure based + on existing cipher implementations. The first section addresses + the most complex scenario where all other scenarios form a logical + subset. + </para> + + <sect2><title>Generic AEAD Cipher Structure</title> + + <para> + The following ASCII art decomposes the kernel crypto API layers + when using the AEAD cipher with the automated IV generation. The + shown example is used by the IPSEC layer. + </para> + + <para> + For other use cases of AEAD ciphers, the ASCII art applies as + well, but the caller may not use the GIVCIPHER interface. In + this case, the caller must generate the IV. + </para> + + <para> + The depicted example decomposes the AEAD cipher of GCM(AES) based + on the generic C implementations (gcm.c, aes-generic.c, ctr.c, + ghash-generic.c, seqiv.c). The generic implementation serves as an + example showing the complete logic of the kernel crypto API. + </para> + + <para> + It is possible that some streamlined cipher implementations (like + AES-NI) provide implementations merging aspects which in the view + of the kernel crypto API cannot be decomposed into layers any more. + In case of the AES-NI implementation, the CTR mode, the GHASH + implementation and the AES cipher are all merged into one cipher + implementation registered with the kernel crypto API. In this case, + the concept described by the following ASCII art applies too. However, + the decomposition of GCM into the individual sub-components + by the kernel crypto API is not done any more. + </para> + + <para> + Each block in the following ASCII art is an independent cipher + instance obtained from the kernel crypto API. Each block + is accessed by the caller or by other blocks using the API functions + defined by the kernel crypto API for the cipher implementation type. + </para> + + <para> + The blocks below indicate the cipher type as well as the specific + logic implemented in the cipher. + </para> + + <para> + The ASCII art picture also indicates the call structure, i.e. who + calls which component. The arrows point to the invoked block + where the caller uses the API applicable to the cipher type + specified for the block. + </para> + + <programlisting> +<![CDATA[ +kernel crypto API | IPSEC Layer + | ++-----------+ | +| | (1) +| givcipher | <----------------------------------- esp_output +| (seqiv) | ---+ ++-----------+ | + | (2) ++-----------+ | +| | <--+ (2) +| aead | <----------------------------------- esp_input +| (gcm) | ------------+ ++-----------+ | + | (3) | (5) + v v ++-----------+ +-----------+ +| | | | +| ablkcipher| | ahash | +| (ctr) | ---+ | (ghash) | ++-----------+ | +-----------+ + | ++-----------+ | (4) +| | <--+ +| cipher | +| (aes) | ++-----------+ +]]> + </programlisting> + + <para> + The following call sequence is applicable when the IPSEC layer + triggers an encryption operation with the esp_output function. During + configuration, the administrator set up the use of rfc4106(gcm(aes)) as + the cipher for ESP. The following call sequence is now depicted in the + ASCII art above: + </para> + + <orderedlist> + <listitem> + <para> + esp_output() invokes crypto_aead_givencrypt() to trigger an encryption + operation of the GIVCIPHER implementation. + </para> + + <para> + In case of GCM, the SEQIV implementation is registered as GIVCIPHER + in crypto_rfc4106_alloc(). + </para> + + <para> + The SEQIV performs its operation to generate an IV where the core + function is seqiv_geniv(). + </para> + </listitem> + + <listitem> + <para> + Now, SEQIV uses the AEAD API function calls to invoke the associated + AEAD cipher. In our case, during the instantiation of SEQIV, the + cipher handle for GCM is provided to SEQIV. This means that SEQIV + invokes AEAD cipher operations with the GCM cipher handle. + </para> + + <para> + During instantiation of the GCM handle, the CTR(AES) and GHASH + ciphers are instantiated. The cipher handles for CTR(AES) and GHASH + are retained for later use. + </para> + + <para> + The GCM implementation is responsible to invoke the CTR mode AES and + the GHASH cipher in the right manner to implement the GCM + specification. + </para> + </listitem> + + <listitem> + <para> + The GCM AEAD cipher type implementation now invokes the ABLKCIPHER API + with the instantiated CTR(AES) cipher handle. + </para> + + <para> + During instantiation of the CTR(AES) cipher, the CIPHER type + implementation of AES is instantiated. The cipher handle for AES is + retained. + </para> + + <para> + That means that the ABLKCIPHER implementation of CTR(AES) only + implements the CTR block chaining mode. After performing the block + chaining operation, the CIPHER implementation of AES is invoked. + </para> + </listitem> + + <listitem> + <para> + The ABLKCIPHER of CTR(AES) now invokes the CIPHER API with the AES + cipher handle to encrypt one block. + </para> + </listitem> + + <listitem> + <para> + The GCM AEAD implementation also invokes the GHASH cipher + implementation via the AHASH API. + </para> + </listitem> + </orderedlist> + + <para> + When the IPSEC layer triggers the esp_input() function, the same call + sequence is followed with the only difference that the operation starts + with step (2). + </para> + </sect2> + + <sect2><title>Generic Block Cipher Structure</title> + <para> + Generic block ciphers follow the same concept as depicted with the ASCII + art picture above. + </para> + + <para> + For example, CBC(AES) is implemented with cbc.c, and aes-generic.c. The + ASCII art picture above applies as well with the difference that only + step (4) is used and the ABLKCIPHER block chaining mode is CBC. + </para> + </sect2> + + <sect2><title>Generic Keyed Message Digest Structure</title> + <para> + Keyed message digest implementations again follow the same concept as + depicted in the ASCII art picture above. + </para> + + <para> + For example, HMAC(SHA256) is implemented with hmac.c and + sha256_generic.c. The following ASCII art illustrates the + implementation: + </para> + + <programlisting> +<![CDATA[ +kernel crypto API | Caller + | ++-----------+ (1) | +| | <------------------ some_function +| ahash | +| (hmac) | ---+ ++-----------+ | + | (2) ++-----------+ | +| | <--+ +| shash | +| (sha256) | ++-----------+ +]]> + </programlisting> + + <para> + The following call sequence is applicable when a caller triggers + an HMAC operation: + </para> + + <orderedlist> + <listitem> + <para> + The AHASH API functions are invoked by the caller. The HMAC + implementation performs its operation as needed. + </para> + + <para> + During initialization of the HMAC cipher, the SHASH cipher type of + SHA256 is instantiated. The cipher handle for the SHA256 instance is + retained. + </para> + + <para> + At one time, the HMAC implementation requires a SHA256 operation + where the SHA256 cipher handle is used. + </para> + </listitem> + + <listitem> + <para> + The HMAC instance now invokes the SHASH API with the SHA256 + cipher handle to calculate the message digest. + </para> + </listitem> + </orderedlist> + </sect2> + </sect1> </chapter> <chapter id="Development"><title>Developing Cipher Algorithms</title> @@ -808,6 +1072,602 @@ </sect1> </chapter> + <chapter id="User"><title>User Space Interface</title> + <sect1><title>Introduction</title> + <para> + The concepts of the kernel crypto API visible to kernel space is fully + applicable to the user space interface as well. Therefore, the kernel + crypto API high level discussion for the in-kernel use cases applies + here as well. + </para> + + <para> + The major difference, however, is that user space can only act as a + consumer and never as a provider of a transformation or cipher algorithm. + </para> + + <para> + The following covers the user space interface exported by the kernel + crypto API. A working example of this description is libkcapi that + can be obtained from [1]. That library can be used by user space + applications that require cryptographic services from the kernel. + </para> + + <para> + Some details of the in-kernel kernel crypto API aspects do not + apply to user space, however. This includes the difference between + synchronous and asynchronous invocations. The user space API call + is fully synchronous. + </para> + + <para> + [1] http://www.chronox.de/libkcapi.html + </para> + + </sect1> + + <sect1><title>User Space API General Remarks</title> + <para> + The kernel crypto API is accessible from user space. Currently, + the following ciphers are accessible: + </para> + + <itemizedlist> + <listitem> + <para>Message digest including keyed message digest (HMAC, CMAC)</para> + </listitem> + + <listitem> + <para>Symmetric ciphers</para> + </listitem> + + <listitem> + <para>AEAD ciphers</para> + </listitem> + + <listitem> + <para>Random Number Generators</para> + </listitem> + </itemizedlist> + + <para> + The interface is provided via socket type using the type AF_ALG. + In addition, the setsockopt option type is SOL_ALG. In case the + user space header files do not export these flags yet, use the + following macros: + </para> + + <programlisting> +#ifndef AF_ALG +#define AF_ALG 38 +#endif +#ifndef SOL_ALG +#define SOL_ALG 279 +#endif + </programlisting> + + <para> + A cipher is accessed with the same name as done for the in-kernel + API calls. This includes the generic vs. unique naming schema for + ciphers as well as the enforcement of priorities for generic names. + </para> + + <para> + To interact with the kernel crypto API, a socket must be + created by the user space application. User space invokes the cipher + operation with the send()/write() system call family. The result of the + cipher operation is obtained with the read()/recv() system call family. + </para> + + <para> + The following API calls assume that the socket descriptor + is already opened by the user space application and discusses only + the kernel crypto API specific invocations. + </para> + + <para> + To initialize the socket interface, the following sequence has to + be performed by the consumer: + </para> + + <orderedlist> + <listitem> + <para> + Create a socket of type AF_ALG with the struct sockaddr_alg + parameter specified below for the different cipher types. + </para> + </listitem> + + <listitem> + <para> + Invoke bind with the socket descriptor + </para> + </listitem> + + <listitem> + <para> + Invoke accept with the socket descriptor. The accept system call + returns a new file descriptor that is to be used to interact with + the particular cipher instance. When invoking send/write or recv/read + system calls to send data to the kernel or obtain data from the + kernel, the file descriptor returned by accept must be used. + </para> + </listitem> + </orderedlist> + </sect1> + + <sect1><title>In-place Cipher operation</title> + <para> + Just like the in-kernel operation of the kernel crypto API, the user + space interface allows the cipher operation in-place. That means that + the input buffer used for the send/write system call and the output + buffer used by the read/recv system call may be one and the same. + This is of particular interest for symmetric cipher operations where a + copying of the output data to its final destination can be avoided. + </para> + + <para> + If a consumer on the other hand wants to maintain the plaintext and + the ciphertext in different memory locations, all a consumer needs + to do is to provide different memory pointers for the encryption and + decryption operation. + </para> + </sect1> + + <sect1><title>Message Digest API</title> + <para> + The message digest type to be used for the cipher operation is + selected when invoking the bind syscall. bind requires the caller + to provide a filled struct sockaddr data structure. This data + structure must be filled as follows: + </para> + + <programlisting> +struct sockaddr_alg sa = { + .salg_family = AF_ALG, + .salg_type = "hash", /* this selects the hash logic in the kernel */ + .salg_name = "sha1" /* this is the cipher name */ +}; + </programlisting> + + <para> + The salg_type value "hash" applies to message digests and keyed + message digests. Though, a keyed message digest is referenced by + the appropriate salg_name. Please see below for the setsockopt + interface that explains how the key can be set for a keyed message + digest. + </para> + + <para> + Using the send() system call, the application provides the data that + should be processed with the message digest. The send system call + allows the following flags to be specified: + </para> + + <itemizedlist> + <listitem> + <para> + MSG_MORE: If this flag is set, the send system call acts like a + message digest update function where the final hash is not + yet calculated. If the flag is not set, the send system call + calculates the final message digest immediately. + </para> + </listitem> + </itemizedlist> + + <para> + With the recv() system call, the application can read the message + digest from the kernel crypto API. If the buffer is too small for the + message digest, the flag MSG_TRUNC is set by the kernel. + </para> + + <para> + In order to set a message digest key, the calling application must use + the setsockopt() option of ALG_SET_KEY. If the key is not set the HMAC + operation is performed without the initial HMAC state change caused by + the key. + </para> + </sect1> + + <sect1><title>Symmetric Cipher API</title> + <para> + The operation is very similar to the message digest discussion. + During initialization, the struct sockaddr data structure must be + filled as follows: + </para> + + <programlisting> +struct sockaddr_alg sa = { + .salg_family = AF_ALG, + .salg_type = "skcipher", /* this selects the symmetric cipher */ + .salg_name = "cbc(aes)" /* this is the cipher name */ +}; + </programlisting> + + <para> + Before data can be sent to the kernel using the write/send system + call family, the consumer must set the key. The key setting is + described with the setsockopt invocation below. + </para> + + <para> + Using the sendmsg() system call, the application provides the data that should be processed for encryption or decryption. In addition, the IV is + specified with the data structure provided by the sendmsg() system call. + </para> + + <para> + The sendmsg system call parameter of struct msghdr is embedded into the + struct cmsghdr data structure. See recv(2) and cmsg(3) for more + information on how the cmsghdr data structure is used together with the + send/recv system call family. That cmsghdr data structure holds the + following information specified with a separate header instances: + </para> + + <itemizedlist> + <listitem> + <para> + specification of the cipher operation type with one of these flags: + </para> + <itemizedlist> + <listitem> + <para>ALG_OP_ENCRYPT - encryption of data</para> + </listitem> + <listitem> + <para>ALG_OP_DECRYPT - decryption of data</para> + </listitem> + </itemizedlist> + </listitem> + + <listitem> + <para> + specification of the IV information marked with the flag ALG_SET_IV + </para> + </listitem> + </itemizedlist> + + <para> + The send system call family allows the following flag to be specified: + </para> + + <itemizedlist> + <listitem> + <para> + MSG_MORE: If this flag is set, the send system call acts like a + cipher update function where more input data is expected + with a subsequent invocation of the send system call. + </para> + </listitem> + </itemizedlist> + + <para> + Note: The kernel reports -EINVAL for any unexpected data. The caller + must make sure that all data matches the constraints given in + /proc/crypto for the selected cipher. + </para> + + <para> + With the recv() system call, the application can read the result of + the cipher operation from the kernel crypto API. The output buffer + must be at least as large as to hold all blocks of the encrypted or + decrypted data. If the output data size is smaller, only as many + blocks are returned that fit into that output buffer size. + </para> + </sect1> + + <sect1><title>AEAD Cipher API</title> + <para> + The operation is very similar to the symmetric cipher discussion. + During initialization, the struct sockaddr data structure must be + filled as follows: + </para> + + <programlisting> +struct sockaddr_alg sa = { + .salg_family = AF_ALG, + .salg_type = "aead", /* this selects the symmetric cipher */ + .salg_name = "gcm(aes)" /* this is the cipher name */ +}; + </programlisting> + + <para> + Before data can be sent to the kernel using the write/send system + call family, the consumer must set the key. The key setting is + described with the setsockopt invocation below. + </para> + + <para> + In addition, before data can be sent to the kernel using the + write/send system call family, the consumer must set the authentication + tag size. To set the authentication tag size, the caller must use the + setsockopt invocation described below. + </para> + + <para> + Using the sendmsg() system call, the application provides the data that should be processed for encryption or decryption. In addition, the IV is + specified with the data structure provided by the sendmsg() system call. + </para> + + <para> + The sendmsg system call parameter of struct msghdr is embedded into the + struct cmsghdr data structure. See recv(2) and cmsg(3) for more + information on how the cmsghdr data structure is used together with the + send/recv system call family. That cmsghdr data structure holds the + following information specified with a separate header instances: + </para> + + <itemizedlist> + <listitem> + <para> + specification of the cipher operation type with one of these flags: + </para> + <itemizedlist> + <listitem> + <para>ALG_OP_ENCRYPT - encryption of data</para> + </listitem> + <listitem> + <para>ALG_OP_DECRYPT - decryption of data</para> + </listitem> + </itemizedlist> + </listitem> + + <listitem> + <para> + specification of the IV information marked with the flag ALG_SET_IV + </para> + </listitem> + + <listitem> + <para> + specification of the associated authentication data (AAD) with the + flag ALG_SET_AEAD_ASSOCLEN. The AAD is sent to the kernel together + with the plaintext / ciphertext. See below for the memory structure. + </para> + </listitem> + </itemizedlist> + + <para> + The send system call family allows the following flag to be specified: + </para> + + <itemizedlist> + <listitem> + <para> + MSG_MORE: If this flag is set, the send system call acts like a + cipher update function where more input data is expected + with a subsequent invocation of the send system call. + </para> + </listitem> + </itemizedlist> + + <para> + Note: The kernel reports -EINVAL for any unexpected data. The caller + must make sure that all data matches the constraints given in + /proc/crypto for the selected cipher. + </para> + + <para> + With the recv() system call, the application can read the result of + the cipher operation from the kernel crypto API. The output buffer + must be at least as large as defined with the memory structure below. + If the output data size is smaller, the cipher operation is not performed. + </para> + + <para> + The authenticated decryption operation may indicate an integrity error. + Such breach in integrity is marked with the -EBADMSG error code. + </para> + + <sect2><title>AEAD Memory Structure</title> + <para> + The AEAD cipher operates with the following information that + is communicated between user and kernel space as one data stream: + </para> + + <itemizedlist> + <listitem> + <para>plaintext or ciphertext</para> + </listitem> + + <listitem> + <para>associated authentication data (AAD)</para> + </listitem> + + <listitem> + <para>authentication tag</para> + </listitem> + </itemizedlist> + + <para> + The sizes of the AAD and the authentication tag are provided with + the sendmsg and setsockopt calls (see there). As the kernel knows + the size of the entire data stream, the kernel is now able to + calculate the right offsets of the data components in the data + stream. + </para> + + <para> + The user space caller must arrange the aforementioned information + in the following order: + </para> + + <itemizedlist> + <listitem> + <para> + AEAD encryption input: AAD || plaintext + </para> + </listitem> + + <listitem> + <para> + AEAD decryption input: AAD || ciphertext || authentication tag + </para> + </listitem> + </itemizedlist> + + <para> + The output buffer the user space caller provides must be at least as + large to hold the following data: + </para> + + <itemizedlist> + <listitem> + <para> + AEAD encryption output: ciphertext || authentication tag + </para> + </listitem> + + <listitem> + <para> + AEAD decryption output: plaintext + </para> + </listitem> + </itemizedlist> + </sect2> + </sect1> + + <sect1><title>Random Number Generator API</title> + <para> + Again, the operation is very similar to the other APIs. + During initialization, the struct sockaddr data structure must be + filled as follows: + </para> + + <programlisting> +struct sockaddr_alg sa = { + .salg_family = AF_ALG, + .salg_type = "rng", /* this selects the symmetric cipher */ + .salg_name = "drbg_nopr_sha256" /* this is the cipher name */ +}; + </programlisting> + + <para> + Depending on the RNG type, the RNG must be seeded. The seed is provided + using the setsockopt interface to set the key. For example, the + ansi_cprng requires a seed. The DRBGs do not require a seed, but + may be seeded. + </para> + + <para> + Using the read()/recvmsg() system calls, random numbers can be obtained. + The kernel generates at most 128 bytes in one call. If user space + requires more data, multiple calls to read()/recvmsg() must be made. + </para> + + <para> + WARNING: The user space caller may invoke the initially mentioned + accept system call multiple times. In this case, the returned file + descriptors have the same state. + </para> + + </sect1> + + <sect1><title>Zero-Copy Interface</title> + <para> + In addition to the send/write/read/recv system call familty, the AF_ALG + interface can be accessed with the zero-copy interface of splice/vmsplice. + As the name indicates, the kernel tries to avoid a copy operation into + kernel space. + </para> + + <para> + The zero-copy operation requires data to be aligned at the page boundary. + Non-aligned data can be used as well, but may require more operations of + the kernel which would defeat the speed gains obtained from the zero-copy + interface. + </para> + + <para> + The system-interent limit for the size of one zero-copy operation is + 16 pages. If more data is to be sent to AF_ALG, user space must slice + the input into segments with a maximum size of 16 pages. + </para> + + <para> + Zero-copy can be used with the following code example (a complete working + example is provided with libkcapi): + </para> + + <programlisting> +int pipes[2]; + +pipe(pipes); +/* input data in iov */ +vmsplice(pipes[1], iov, iovlen, SPLICE_F_GIFT); +/* opfd is the file descriptor returned from accept() system call */ +splice(pipes[0], NULL, opfd, NULL, ret, 0); +read(opfd, out, outlen); + </programlisting> + + </sect1> + + <sect1><title>Setsockopt Interface</title> + <para> + In addition to the read/recv and send/write system call handling + to send and retrieve data subject to the cipher operation, a consumer + also needs to set the additional information for the cipher operation. + This additional information is set using the setsockopt system call + that must be invoked with the file descriptor of the open cipher + (i.e. the file descriptor returned by the accept system call). + </para> + + <para> + Each setsockopt invocation must use the level SOL_ALG. + </para> + + <para> + The setsockopt interface allows setting the following data using + the mentioned optname: + </para> + + <itemizedlist> + <listitem> + <para> + ALG_SET_KEY -- Setting the key. Key setting is applicable to: + </para> + <itemizedlist> + <listitem> + <para>the skcipher cipher type (symmetric ciphers)</para> + </listitem> + <listitem> + <para>the hash cipher type (keyed message digests)</para> + </listitem> + <listitem> + <para>the AEAD cipher type</para> + </listitem> + <listitem> + <para>the RNG cipher type to provide the seed</para> + </listitem> + </itemizedlist> + </listitem> + + <listitem> + <para> + ALG_SET_AEAD_AUTHSIZE -- Setting the authentication tag size + for AEAD ciphers. For a encryption operation, the authentication + tag of the given size will be generated. For a decryption operation, + the provided ciphertext is assumed to contain an authentication tag + of the given size (see section about AEAD memory layout below). + </para> + </listitem> + </itemizedlist> + + </sect1> + + <sect1><title>User space API example</title> + <para> + Please see [1] for libkcapi which provides an easy-to-use wrapper + around the aforementioned Netlink kernel interface. [1] also contains + a test application that invokes all libkcapi API calls. + </para> + + <para> + [1] http://www.chronox.de/libkcapi.html + </para> + + </sect1> + + </chapter> + <chapter id="API"><title>Programming Interface</title> <sect1><title>Block Cipher Context Data Structures</title> !Pinclude/linux/crypto.h Block Cipher Context Data Structures diff --git a/Documentation/DocBook/drm.tmpl b/Documentation/DocBook/drm.tmpl index 03f1985a4bd1..9765a4c0829d 100644 --- a/Documentation/DocBook/drm.tmpl +++ b/Documentation/DocBook/drm.tmpl @@ -1293,7 +1293,7 @@ int max_width, max_height;</synopsis> </para> <para> If a page flip can be successfully scheduled the driver must set the - <code>drm_crtc-<fb</code> field to the new framebuffer pointed to + <code>drm_crtc->fb</code> field to the new framebuffer pointed to by <code>fb</code>. This is important so that the reference counting on framebuffers stays balanced. </para> @@ -3979,6 +3979,11 @@ int num_ioctls;</synopsis> !Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_disable_interrupts !Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_enable_interrupts </sect2> + <sect2> + <title>Intel GVT-g Guest Support(vGPU)</title> +!Pdrivers/gpu/drm/i915/i915_vgpu.c Intel GVT-g guest support +!Idrivers/gpu/drm/i915/i915_vgpu.c + </sect2> </sect1> <sect1> <title>Display Hardware Handling</title> @@ -4048,6 +4053,17 @@ int num_ioctls;</synopsis> !Idrivers/gpu/drm/i915/intel_fbc.c </sect2> <sect2> + <title>Display Refresh Rate Switching (DRRS)</title> +!Pdrivers/gpu/drm/i915/intel_dp.c Display Refresh Rate Switching (DRRS) +!Fdrivers/gpu/drm/i915/intel_dp.c intel_dp_set_drrs_state +!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_enable +!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_disable +!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_invalidate +!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_flush +!Fdrivers/gpu/drm/i915/intel_dp.c intel_dp_drrs_init + + </sect2> + <sect2> <title>DPIO</title> !Pdrivers/gpu/drm/i915/i915_reg.h DPIO <table id="dpiox2"> @@ -4168,7 +4184,7 @@ int num_ioctls;</synopsis> <sect2> <title>Buffer Object Eviction</title> <para> - This section documents the interface function for evicting buffer + This section documents the interface functions for evicting buffer objects to make space available in the virtual gpu address spaces. Note that this is mostly orthogonal to shrinking buffer objects caches, which has the goal to make main memory (shared with the gpu @@ -4176,6 +4192,17 @@ int num_ioctls;</synopsis> </para> !Idrivers/gpu/drm/i915/i915_gem_evict.c </sect2> + <sect2> + <title>Buffer Object Memory Shrinking</title> + <para> + This section documents the interface function for shrinking memory + usage of buffer object caches. Shrinking is used to make main memory + available. Note that this is mostly orthogonal to evicting buffer + objects, which has the goal to make space in gpu virtual address + spaces. + </para> +!Idrivers/gpu/drm/i915/i915_gem_shrinker.c + </sect2> </sect1> <sect1> diff --git a/Documentation/DocBook/media/v4l/subdev-formats.xml b/Documentation/DocBook/media/v4l/subdev-formats.xml index bc8d3fb9e4a9..2588ad781242 100644 --- a/Documentation/DocBook/media/v4l/subdev-formats.xml +++ b/Documentation/DocBook/media/v4l/subdev-formats.xml @@ -91,7 +91,9 @@ see <xref linkend="colorspaces" />.</entry> <listitem><para>For formats where the total number of bits per pixel is smaller than the number of bus samples per pixel times the bus width, a padding value stating if the bytes are padded in their most high order bits - (PADHI) or low order bits (PADLO).</para></listitem> + (PADHI) or low order bits (PADLO). A "C" prefix is used for component-wise + padding in the most high order bits (CPADHI) or low order bits (CPADLO) + of each separate component.</para></listitem> <listitem><para>For formats where the number of bus samples per pixel is larger than 1, an endianness value stating if the pixel is transferred MSB first (BE) or LSB first (LE).</para></listitem> @@ -192,6 +194,24 @@ see <xref linkend="colorspaces" />.</entry> </row> </thead> <tbody valign="top"> + <row id="MEDIA-BUS-FMT-RGB444-1X12"> + <entry>MEDIA_BUS_FMT_RGB444_1X12</entry> + <entry>0x1016</entry> + <entry></entry> + &dash-ent-20; + <entry>r<subscript>3</subscript></entry> + <entry>r<subscript>2</subscript></entry> + <entry>r<subscript>1</subscript></entry> + <entry>r<subscript>0</subscript></entry> + <entry>g<subscript>3</subscript></entry> + <entry>g<subscript>2</subscript></entry> + <entry>g<subscript>1</subscript></entry> + <entry>g<subscript>0</subscript></entry> + <entry>b<subscript>3</subscript></entry> + <entry>b<subscript>2</subscript></entry> + <entry>b<subscript>1</subscript></entry> + <entry>b<subscript>0</subscript></entry> + </row> <row id="MEDIA-BUS-FMT-RGB444-2X8-PADHI-BE"> <entry>MEDIA_BUS_FMT_RGB444_2X8_PADHI_BE</entry> <entry>0x1001</entry> @@ -304,6 +324,28 @@ see <xref linkend="colorspaces" />.</entry> <entry>g<subscript>4</subscript></entry> <entry>g<subscript>3</subscript></entry> </row> + <row id="MEDIA-BUS-FMT-RGB565-1X16"> + <entry>MEDIA_BUS_FMT_RGB565_1X16</entry> + <entry>0x1017</entry> + <entry></entry> + &dash-ent-16; + <entry>r<subscript>4</subscript></entry> + <entry>r<subscript>3</subscript></entry> + <entry>r<subscript>2</subscript></entry> + <entry>r<subscript>1</subscript></entry> + <entry>r<subscript>0</subscript></entry> + <entry>g<subscript>5</subscript></entry> + <entry>g<subscript>4</subscript></entry> + <entry>g<subscript>3</subscript></entry> + <entry>g<subscript>2</subscript></entry> + <entry>g<subscript>1</subscript></entry> + <entry>g<subscript>0</subscript></entry> + <entry>b<subscript>4</subscript></entry> + <entry>b<subscript>3</subscript></entry> + <entry>b<subscript>2</subscript></entry> + <entry>b<subscript>1</subscript></entry> + <entry>b<subscript>0</subscript></entry> + </row> <row id="MEDIA-BUS-FMT-BGR565-2X8-BE"> <entry>MEDIA_BUS_FMT_BGR565_2X8_BE</entry> <entry>0x1005</entry> @@ -470,6 +512,96 @@ see <xref linkend="colorspaces" />.</entry> <entry>g<subscript>1</subscript></entry> <entry>g<subscript>0</subscript></entry> </row> + <row id="MEDIA-BUS-FMT-RGB666-1X24_CPADHI"> + <entry>MEDIA_BUS_FMT_RGB666_1X24_CPADHI</entry> + <entry>0x1015</entry> + <entry></entry> + &dash-ent-8; + <entry>0</entry> + <entry>0</entry> + <entry>r<subscript>5</subscript></entry> + <entry>r<subscript>4</subscript></entry> + <entry>r<subscript>3</subscript></entry> + <entry>r<subscript>2</subscript></entry> + <entry>r<subscript>1</subscript></entry> + <entry>r<subscript>0</subscript></entry> + <entry>0</entry> + <entry>0</entry> + <entry>g<subscript>5</subscript></entry> + <entry>g<subscript>4</subscript></entry> + <entry>g<subscript>3</subscript></entry> + <entry>g<subscript>2</subscript></entry> + <entry>g<subscript>1</subscript></entry> + <entry>g<subscript>0</subscript></entry> + <entry>0</entry> + <entry>0</entry> + <entry>b<subscript>5</subscript></entry> + <entry>b<subscript>4</subscript></entry> + <entry>b<subscript>3</subscript></entry> + <entry>b<subscript>2</subscript></entry> + <entry>b<subscript>1</subscript></entry> + <entry>b<subscript>0</subscript></entry> + </row> + <row id="MEDIA-BUS-FMT-BGR888-1X24"> + <entry>MEDIA_BUS_FMT_BGR888_1X24</entry> + <entry>0x1013</entry> + <entry></entry> + &dash-ent-8; + <entry>b<subscript>7</subscript></entry> + <entry>b<subscript>6</subscript></entry> + <entry>b<subscript>5</subscript></entry> + <entry>b<subscript>4</subscript></entry> + <entry>b<subscript>3</subscript></entry> + <entry>b<subscript>2</subscript></entry> + <entry>b<subscript>1</subscript></entry> + <entry>b<subscript>0</subscript></entry> + <entry>g<subscript>7</subscript></entry> + <entry>g<subscript>6</subscript></entry> + <entry>g<subscript>5</subscript></entry> + <entry>g<subscript>4</subscript></entry> + <entry>g<subscript>3</subscript></entry> + <entry>g<subscript>2</subscript></entry> + <entry>g<subscript>1</subscript></entry> + <entry>g<subscript>0</subscript></entry> + <entry>r<subscript>7</subscript></entry> + <entry>r<subscript>6</subscript></entry> + <entry>r<subscript>5</subscript></entry> + <entry>r<subscript>4</subscript></entry> + <entry>r<subscript>3</subscript></entry> + <entry>r<subscript>2</subscript></entry> + <entry>r<subscript>1</subscript></entry> + <entry>r<subscript>0</subscript></entry> + </row> + <row id="MEDIA-BUS-FMT-GBR888-1X24"> + <entry>MEDIA_BUS_FMT_GBR888_1X24</entry> + <entry>0x1014</entry> + <entry></entry> + &dash-ent-8; + <entry>g<subscript>7</subscript></entry> + <entry>g<subscript>6</subscript></entry> + <entry>g<subscript>5</subscript></entry> + <entry>g<subscript>4</subscript></entry> + <entry>g<subscript>3</subscript></entry> + <entry>g<subscript>2</subscript></entry> + <entry>g<subscript>1</subscript></entry> + <entry>g<subscript>0</subscript></entry> + <entry>b<subscript>7</subscript></entry> + <entry>b<subscript>6</subscript></entry> + <entry>b<subscript>5</subscript></entry> + <entry>b<subscript>4</subscript></entry> + <entry>b<subscript>3</subscript></entry> + <entry>b<subscript>2</subscript></entry> + <entry>b<subscript>1</subscript></entry> + <entry>b<subscript>0</subscript></entry> + <entry>r<subscript>7</subscript></entry> + <entry>r<subscript>6</subscript></entry> + <entry>r<subscript>5</subscript></entry> + <entry>r<subscript>4</subscript></entry> + <entry>r<subscript>3</subscript></entry> + <entry>r<subscript>2</subscript></entry> + <entry>r<subscript>1</subscript></entry> + <entry>r<subscript>0</subscript></entry> + </row> <row id="MEDIA-BUS-FMT-RGB888-1X24"> <entry>MEDIA_BUS_FMT_RGB888_1X24</entry> <entry>0x100a</entry> @@ -649,6 +781,261 @@ see <xref linkend="colorspaces" />.</entry> </tbody> </tgroup> </table> + + <para>On LVDS buses, usually each sample is transferred serialized in + seven time slots per pixel clock, on three (18-bit) or four (24-bit) + differential data pairs at the same time. The remaining bits are used for + control signals as defined by SPWG/PSWG/VESA or JEIDA standards. + The 24-bit RGB format serialized in seven time slots on four lanes using + JEIDA defined bit mapping will be named + <constant>MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA</constant>, for example. + </para> + + <table pgwide="0" frame="none" id="v4l2-mbus-pixelcode-rgb-lvds"> + <title>LVDS RGB formats</title> + <tgroup cols="8"> + <colspec colname="id" align="left" /> + <colspec colname="code" align="center" /> + <colspec colname="slot" align="center" /> + <colspec colname="lane" /> + <colspec colnum="5" colname="l03" align="center" /> + <colspec colnum="6" colname="l02" align="center" /> + <colspec colnum="7" colname="l01" align="center" /> + <colspec colnum="8" colname="l00" align="center" /> + <spanspec namest="l03" nameend="l00" spanname="l0" /> + <thead> + <row> + <entry>Identifier</entry> + <entry>Code</entry> + <entry></entry> + <entry></entry> + <entry spanname="l0">Data organization</entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>Timeslot</entry> + <entry>Lane</entry> + <entry>3</entry> + <entry>2</entry> + <entry>1</entry> + <entry>0</entry> + </row> + </thead> + <tbody valign="top"> + <row id="MEDIA-BUS-FMT-RGB666-1X7X3-SPWG"> + <entry>MEDIA_BUS_FMT_RGB666_1X7X3_SPWG</entry> + <entry>0x1010</entry> + <entry>0</entry> + <entry></entry> + <entry>-</entry> + <entry>d</entry> + <entry>b<subscript>1</subscript></entry> + <entry>g<subscript>0</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>1</entry> + <entry></entry> + <entry>-</entry> + <entry>d</entry> + <entry>b<subscript>0</subscript></entry> + <entry>r<subscript>5</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>2</entry> + <entry></entry> + <entry>-</entry> + <entry>d</entry> + <entry>g<subscript>5</subscript></entry> + <entry>r<subscript>4</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>3</entry> + <entry></entry> + <entry>-</entry> + <entry>b<subscript>5</subscript></entry> + <entry>g<subscript>4</subscript></entry> + <entry>r<subscript>3</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>4</entry> + <entry></entry> + <entry>-</entry> + <entry>b<subscript>4</subscript></entry> + <entry>g<subscript>3</subscript></entry> + <entry>r<subscript>2</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>5</entry> + <entry></entry> + <entry>-</entry> + <entry>b<subscript>3</subscript></entry> + <entry>g<subscript>2</subscript></entry> + <entry>r<subscript>1</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>6</entry> + <entry></entry> + <entry>-</entry> + <entry>b<subscript>2</subscript></entry> + <entry>g<subscript>1</subscript></entry> + <entry>r<subscript>0</subscript></entry> + </row> + <row id="MEDIA-BUS-FMT-RGB888-1X7X4-SPWG"> + <entry>MEDIA_BUS_FMT_RGB888_1X7X4_SPWG</entry> + <entry>0x1011</entry> + <entry>0</entry> + <entry></entry> + <entry>d</entry> + <entry>d</entry> + <entry>b<subscript>1</subscript></entry> + <entry>g<subscript>0</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>1</entry> + <entry></entry> + <entry>b<subscript>7</subscript></entry> + <entry>d</entry> + <entry>b<subscript>0</subscript></entry> + <entry>r<subscript>5</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>2</entry> + <entry></entry> + <entry>b<subscript>6</subscript></entry> + <entry>d</entry> + <entry>g<subscript>5</subscript></entry> + <entry>r<subscript>4</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>3</entry> + <entry></entry> + <entry>g<subscript>7</subscript></entry> + <entry>b<subscript>5</subscript></entry> + <entry>g<subscript>4</subscript></entry> + <entry>r<subscript>3</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>4</entry> + <entry></entry> + <entry>g<subscript>6</subscript></entry> + <entry>b<subscript>4</subscript></entry> + <entry>g<subscript>3</subscript></entry> + <entry>r<subscript>2</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>5</entry> + <entry></entry> + <entry>r<subscript>7</subscript></entry> + <entry>b<subscript>3</subscript></entry> + <entry>g<subscript>2</subscript></entry> + <entry>r<subscript>1</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>6</entry> + <entry></entry> + <entry>r<subscript>6</subscript></entry> + <entry>b<subscript>2</subscript></entry> + <entry>g<subscript>1</subscript></entry> + <entry>r<subscript>0</subscript></entry> + </row> + <row id="MEDIA-BUS-FMT-RGB888-1X7X4-JEIDA"> + <entry>MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA</entry> + <entry>0x1012</entry> + <entry>0</entry> + <entry></entry> + <entry>d</entry> + <entry>d</entry> + <entry>b<subscript>3</subscript></entry> + <entry>g<subscript>2</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>1</entry> + <entry></entry> + <entry>b<subscript>1</subscript></entry> + <entry>d</entry> + <entry>b<subscript>2</subscript></entry> + <entry>r<subscript>7</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>2</entry> + <entry></entry> + <entry>b<subscript>0</subscript></entry> + <entry>d</entry> + <entry>g<subscript>7</subscript></entry> + <entry>r<subscript>6</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>3</entry> + <entry></entry> + <entry>g<subscript>1</subscript></entry> + <entry>b<subscript>7</subscript></entry> + <entry>g<subscript>6</subscript></entry> + <entry>r<subscript>5</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>4</entry> + <entry></entry> + <entry>g<subscript>0</subscript></entry> + <entry>b<subscript>6</subscript></entry> + <entry>g<subscript>5</subscript></entry> + <entry>r<subscript>4</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>5</entry> + <entry></entry> + <entry>r<subscript>1</subscript></entry> + <entry>b<subscript>5</subscript></entry> + <entry>g<subscript>4</subscript></entry> + <entry>r<subscript>3</subscript></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>6</entry> + <entry></entry> + <entry>r<subscript>0</subscript></entry> + <entry>b<subscript>4</subscript></entry> + <entry>g<subscript>3</subscript></entry> + <entry>r<subscript>2</subscript></entry> + </row> + </tbody> + </tgroup> + </table> </section> <section> @@ -3045,6 +3432,43 @@ see <xref linkend="colorspaces" />.</entry> <entry>y<subscript>1</subscript></entry> <entry>y<subscript>0</subscript></entry> </row> + <row id="MEDIA-BUS-FMT-YUV8-1X24"> + <entry>MEDIA_BUS_FMT_YUV8_1X24</entry> + <entry>0x2025</entry> + <entry></entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>-</entry> + <entry>y<subscript>7</subscript></entry> + <entry>y<subscript>6</subscript></entry> + <entry>y<subscript>5</subscript></entry> + <entry>y<subscript>4</subscript></entry> + <entry>y<subscript>3</subscript></entry> + <entry>y<subscript>2</subscript></entry> + <entry>y<subscript>1</subscript></entry> + <entry>y<subscript>0</subscript></entry> + <entry>u<subscript>7</subscript></entry> + <entry>u<subscript>6</subscript></entry> + <entry>u<subscript>5</subscript></entry> + <entry>u<subscript>4</subscript></entry> + <entry>u<subscript>3</subscript></entry> + <entry>u<subscript>2</subscript></entry> + <entry>u<subscript>1</subscript></entry> + <entry>u<subscript>0</subscript></entry> + <entry>v<subscript>7</subscript></entry> + <entry>v<subscript>6</subscript></entry> + <entry>v<subscript>5</subscript></entry> + <entry>v<subscript>4</subscript></entry> + <entry>v<subscript>3</subscript></entry> + <entry>v<subscript>2</subscript></entry> + <entry>v<subscript>1</subscript></entry> + <entry>v<subscript>0</subscript></entry> + </row> <row id="MEDIA-BUS-FMT-UYVY12-1X24"> <entry>MEDIA_BUS_FMT_UYVY12_1X24</entry> <entry>0x2020</entry> |