summaryrefslogtreecommitdiffstats
path: root/Documentation/bpf
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2021-07-01 00:51:09 +0200
committerLinus Torvalds <torvalds@linux-foundation.org>2021-07-01 00:51:09 +0200
commitdbe69e43372212527abf48609aba7fc39a6daa27 (patch)
tree96cfafdf70f5325ceeac1054daf7deca339c9730 /Documentation/bpf
parentMerge tag 'sched-urgent-2021-06-30' of git://git.kernel.org/pub/scm/linux/ker... (diff)
parentMerge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net (diff)
downloadlinux-dbe69e43372212527abf48609aba7fc39a6daa27.tar.xz
linux-dbe69e43372212527abf48609aba7fc39a6daa27.zip
Merge tag 'net-next-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Jakub Kicinski: "Core: - BPF: - add syscall program type and libbpf support for generating instructions and bindings for in-kernel BPF loaders (BPF loaders for BPF), this is a stepping stone for signed BPF programs - infrastructure to migrate TCP child sockets from one listener to another in the same reuseport group/map to improve flexibility of service hand-off/restart - add broadcast support to XDP redirect - allow bypass of the lockless qdisc to improving performance (for pktgen: +23% with one thread, +44% with 2 threads) - add a simpler version of "DO_ONCE()" which does not require jump labels, intended for slow-path usage - virtio/vsock: introduce SOCK_SEQPACKET support - add getsocketopt to retrieve netns cookie - ip: treat lowest address of a IPv4 subnet as ordinary unicast address allowing reclaiming of precious IPv4 addresses - ipv6: use prandom_u32() for ID generation - ip: add support for more flexible field selection for hashing across multi-path routes (w/ offload to mlxsw) - icmp: add support for extended RFC 8335 PROBE (ping) - seg6: add support for SRv6 End.DT46 behavior - mptcp: - DSS checksum support (RFC 8684) to detect middlebox meddling - support Connection-time 'C' flag - time stamping support - sctp: packetization Layer Path MTU Discovery (RFC 8899) - xfrm: speed up state addition with seq set - WiFi: - hidden AP discovery on 6 GHz and other HE 6 GHz improvements - aggregation handling improvements for some drivers - minstrel improvements for no-ack frames - deferred rate control for TXQs to improve reaction times - switch from round robin to virtual time-based airtime scheduler - add trace points: - tcp checksum errors - openvswitch - action execution, upcalls - socket errors via sk_error_report Device APIs: - devlink: add rate API for hierarchical control of max egress rate of virtual devices (VFs, SFs etc.) - don't require RCU read lock to be held around BPF hooks in NAPI context - page_pool: generic buffer recycling New hardware/drivers: - mobile: - iosm: PCIe Driver for Intel M.2 Modem - support for Qualcomm MSM8998 (ipa) - WiFi: Qualcomm QCN9074 and WCN6855 PCI devices - sparx5: Microchip SparX-5 family of Enterprise Ethernet switches - Mellanox BlueField Gigabit Ethernet (control NIC of the DPU) - NXP SJA1110 Automotive Ethernet 10-port switch - Qualcomm QCA8327 switch support (qca8k) - Mikrotik 10/25G NIC (atl1c) Driver changes: - ACPI support for some MDIO, MAC and PHY devices from Marvell and NXP (our first foray into MAC/PHY description via ACPI) - HW timestamping (PTP) support: bnxt_en, ice, sja1105, hns3, tja11xx - Mellanox/Nvidia NIC (mlx5) - NIC VF offload of L2 bridging - support IRQ distribution to Sub-functions - Marvell (prestera): - add flower and match all - devlink trap - link aggregation - Netronome (nfp): connection tracking offload - Intel 1GE (igc): add AF_XDP support - Marvell DPU (octeontx2): ingress ratelimit offload - Google vNIC (gve): new ring/descriptor format support - Qualcomm mobile (rmnet & ipa): inline checksum offload support - MediaTek WiFi (mt76) - mt7915 MSI support - mt7915 Tx status reporting - mt7915 thermal sensors support - mt7921 decapsulation offload - mt7921 enable runtime pm and deep sleep - Realtek WiFi (rtw88) - beacon filter support - Tx antenna path diversity support - firmware crash information via devcoredump - Qualcomm WiFi (wcn36xx) - Wake-on-WLAN support with magic packets and GTK rekeying - Micrel PHY (ksz886x/ksz8081): add cable test support" * tag 'net-next-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2168 commits) tcp: change ICSK_CA_PRIV_SIZE definition tcp_yeah: check struct yeah size at compile time gve: DQO: Fix off by one in gve_rx_dqo() stmmac: intel: set PCI_D3hot in suspend stmmac: intel: Enable PHY WOL option in EHL net: stmmac: option to enable PHY WOL with PMT enabled net: say "local" instead of "static" addresses in ndo_dflt_fdb_{add,del} net: use netdev_info in ndo_dflt_fdb_{add,del} ptp: Set lookup cookie when creating a PTP PPS source. net: sock: add trace for socket errors net: sock: introduce sk_error_report net: dsa: replay the local bridge FDB entries pointing to the bridge dev too net: dsa: ensure during dsa_fdb_offload_notify that dev_hold and dev_put are on the same dev net: dsa: include fdb entries pointing to bridge in the host fdb list net: dsa: include bridge addresses which are local in the host fdb list net: dsa: sync static FDB entries on foreign interfaces to hardware net: dsa: install the host MDB and FDB entries in the master's RX filter net: dsa: reference count the FDB addresses at the cross-chip notifier level net: dsa: introduce a separate cross-chip notifier type for host FDBs net: dsa: reference count the MDB entries at the cross-chip notifier level ...
Diffstat (limited to 'Documentation/bpf')
-rw-r--r--Documentation/bpf/index.rst14
-rw-r--r--Documentation/bpf/libbpf/libbpf.rst14
-rw-r--r--Documentation/bpf/libbpf/libbpf_api.rst27
-rw-r--r--Documentation/bpf/libbpf/libbpf_build.rst37
-rw-r--r--Documentation/bpf/libbpf/libbpf_naming_convention.rst162
-rw-r--r--Documentation/bpf/llvm_reloc.rst240
6 files changed, 494 insertions, 0 deletions
diff --git a/Documentation/bpf/index.rst b/Documentation/bpf/index.rst
index a702f67dd45f..baea6c2abba5 100644
--- a/Documentation/bpf/index.rst
+++ b/Documentation/bpf/index.rst
@@ -12,6 +12,19 @@ BPF instruction-set.
The Cilium project also maintains a `BPF and XDP Reference Guide`_
that goes into great technical depth about the BPF Architecture.
+libbpf
+======
+
+Libbpf is a userspace library for loading and interacting with bpf programs.
+
+.. toctree::
+ :maxdepth: 1
+
+ libbpf/libbpf
+ libbpf/libbpf_api
+ libbpf/libbpf_build
+ libbpf/libbpf_naming_convention
+
BPF Type Format (BTF)
=====================
@@ -84,6 +97,7 @@ Other
:maxdepth: 1
ringbuf
+ llvm_reloc
.. Links:
.. _networking-filter: ../networking/filter.rst
diff --git a/Documentation/bpf/libbpf/libbpf.rst b/Documentation/bpf/libbpf/libbpf.rst
new file mode 100644
index 000000000000..1b1e61d5ead1
--- /dev/null
+++ b/Documentation/bpf/libbpf/libbpf.rst
@@ -0,0 +1,14 @@
+.. SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
+
+libbpf
+======
+
+This is documentation for libbpf, a userspace library for loading and
+interacting with bpf programs.
+
+All general BPF questions, including kernel functionality, libbpf APIs and
+their application, should be sent to bpf@vger.kernel.org mailing list.
+You can `subscribe <http://vger.kernel.org/vger-lists.html#bpf>`_ to the
+mailing list search its `archive <https://lore.kernel.org/bpf/>`_.
+Please search the archive before asking new questions. It very well might
+be that this was already addressed or answered before.
diff --git a/Documentation/bpf/libbpf/libbpf_api.rst b/Documentation/bpf/libbpf/libbpf_api.rst
new file mode 100644
index 000000000000..f07eecd054da
--- /dev/null
+++ b/Documentation/bpf/libbpf/libbpf_api.rst
@@ -0,0 +1,27 @@
+.. SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
+
+API
+===
+
+This documentation is autogenerated from header files in libbpf, tools/lib/bpf
+
+.. kernel-doc:: tools/lib/bpf/libbpf.h
+ :internal:
+
+.. kernel-doc:: tools/lib/bpf/bpf.h
+ :internal:
+
+.. kernel-doc:: tools/lib/bpf/btf.h
+ :internal:
+
+.. kernel-doc:: tools/lib/bpf/xsk.h
+ :internal:
+
+.. kernel-doc:: tools/lib/bpf/bpf_tracing.h
+ :internal:
+
+.. kernel-doc:: tools/lib/bpf/bpf_core_read.h
+ :internal:
+
+.. kernel-doc:: tools/lib/bpf/bpf_endian.h
+ :internal: \ No newline at end of file
diff --git a/Documentation/bpf/libbpf/libbpf_build.rst b/Documentation/bpf/libbpf/libbpf_build.rst
new file mode 100644
index 000000000000..8e8c23e8093d
--- /dev/null
+++ b/Documentation/bpf/libbpf/libbpf_build.rst
@@ -0,0 +1,37 @@
+.. SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
+
+Building libbpf
+===============
+
+libelf and zlib are internal dependencies of libbpf and thus are required to link
+against and must be installed on the system for applications to work.
+pkg-config is used by default to find libelf, and the program called
+can be overridden with PKG_CONFIG.
+
+If using pkg-config at build time is not desired, it can be disabled by
+setting NO_PKG_CONFIG=1 when calling make.
+
+To build both static libbpf.a and shared libbpf.so:
+
+.. code-block:: bash
+
+ $ cd src
+ $ make
+
+To build only static libbpf.a library in directory build/ and install them
+together with libbpf headers in a staging directory root/:
+
+.. code-block:: bash
+
+ $ cd src
+ $ mkdir build root
+ $ BUILD_STATIC_ONLY=y OBJDIR=build DESTDIR=root make install
+
+To build both static libbpf.a and shared libbpf.so against a custom libelf
+dependency installed in /build/root/ and install them together with libbpf
+headers in a build directory /build/root/:
+
+.. code-block:: bash
+
+ $ cd src
+ $ PKG_CONFIG_PATH=/build/root/lib64/pkgconfig DESTDIR=/build/root make \ No newline at end of file
diff --git a/Documentation/bpf/libbpf/libbpf_naming_convention.rst b/Documentation/bpf/libbpf/libbpf_naming_convention.rst
new file mode 100644
index 000000000000..3de1d51e41da
--- /dev/null
+++ b/Documentation/bpf/libbpf/libbpf_naming_convention.rst
@@ -0,0 +1,162 @@
+.. SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
+
+API naming convention
+=====================
+
+libbpf API provides access to a few logically separated groups of
+functions and types. Every group has its own naming convention
+described here. It's recommended to follow these conventions whenever a
+new function or type is added to keep libbpf API clean and consistent.
+
+All types and functions provided by libbpf API should have one of the
+following prefixes: ``bpf_``, ``btf_``, ``libbpf_``, ``xsk_``,
+``btf_dump_``, ``ring_buffer_``, ``perf_buffer_``.
+
+System call wrappers
+--------------------
+
+System call wrappers are simple wrappers for commands supported by
+sys_bpf system call. These wrappers should go to ``bpf.h`` header file
+and map one to one to corresponding commands.
+
+For example ``bpf_map_lookup_elem`` wraps ``BPF_MAP_LOOKUP_ELEM``
+command of sys_bpf, ``bpf_prog_attach`` wraps ``BPF_PROG_ATTACH``, etc.
+
+Objects
+-------
+
+Another class of types and functions provided by libbpf API is "objects"
+and functions to work with them. Objects are high-level abstractions
+such as BPF program or BPF map. They're represented by corresponding
+structures such as ``struct bpf_object``, ``struct bpf_program``,
+``struct bpf_map``, etc.
+
+Structures are forward declared and access to their fields should be
+provided via corresponding getters and setters rather than directly.
+
+These objects are associated with corresponding parts of ELF object that
+contains compiled BPF programs.
+
+For example ``struct bpf_object`` represents ELF object itself created
+from an ELF file or from a buffer, ``struct bpf_program`` represents a
+program in ELF object and ``struct bpf_map`` is a map.
+
+Functions that work with an object have names built from object name,
+double underscore and part that describes function purpose.
+
+For example ``bpf_object__open`` consists of the name of corresponding
+object, ``bpf_object``, double underscore and ``open`` that defines the
+purpose of the function to open ELF file and create ``bpf_object`` from
+it.
+
+All objects and corresponding functions other than BTF related should go
+to ``libbpf.h``. BTF types and functions should go to ``btf.h``.
+
+Auxiliary functions
+-------------------
+
+Auxiliary functions and types that don't fit well in any of categories
+described above should have ``libbpf_`` prefix, e.g.
+``libbpf_get_error`` or ``libbpf_prog_type_by_name``.
+
+AF_XDP functions
+-------------------
+
+AF_XDP functions should have an ``xsk_`` prefix, e.g.
+``xsk_umem__get_data`` or ``xsk_umem__create``. The interface consists
+of both low-level ring access functions and high-level configuration
+functions. These can be mixed and matched. Note that these functions
+are not reentrant for performance reasons.
+
+ABI
+==========
+
+libbpf can be both linked statically or used as DSO. To avoid possible
+conflicts with other libraries an application is linked with, all
+non-static libbpf symbols should have one of the prefixes mentioned in
+API documentation above. See API naming convention to choose the right
+name for a new symbol.
+
+Symbol visibility
+-----------------
+
+libbpf follow the model when all global symbols have visibility "hidden"
+by default and to make a symbol visible it has to be explicitly
+attributed with ``LIBBPF_API`` macro. For example:
+
+.. code-block:: c
+
+ LIBBPF_API int bpf_prog_get_fd_by_id(__u32 id);
+
+This prevents from accidentally exporting a symbol, that is not supposed
+to be a part of ABI what, in turn, improves both libbpf developer- and
+user-experiences.
+
+ABI versionning
+---------------
+
+To make future ABI extensions possible libbpf ABI is versioned.
+Versioning is implemented by ``libbpf.map`` version script that is
+passed to linker.
+
+Version name is ``LIBBPF_`` prefix + three-component numeric version,
+starting from ``0.0.1``.
+
+Every time ABI is being changed, e.g. because a new symbol is added or
+semantic of existing symbol is changed, ABI version should be bumped.
+This bump in ABI version is at most once per kernel development cycle.
+
+For example, if current state of ``libbpf.map`` is:
+
+.. code-block:: c
+
+ LIBBPF_0.0.1 {
+ global:
+ bpf_func_a;
+ bpf_func_b;
+ local:
+ \*;
+ };
+
+, and a new symbol ``bpf_func_c`` is being introduced, then
+``libbpf.map`` should be changed like this:
+
+.. code-block:: c
+
+ LIBBPF_0.0.1 {
+ global:
+ bpf_func_a;
+ bpf_func_b;
+ local:
+ \*;
+ };
+ LIBBPF_0.0.2 {
+ global:
+ bpf_func_c;
+ } LIBBPF_0.0.1;
+
+, where new version ``LIBBPF_0.0.2`` depends on the previous
+``LIBBPF_0.0.1``.
+
+Format of version script and ways to handle ABI changes, including
+incompatible ones, described in details in [1].
+
+Stand-alone build
+-------------------
+
+Under https://github.com/libbpf/libbpf there is a (semi-)automated
+mirror of the mainline's version of libbpf for a stand-alone build.
+
+However, all changes to libbpf's code base must be upstreamed through
+the mainline kernel tree.
+
+License
+-------------------
+
+libbpf is dual-licensed under LGPL 2.1 and BSD 2-Clause.
+
+Links
+-------------------
+
+[1] https://www.akkadia.org/drepper/dsohowto.pdf
+ (Chapter 3. Maintaining APIs and ABIs).
diff --git a/Documentation/bpf/llvm_reloc.rst b/Documentation/bpf/llvm_reloc.rst
new file mode 100644
index 000000000000..ca8957d5b671
--- /dev/null
+++ b/Documentation/bpf/llvm_reloc.rst
@@ -0,0 +1,240 @@
+.. SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
+
+====================
+BPF LLVM Relocations
+====================
+
+This document describes LLVM BPF backend relocation types.
+
+Relocation Record
+=================
+
+LLVM BPF backend records each relocation with the following 16-byte
+ELF structure::
+
+ typedef struct
+ {
+ Elf64_Addr r_offset; // Offset from the beginning of section.
+ Elf64_Xword r_info; // Relocation type and symbol index.
+ } Elf64_Rel;
+
+For example, for the following code::
+
+ int g1 __attribute__((section("sec")));
+ int g2 __attribute__((section("sec")));
+ static volatile int l1 __attribute__((section("sec")));
+ static volatile int l2 __attribute__((section("sec")));
+ int test() {
+ return g1 + g2 + l1 + l2;
+ }
+
+Compiled with ``clang -target bpf -O2 -c test.c``, the following is
+the code with ``llvm-objdump -dr test.o``::
+
+ 0: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
+ 0000000000000000: R_BPF_64_64 g1
+ 2: 61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
+ 3: 18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r2 = 0 ll
+ 0000000000000018: R_BPF_64_64 g2
+ 5: 61 20 00 00 00 00 00 00 r0 = *(u32 *)(r2 + 0)
+ 6: 0f 10 00 00 00 00 00 00 r0 += r1
+ 7: 18 01 00 00 08 00 00 00 00 00 00 00 00 00 00 00 r1 = 8 ll
+ 0000000000000038: R_BPF_64_64 sec
+ 9: 61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
+ 10: 0f 10 00 00 00 00 00 00 r0 += r1
+ 11: 18 01 00 00 0c 00 00 00 00 00 00 00 00 00 00 00 r1 = 12 ll
+ 0000000000000058: R_BPF_64_64 sec
+ 13: 61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
+ 14: 0f 10 00 00 00 00 00 00 r0 += r1
+ 15: 95 00 00 00 00 00 00 00 exit
+
+There are four relations in the above for four ``LD_imm64`` instructions.
+The following ``llvm-readelf -r test.o`` shows the binary values of the four
+relocations::
+
+ Relocation section '.rel.text' at offset 0x190 contains 4 entries:
+ Offset Info Type Symbol's Value Symbol's Name
+ 0000000000000000 0000000600000001 R_BPF_64_64 0000000000000000 g1
+ 0000000000000018 0000000700000001 R_BPF_64_64 0000000000000004 g2
+ 0000000000000038 0000000400000001 R_BPF_64_64 0000000000000000 sec
+ 0000000000000058 0000000400000001 R_BPF_64_64 0000000000000000 sec
+
+Each relocation is represented by ``Offset`` (8 bytes) and ``Info`` (8 bytes).
+For example, the first relocation corresponds to the first instruction
+(Offset 0x0) and the corresponding ``Info`` indicates the relocation type
+of ``R_BPF_64_64`` (type 1) and the entry in the symbol table (entry 6).
+The following is the symbol table with ``llvm-readelf -s test.o``::
+
+ Symbol table '.symtab' contains 8 entries:
+ Num: Value Size Type Bind Vis Ndx Name
+ 0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
+ 1: 0000000000000000 0 FILE LOCAL DEFAULT ABS test.c
+ 2: 0000000000000008 4 OBJECT LOCAL DEFAULT 4 l1
+ 3: 000000000000000c 4 OBJECT LOCAL DEFAULT 4 l2
+ 4: 0000000000000000 0 SECTION LOCAL DEFAULT 4 sec
+ 5: 0000000000000000 128 FUNC GLOBAL DEFAULT 2 test
+ 6: 0000000000000000 4 OBJECT GLOBAL DEFAULT 4 g1
+ 7: 0000000000000004 4 OBJECT GLOBAL DEFAULT 4 g2
+
+The 6th entry is global variable ``g1`` with value 0.
+
+Similarly, the second relocation is at ``.text`` offset ``0x18``, instruction 3,
+for global variable ``g2`` which has a symbol value 4, the offset
+from the start of ``.data`` section.
+
+The third and fourth relocations refers to static variables ``l1``
+and ``l2``. From ``.rel.text`` section above, it is not clear
+which symbols they really refers to as they both refers to
+symbol table entry 4, symbol ``sec``, which has ``STT_SECTION`` type
+and represents a section. So for static variable or function,
+the section offset is written to the original insn
+buffer, which is called ``A`` (addend). Looking at
+above insn ``7`` and ``11``, they have section offset ``8`` and ``12``.
+From symbol table, we can find that they correspond to entries ``2``
+and ``3`` for ``l1`` and ``l2``.
+
+In general, the ``A`` is 0 for global variables and functions,
+and is the section offset or some computation result based on
+section offset for static variables/functions. The non-section-offset
+case refers to function calls. See below for more details.
+
+Different Relocation Types
+==========================
+
+Six relocation types are supported. The following is an overview and
+``S`` represents the value of the symbol in the symbol table::
+
+ Enum ELF Reloc Type Description BitSize Offset Calculation
+ 0 R_BPF_NONE None
+ 1 R_BPF_64_64 ld_imm64 insn 32 r_offset + 4 S + A
+ 2 R_BPF_64_ABS64 normal data 64 r_offset S + A
+ 3 R_BPF_64_ABS32 normal data 32 r_offset S + A
+ 4 R_BPF_64_NODYLD32 .BTF[.ext] data 32 r_offset S + A
+ 10 R_BPF_64_32 call insn 32 r_offset + 4 (S + A) / 8 - 1
+
+For example, ``R_BPF_64_64`` relocation type is used for ``ld_imm64`` instruction.
+The actual to-be-relocated data (0 or section offset)
+is stored at ``r_offset + 4`` and the read/write
+data bitsize is 32 (4 bytes). The relocation can be resolved with
+the symbol value plus implicit addend. Note that the ``BitSize`` is 32 which
+means the section offset must be less than or equal to ``UINT32_MAX`` and this
+is enforced by LLVM BPF backend.
+
+In another case, ``R_BPF_64_ABS64`` relocation type is used for normal 64-bit data.
+The actual to-be-relocated data is stored at ``r_offset`` and the read/write data
+bitsize is 64 (8 bytes). The relocation can be resolved with
+the symbol value plus implicit addend.
+
+Both ``R_BPF_64_ABS32`` and ``R_BPF_64_NODYLD32`` types are for 32-bit data.
+But ``R_BPF_64_NODYLD32`` specifically refers to relocations in ``.BTF`` and
+``.BTF.ext`` sections. For cases like bcc where llvm ``ExecutionEngine RuntimeDyld``
+is involved, ``R_BPF_64_NODYLD32`` types of relocations should not be resolved
+to actual function/variable address. Otherwise, ``.BTF`` and ``.BTF.ext``
+become unusable by bcc and kernel.
+
+Type ``R_BPF_64_32`` is used for call instruction. The call target section
+offset is stored at ``r_offset + 4`` (32bit) and calculated as
+``(S + A) / 8 - 1``.
+
+Examples
+========
+
+Types ``R_BPF_64_64`` and ``R_BPF_64_32`` are used to resolve ``ld_imm64``
+and ``call`` instructions. For example::
+
+ __attribute__((noinline)) __attribute__((section("sec1")))
+ int gfunc(int a, int b) {
+ return a * b;
+ }
+ static __attribute__((noinline)) __attribute__((section("sec1")))
+ int lfunc(int a, int b) {
+ return a + b;
+ }
+ int global __attribute__((section("sec2")));
+ int test(int a, int b) {
+ return gfunc(a, b) + lfunc(a, b) + global;
+ }
+
+Compiled with ``clang -target bpf -O2 -c test.c``, we will have
+following code with `llvm-objdump -dr test.o``::
+
+ Disassembly of section .text:
+
+ 0000000000000000 <test>:
+ 0: bf 26 00 00 00 00 00 00 r6 = r2
+ 1: bf 17 00 00 00 00 00 00 r7 = r1
+ 2: 85 10 00 00 ff ff ff ff call -1
+ 0000000000000010: R_BPF_64_32 gfunc
+ 3: bf 08 00 00 00 00 00 00 r8 = r0
+ 4: bf 71 00 00 00 00 00 00 r1 = r7
+ 5: bf 62 00 00 00 00 00 00 r2 = r6
+ 6: 85 10 00 00 02 00 00 00 call 2
+ 0000000000000030: R_BPF_64_32 sec1
+ 7: 0f 80 00 00 00 00 00 00 r0 += r8
+ 8: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
+ 0000000000000040: R_BPF_64_64 global
+ 10: 61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
+ 11: 0f 10 00 00 00 00 00 00 r0 += r1
+ 12: 95 00 00 00 00 00 00 00 exit
+
+ Disassembly of section sec1:
+
+ 0000000000000000 <gfunc>:
+ 0: bf 20 00 00 00 00 00 00 r0 = r2
+ 1: 2f 10 00 00 00 00 00 00 r0 *= r1
+ 2: 95 00 00 00 00 00 00 00 exit
+
+ 0000000000000018 <lfunc>:
+ 3: bf 20 00 00 00 00 00 00 r0 = r2
+ 4: 0f 10 00 00 00 00 00 00 r0 += r1
+ 5: 95 00 00 00 00 00 00 00 exit
+
+The first relocation corresponds to ``gfunc(a, b)`` where ``gfunc`` has a value of 0,
+so the ``call`` instruction offset is ``(0 + 0)/8 - 1 = -1``.
+The second relocation corresponds to ``lfunc(a, b)`` where ``lfunc`` has a section
+offset ``0x18``, so the ``call`` instruction offset is ``(0 + 0x18)/8 - 1 = 2``.
+The third relocation corresponds to ld_imm64 of ``global``, which has a section
+offset ``0``.
+
+The following is an example to show how R_BPF_64_ABS64 could be generated::
+
+ int global() { return 0; }
+ struct t { void *g; } gbl = { global };
+
+Compiled with ``clang -target bpf -O2 -g -c test.c``, we will see a
+relocation below in ``.data`` section with command
+``llvm-readelf -r test.o``::
+
+ Relocation section '.rel.data' at offset 0x458 contains 1 entries:
+ Offset Info Type Symbol's Value Symbol's Name
+ 0000000000000000 0000000700000002 R_BPF_64_ABS64 0000000000000000 global
+
+The relocation says the first 8-byte of ``.data`` section should be
+filled with address of ``global`` variable.
+
+With ``llvm-readelf`` output, we can see that dwarf sections have a bunch of
+``R_BPF_64_ABS32`` and ``R_BPF_64_ABS64`` relocations::
+
+ Relocation section '.rel.debug_info' at offset 0x468 contains 13 entries:
+ Offset Info Type Symbol's Value Symbol's Name
+ 0000000000000006 0000000300000003 R_BPF_64_ABS32 0000000000000000 .debug_abbrev
+ 000000000000000c 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str
+ 0000000000000012 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str
+ 0000000000000016 0000000600000003 R_BPF_64_ABS32 0000000000000000 .debug_line
+ 000000000000001a 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str
+ 000000000000001e 0000000200000002 R_BPF_64_ABS64 0000000000000000 .text
+ 000000000000002b 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str
+ 0000000000000037 0000000800000002 R_BPF_64_ABS64 0000000000000000 gbl
+ 0000000000000040 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str
+ ......
+
+The .BTF/.BTF.ext sections has R_BPF_64_NODYLD32 relocations::
+
+ Relocation section '.rel.BTF' at offset 0x538 contains 1 entries:
+ Offset Info Type Symbol's Value Symbol's Name
+ 0000000000000084 0000000800000004 R_BPF_64_NODYLD32 0000000000000000 gbl
+
+ Relocation section '.rel.BTF.ext' at offset 0x548 contains 2 entries:
+ Offset Info Type Symbol's Value Symbol's Name
+ 000000000000002c 0000000200000004 R_BPF_64_NODYLD32 0000000000000000 .text
+ 0000000000000040 0000000200000004 R_BPF_64_NODYLD32 0000000000000000 .text