diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2018-06-06 01:20:22 +0200 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2018-06-06 01:20:22 +0200 |
commit | abf7dba7c4f77d781f6df50fefb19a64c5dc331f (patch) | |
tree | 38648731b502d5aec508f3b33f6616190e598eb6 /Documentation/driver-api | |
parent | Merge tag 'usb-4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gre... (diff) | |
parent | vmw_balloon: fixing double free when batching mode is off (diff) | |
download | linux-abf7dba7c4f77d781f6df50fefb19a64c5dc331f.tar.xz linux-abf7dba7c4f77d781f6df50fefb19a64c5dc331f.zip |
Merge tag 'char-misc-4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH:
"Here is the "big" char and misc driver patches for 4.18-rc1.
It's not a lot of stuff here, but there are some highlights:
- coreboot driver updates
- soundwire driver updates
- android binder updates
- fpga big sync, mostly documentation
- lots of minor driver updates
All of these have been in linux-next for a while with no reported
issues"
* tag 'char-misc-4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (81 commits)
vmw_balloon: fixing double free when batching mode is off
MAINTAINERS: Add driver-api/fpga path
fpga: clarify that unregister functions also free
documentation: fpga: move fpga-region.txt to driver-api
documentation: fpga: add bridge document to driver-api
documentation: fpga: move fpga-mgr.txt to driver-api
Documentation: fpga: move fpga overview to driver-api
fpga: region: kernel-doc fixes
fpga: bridge: kernel-doc fixes
fpga: mgr: kernel-doc fixes
fpga: use SPDX
fpga: region: change api, add fpga_region_create/free
fpga: bridge: change api, don't use drvdata
fpga: manager: change api, don't use drvdata
fpga: region: don't use drvdata in common fpga code
Drivers: hv: vmbus: Removed an unnecessary cast from void *
ver_linux: Drop redundant calls to system() to test if file is readable
ver_linux: Move stderr redirection from function parameter to function body
misc: IBM Virtual Management Channel Driver (VMC)
rpmsg: Correct support for MODULE_DEVICE_TABLE()
...
Diffstat (limited to 'Documentation/driver-api')
-rw-r--r-- | Documentation/driver-api/fpga/fpga-bridge.rst | 49 | ||||
-rw-r--r-- | Documentation/driver-api/fpga/fpga-mgr.rst | 220 | ||||
-rw-r--r-- | Documentation/driver-api/fpga/fpga-region.rst | 102 | ||||
-rw-r--r-- | Documentation/driver-api/fpga/index.rst | 13 | ||||
-rw-r--r-- | Documentation/driver-api/fpga/intro.rst | 54 | ||||
-rw-r--r-- | Documentation/driver-api/index.rst | 1 | ||||
-rw-r--r-- | Documentation/driver-api/soundwire/error_handling.rst | 65 | ||||
-rw-r--r-- | Documentation/driver-api/soundwire/index.rst | 3 | ||||
-rw-r--r-- | Documentation/driver-api/soundwire/locking.rst | 106 | ||||
-rw-r--r-- | Documentation/driver-api/soundwire/stream.rst | 372 |
10 files changed, 985 insertions, 0 deletions
diff --git a/Documentation/driver-api/fpga/fpga-bridge.rst b/Documentation/driver-api/fpga/fpga-bridge.rst new file mode 100644 index 000000000000..2c2aaca894bf --- /dev/null +++ b/Documentation/driver-api/fpga/fpga-bridge.rst @@ -0,0 +1,49 @@ +FPGA Bridge +=========== + +API to implement a new FPGA bridge +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. kernel-doc:: include/linux/fpga/fpga-bridge.h + :functions: fpga_bridge + +.. kernel-doc:: include/linux/fpga/fpga-bridge.h + :functions: fpga_bridge_ops + +.. kernel-doc:: drivers/fpga/fpga-bridge.c + :functions: fpga_bridge_create + +.. kernel-doc:: drivers/fpga/fpga-bridge.c + :functions: fpga_bridge_free + +.. kernel-doc:: drivers/fpga/fpga-bridge.c + :functions: fpga_bridge_register + +.. kernel-doc:: drivers/fpga/fpga-bridge.c + :functions: fpga_bridge_unregister + +API to control an FPGA bridge +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +You probably won't need these directly. FPGA regions should handle this. + +.. kernel-doc:: drivers/fpga/fpga-bridge.c + :functions: of_fpga_bridge_get + +.. kernel-doc:: drivers/fpga/fpga-bridge.c + :functions: fpga_bridge_get + +.. kernel-doc:: drivers/fpga/fpga-bridge.c + :functions: fpga_bridge_put + +.. kernel-doc:: drivers/fpga/fpga-bridge.c + :functions: fpga_bridge_get_to_list + +.. kernel-doc:: drivers/fpga/fpga-bridge.c + :functions: of_fpga_bridge_get_to_list + +.. kernel-doc:: drivers/fpga/fpga-bridge.c + :functions: fpga_bridge_enable + +.. kernel-doc:: drivers/fpga/fpga-bridge.c + :functions: fpga_bridge_disable diff --git a/Documentation/driver-api/fpga/fpga-mgr.rst b/Documentation/driver-api/fpga/fpga-mgr.rst new file mode 100644 index 000000000000..bcf2dd24e179 --- /dev/null +++ b/Documentation/driver-api/fpga/fpga-mgr.rst @@ -0,0 +1,220 @@ +FPGA Manager +============ + +Overview +-------- + +The FPGA manager core exports a set of functions for programming an FPGA with +an image. The API is manufacturer agnostic. All manufacturer specifics are +hidden away in a low level driver which registers a set of ops with the core. +The FPGA image data itself is very manufacturer specific, but for our purposes +it's just binary data. The FPGA manager core won't parse it. + +The FPGA image to be programmed can be in a scatter gather list, a single +contiguous buffer, or a firmware file. Because allocating contiguous kernel +memory for the buffer should be avoided, users are encouraged to use a scatter +gather list instead if possible. + +The particulars for programming the image are presented in a structure (struct +fpga_image_info). This struct contains parameters such as pointers to the +FPGA image as well as image-specific particulars such as whether the image was +built for full or partial reconfiguration. + +How to support a new FPGA device +-------------------------------- + +To add another FPGA manager, write a driver that implements a set of ops. The +probe function calls fpga_mgr_register(), such as:: + + static const struct fpga_manager_ops socfpga_fpga_ops = { + .write_init = socfpga_fpga_ops_configure_init, + .write = socfpga_fpga_ops_configure_write, + .write_complete = socfpga_fpga_ops_configure_complete, + .state = socfpga_fpga_ops_state, + }; + + static int socfpga_fpga_probe(struct platform_device *pdev) + { + struct device *dev = &pdev->dev; + struct socfpga_fpga_priv *priv; + struct fpga_manager *mgr; + int ret; + + priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + + /* + * do ioremaps, get interrupts, etc. and save + * them in priv + */ + + mgr = fpga_mgr_create(dev, "Altera SOCFPGA FPGA Manager", + &socfpga_fpga_ops, priv); + if (!mgr) + return -ENOMEM; + + platform_set_drvdata(pdev, mgr); + + ret = fpga_mgr_register(mgr); + if (ret) + fpga_mgr_free(mgr); + + return ret; + } + + static int socfpga_fpga_remove(struct platform_device *pdev) + { + struct fpga_manager *mgr = platform_get_drvdata(pdev); + + fpga_mgr_unregister(mgr); + + return 0; + } + + +The ops will implement whatever device specific register writes are needed to +do the programming sequence for this particular FPGA. These ops return 0 for +success or negative error codes otherwise. + +The programming sequence is:: + 1. .write_init + 2. .write or .write_sg (may be called once or multiple times) + 3. .write_complete + +The .write_init function will prepare the FPGA to receive the image data. The +buffer passed into .write_init will be atmost .initial_header_size bytes long, +if the whole bitstream is not immediately available then the core code will +buffer up at least this much before starting. + +The .write function writes a buffer to the FPGA. The buffer may be contain the +whole FPGA image or may be a smaller chunk of an FPGA image. In the latter +case, this function is called multiple times for successive chunks. This interface +is suitable for drivers which use PIO. + +The .write_sg version behaves the same as .write except the input is a sg_table +scatter list. This interface is suitable for drivers which use DMA. + +The .write_complete function is called after all the image has been written +to put the FPGA into operating mode. + +The ops include a .state function which will read the hardware FPGA manager and +return a code of type enum fpga_mgr_states. It doesn't result in a change in +hardware state. + +How to write an image buffer to a supported FPGA +------------------------------------------------ + +Some sample code:: + + #include <linux/fpga/fpga-mgr.h> + + struct fpga_manager *mgr; + struct fpga_image_info *info; + int ret; + + /* + * Get a reference to FPGA manager. The manager is not locked, so you can + * hold onto this reference without it preventing programming. + * + * This example uses the device node of the manager. Alternatively, use + * fpga_mgr_get(dev) instead if you have the device. + */ + mgr = of_fpga_mgr_get(mgr_node); + + /* struct with information about the FPGA image to program. */ + info = fpga_image_info_alloc(dev); + + /* flags indicates whether to do full or partial reconfiguration */ + info->flags = FPGA_MGR_PARTIAL_RECONFIG; + + /* + * At this point, indicate where the image is. This is pseudo-code; you're + * going to use one of these three. + */ + if (image is in a scatter gather table) { + + info->sgt = [your scatter gather table] + + } else if (image is in a buffer) { + + info->buf = [your image buffer] + info->count = [image buffer size] + + } else if (image is in a firmware file) { + + info->firmware_name = devm_kstrdup(dev, firmware_name, GFP_KERNEL); + + } + + /* Get exclusive control of FPGA manager */ + ret = fpga_mgr_lock(mgr); + + /* Load the buffer to the FPGA */ + ret = fpga_mgr_buf_load(mgr, &info, buf, count); + + /* Release the FPGA manager */ + fpga_mgr_unlock(mgr); + fpga_mgr_put(mgr); + + /* Deallocate the image info if you're done with it */ + fpga_image_info_free(info); + +API for implementing a new FPGA Manager driver +---------------------------------------------- + +.. kernel-doc:: include/linux/fpga/fpga-mgr.h + :functions: fpga_manager + +.. kernel-doc:: include/linux/fpga/fpga-mgr.h + :functions: fpga_manager_ops + +.. kernel-doc:: drivers/fpga/fpga-mgr.c + :functions: fpga_mgr_create + +.. kernel-doc:: drivers/fpga/fpga-mgr.c + :functions: fpga_mgr_free + +.. kernel-doc:: drivers/fpga/fpga-mgr.c + :functions: fpga_mgr_register + +.. kernel-doc:: drivers/fpga/fpga-mgr.c + :functions: fpga_mgr_unregister + +API for programming a FPGA +-------------------------- + +.. kernel-doc:: include/linux/fpga/fpga-mgr.h + :functions: fpga_image_info + +.. kernel-doc:: include/linux/fpga/fpga-mgr.h + :functions: fpga_mgr_states + +.. kernel-doc:: drivers/fpga/fpga-mgr.c + :functions: fpga_image_info_alloc + +.. kernel-doc:: drivers/fpga/fpga-mgr.c + :functions: fpga_image_info_free + +.. kernel-doc:: drivers/fpga/fpga-mgr.c + :functions: of_fpga_mgr_get + +.. kernel-doc:: drivers/fpga/fpga-mgr.c + :functions: fpga_mgr_get + +.. kernel-doc:: drivers/fpga/fpga-mgr.c + :functions: fpga_mgr_put + +.. kernel-doc:: drivers/fpga/fpga-mgr.c + :functions: fpga_mgr_lock + +.. kernel-doc:: drivers/fpga/fpga-mgr.c + :functions: fpga_mgr_unlock + +.. kernel-doc:: include/linux/fpga/fpga-mgr.h + :functions: fpga_mgr_states + +Note - use :c:func:`fpga_region_program_fpga()` instead of :c:func:`fpga_mgr_load()` + +.. kernel-doc:: drivers/fpga/fpga-mgr.c + :functions: fpga_mgr_load diff --git a/Documentation/driver-api/fpga/fpga-region.rst b/Documentation/driver-api/fpga/fpga-region.rst new file mode 100644 index 000000000000..f89e4a311722 --- /dev/null +++ b/Documentation/driver-api/fpga/fpga-region.rst @@ -0,0 +1,102 @@ +FPGA Region +=========== + +Overview +-------- + +This document is meant to be an brief overview of the FPGA region API usage. A +more conceptual look at regions can be found in the Device Tree binding +document [#f1]_. + +For the purposes of this API document, let's just say that a region associates +an FPGA Manager and a bridge (or bridges) with a reprogrammable region of an +FPGA or the whole FPGA. The API provides a way to register a region and to +program a region. + +Currently the only layer above fpga-region.c in the kernel is the Device Tree +support (of-fpga-region.c) described in [#f1]_. The DT support layer uses regions +to program the FPGA and then DT to handle enumeration. The common region code +is intended to be used by other schemes that have other ways of accomplishing +enumeration after programming. + +An fpga-region can be set up to know the following things: + + * which FPGA manager to use to do the programming + + * which bridges to disable before programming and enable afterwards. + +Additional info needed to program the FPGA image is passed in the struct +fpga_image_info including: + + * pointers to the image as either a scatter-gather buffer, a contiguous + buffer, or the name of firmware file + + * flags indicating specifics such as whether the image if for partial + reconfiguration. + +How to program a FPGA using a region +------------------------------------ + +First, allocate the info struct:: + + info = fpga_image_info_alloc(dev); + if (!info) + return -ENOMEM; + +Set flags as needed, i.e.:: + + info->flags |= FPGA_MGR_PARTIAL_RECONFIG; + +Point to your FPGA image, such as:: + + info->sgt = &sgt; + +Add info to region and do the programming:: + + region->info = info; + ret = fpga_region_program_fpga(region); + +:c:func:`fpga_region_program_fpga()` operates on info passed in the +fpga_image_info (region->info). This function will attempt to: + + * lock the region's mutex + * lock the region's FPGA manager + * build a list of FPGA bridges if a method has been specified to do so + * disable the bridges + * program the FPGA + * re-enable the bridges + * release the locks + +Then you will want to enumerate whatever hardware has appeared in the FPGA. + +How to add a new FPGA region +---------------------------- + +An example of usage can be seen in the probe function of [#f2]_. + +.. [#f1] ../devicetree/bindings/fpga/fpga-region.txt +.. [#f2] ../../drivers/fpga/of-fpga-region.c + +API to program a FGPA +--------------------- + +.. kernel-doc:: drivers/fpga/fpga-region.c + :functions: fpga_region_program_fpga + +API to add a new FPGA region +---------------------------- + +.. kernel-doc:: include/linux/fpga/fpga-region.h + :functions: fpga_region + +.. kernel-doc:: drivers/fpga/fpga-region.c + :functions: fpga_region_create + +.. kernel-doc:: drivers/fpga/fpga-region.c + :functions: fpga_region_free + +.. kernel-doc:: drivers/fpga/fpga-region.c + :functions: fpga_region_register + +.. kernel-doc:: drivers/fpga/fpga-region.c + :functions: fpga_region_unregister diff --git a/Documentation/driver-api/fpga/index.rst b/Documentation/driver-api/fpga/index.rst new file mode 100644 index 000000000000..c51e5ebd544a --- /dev/null +++ b/Documentation/driver-api/fpga/index.rst @@ -0,0 +1,13 @@ +============== +FPGA Subsystem +============== + +:Author: Alan Tull + +.. toctree:: + :maxdepth: 2 + + intro + fpga-mgr + fpga-bridge + fpga-region diff --git a/Documentation/driver-api/fpga/intro.rst b/Documentation/driver-api/fpga/intro.rst new file mode 100644 index 000000000000..51cd81dbb4dc --- /dev/null +++ b/Documentation/driver-api/fpga/intro.rst @@ -0,0 +1,54 @@ +Introduction +============ + +The FPGA subsystem supports reprogramming FPGAs dynamically under +Linux. Some of the core intentions of the FPGA subsystems are: + +* The FPGA subsystem is vendor agnostic. + +* The FPGA subsystem separates upper layers (userspace interfaces and + enumeration) from lower layers that know how to program a specific + FPGA. + +* Code should not be shared between upper and lower layers. This + should go without saying. If that seems necessary, there's probably + framework functionality that that can be added that will benefit + other users. Write the linux-fpga mailing list and maintainers and + seek out a solution that expands the framework for broad reuse. + +* Generally, when adding code, think of the future. Plan for re-use. + +The framework in the kernel is divided into: + +FPGA Manager +------------ + +If you are adding a new FPGA or a new method of programming a FPGA, +this is the subsystem for you. Low level FPGA manager drivers contain +the knowledge of how to program a specific device. This subsystem +includes the framework in fpga-mgr.c and the low level drivers that +are registered with it. + +FPGA Bridge +----------- + +FPGA Bridges prevent spurious signals from going out of a FPGA or a +region of a FPGA during programming. They are disabled before +programming begins and re-enabled afterwards. An FPGA bridge may be +actual hard hardware that gates a bus to a cpu or a soft ("freeze") +bridge in FPGA fabric that surrounds a partial reconfiguration region +of an FPGA. This subsystem includes fpga-bridge.c and the low level +drivers that are registered with it. + +FPGA Region +----------- + +If you are adding a new interface to the FPGA framework, add it on top +of a FPGA region to allow the most reuse of your interface. + +The FPGA Region framework (fpga-region.c) associates managers and +bridges as reconfigurable regions. A region may refer to the whole +FPGA in full reconfiguration or to a partial reconfiguration region. + +The Device Tree FPGA Region support (of-fpga-region.c) handles +reprogramming FPGAs when device tree overlays are applied. diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst index 5d04296f5ce0..f4180e7c7ed5 100644 --- a/Documentation/driver-api/index.rst +++ b/Documentation/driver-api/index.rst @@ -51,6 +51,7 @@ available subsections can be seen below. dmaengine/index slimbus soundwire/index + fpga/index .. only:: subproject and html diff --git a/Documentation/driver-api/soundwire/error_handling.rst b/Documentation/driver-api/soundwire/error_handling.rst new file mode 100644 index 000000000000..aa3a0a23a066 --- /dev/null +++ b/Documentation/driver-api/soundwire/error_handling.rst @@ -0,0 +1,65 @@ +======================== +SoundWire Error Handling +======================== + +The SoundWire PHY was designed with care and errors on the bus are going to +be very unlikely, and if they happen it should be limited to single bit +errors. Examples of this design can be found in the synchronization +mechanism (sync loss after two errors) and short CRCs used for the Bulk +Register Access. + +The errors can be detected with multiple mechanisms: + +1. Bus clash or parity errors: This mechanism relies on low-level detectors + that are independent of the payload and usages, and they cover both control + and audio data. The current implementation only logs such errors. + Improvements could be invalidating an entire programming sequence and + restarting from a known position. In the case of such errors outside of a + control/command sequence, there is no concealment or recovery for audio + data enabled by the SoundWire protocol, the location of the error will also + impact its audibility (most-significant bits will be more impacted in PCM), + and after a number of such errors are detected the bus might be reset. Note + that bus clashes due to programming errors (two streams using the same bit + slots) or electrical issues during the transmit/receive transition cannot + be distinguished, although a recurring bus clash when audio is enabled is a + indication of a bus allocation issue. The interrupt mechanism can also help + identify Slaves which detected a Bus Clash or a Parity Error, but they may + not be responsible for the errors so resetting them individually is not a + viable recovery strategy. + +2. Command status: Each command is associated with a status, which only + covers transmission of the data between devices. The ACK status indicates + that the command was received and will be executed by the end of the + current frame. A NAK indicates that the command was in error and will not + be applied. In case of a bad programming (command sent to non-existent + Slave or to a non-implemented register) or electrical issue, no response + signals the command was ignored. Some Master implementations allow for a + command to be retransmitted several times. If the retransmission fails, + backtracking and restarting the entire programming sequence might be a + solution. Alternatively some implementations might directly issue a bus + reset and re-enumerate all devices. + +3. Timeouts: In a number of cases such as ChannelPrepare or + ClockStopPrepare, the bus driver is supposed to poll a register field until + it transitions to a NotFinished value of zero. The MIPI SoundWire spec 1.1 + does not define timeouts but the MIPI SoundWire DisCo document adds + recommendation on timeouts. If such configurations do not complete, the + driver will return a -ETIMEOUT. Such timeouts are symptoms of a faulty + Slave device and are likely impossible to recover from. + +Errors during global reconfiguration sequences are extremely difficult to +handle: + +1. BankSwitch: An error during the last command issuing a BankSwitch is + difficult to backtrack from. Retransmitting the Bank Switch command may be + possible in a single segment setup, but this can lead to synchronization + problems when enabling multiple bus segments (a command with side effects + such as frame reconfiguration would be handled at different times). A global + hard-reset might be the best solution. + +Note that SoundWire does not provide a mechanism to detect illegal values +written in valid registers. In a number of cases the standard even mentions +that the Slave might behave in implementation-defined ways. The bus +implementation does not provide a recovery mechanism for such errors, Slave +or Master driver implementers are responsible for writing valid values in +valid registers and implement additional range checking if needed. diff --git a/Documentation/driver-api/soundwire/index.rst b/Documentation/driver-api/soundwire/index.rst index 647e94654752..6db026028f27 100644 --- a/Documentation/driver-api/soundwire/index.rst +++ b/Documentation/driver-api/soundwire/index.rst @@ -6,6 +6,9 @@ SoundWire Documentation :maxdepth: 1 summary + stream + error_handling + locking .. only:: subproject diff --git a/Documentation/driver-api/soundwire/locking.rst b/Documentation/driver-api/soundwire/locking.rst new file mode 100644 index 000000000000..253f73555255 --- /dev/null +++ b/Documentation/driver-api/soundwire/locking.rst @@ -0,0 +1,106 @@ +================= +SoundWire Locking +================= + +This document explains locking mechanism of the SoundWire Bus. Bus uses +following locks in order to avoid race conditions in Bus operations on +shared resources. + + - Bus lock + + - Message lock + +Bus lock +======== + +SoundWire Bus lock is a mutex and is part of Bus data structure +(sdw_bus) which is used for every Bus instance. This lock is used to +serialize each of the following operations(s) within SoundWire Bus instance. + + - Addition and removal of Slave(s), changing Slave status. + + - Prepare, Enable, Disable and De-prepare stream operations. + + - Access of Stream data structure. + +Message lock +============ + +SoundWire message transfer lock. This mutex is part of +Bus data structure (sdw_bus). This lock is used to serialize the message +transfers (read/write) within a SoundWire Bus instance. + +Below examples show how locks are acquired. + +Example 1 +--------- + +Message transfer. + + 1. For every message transfer + + a. Acquire Message lock. + + b. Transfer message (Read/Write) to Slave1 or broadcast message on + Bus in case of bank switch. + + c. Release Message lock :: + + +----------+ +---------+ + | | | | + | Bus | | Master | + | | | Driver | + | | | | + +----+-----+ +----+----+ + | | + | bus->ops->xfer_msg() | + <-------------------------------+ a. Acquire Message lock + | | b. Transfer message + | | + +-------------------------------> c. Release Message lock + | return success/error | d. Return success/error + | | + + + + +Example 2 +--------- + +Prepare operation. + + 1. Acquire lock for Bus instance associated with Master 1. + + 2. For every message transfer in Prepare operation + + a. Acquire Message lock. + + b. Transfer message (Read/Write) to Slave1 or broadcast message on + Bus in case of bank switch. + + c. Release Message lock. + + 3. Release lock for Bus instance associated with Master 1 :: + + +----------+ +---------+ + | | | | + | Bus | | Master | + | | | Driver | + | | | | + +----+-----+ +----+----+ + | | + | sdw_prepare_stream() | + <-------------------------------+ 1. Acquire bus lock + | | 2. Perform stream prepare + | | + | | + | bus->ops->xfer_msg() | + <-------------------------------+ a. Acquire Message lock + | | b. Transfer message + | | + +-------------------------------> c. Release Message lock + | return success/error | d. Return success/error + | | + | | + | return success/error | 3. Release bus lock + +-------------------------------> 4. Return success/error + | | + + + diff --git a/Documentation/driver-api/soundwire/stream.rst b/Documentation/driver-api/soundwire/stream.rst new file mode 100644 index 000000000000..29121aa55fb9 --- /dev/null +++ b/Documentation/driver-api/soundwire/stream.rst @@ -0,0 +1,372 @@ +========================= +Audio Stream in SoundWire +========================= + +An audio stream is a logical or virtual connection created between + + (1) System memory buffer(s) and Codec(s) + + (2) DSP memory buffer(s) and Codec(s) + + (3) FIFO(s) and Codec(s) + + (4) Codec(s) and Codec(s) + +which is typically driven by a DMA(s) channel through the data link. An +audio stream contains one or more channels of data. All channels within +stream must have same sample rate and same sample size. + +Assume a stream with two channels (Left & Right) is opened using SoundWire +interface. Below are some ways a stream can be represented in SoundWire. + +Stream Sample in memory (System memory, DSP memory or FIFOs) :: + + ------------------------- + | L | R | L | R | L | R | + ------------------------- + +Example 1: Stereo Stream with L and R channels is rendered from Master to +Slave. Both Master and Slave is using single port. :: + + +---------------+ Clock Signal +---------------+ + | Master +----------------------------------+ Slave | + | Interface | | Interface | + | | | 1 | + | | Data Signal | | + | L + R +----------------------------------+ L + R | + | (Data) | Data Direction | (Data) | + +---------------+ +-----------------------> +---------------+ + + +Example 2: Stereo Stream with L and R channels is captured from Slave to +Master. Both Master and Slave is using single port. :: + + + +---------------+ Clock Signal +---------------+ + | Master +----------------------------------+ Slave | + | Interface | | Interface | + | | | 1 | + | | Data Signal | | + | L + R +----------------------------------+ L + R | + | (Data) | Data Direction | (Data) | + +---------------+ <-----------------------+ +---------------+ + + +Example 3: Stereo Stream with L and R channels is rendered by Master. Each +of the L and R channel is received by two different Slaves. Master and both +Slaves are using single port. :: + + +---------------+ Clock Signal +---------------+ + | Master +---------+------------------------+ Slave | + | Interface | | | Interface | + | | | | 1 | + | | | Data Signal | | + | L + R +---+------------------------------+ L | + | (Data) | | | Data Direction | (Data) | + +---------------+ | | +-------------> +---------------+ + | | + | | + | | +---------------+ + | +----------------------> | Slave | + | | Interface | + | | 2 | + | | | + +----------------------------> | R | + | (Data) | + +---------------+ + + +Example 4: Stereo Stream with L and R channel is rendered by two different +Ports of the Master and is received by only single Port of the Slave +interface. :: + + +--------------------+ + | | + | +--------------+ +----------------+ + | | || | | + | | Data Port || L Channel | | + | | 1 |------------+ | | + | | L Channel || | +-----+----+ | + | | (Data) || | L + R Channel || Data | | + | Master +----------+ | +---+---------> || Port | | + | Interface | | || 1 | | + | +--------------+ | || | | + | | || | +----------+ | + | | Data Port |------------+ | | + | | 2 || R Channel | Slave | + | | R Channel || | Interface | + | | (Data) || | 1 | + | +--------------+ Clock Signal | L + R | + | +---------------------------> | (Data) | + +--------------------+ | | + +----------------+ + +SoundWire Stream Management flow +================================ + +Stream definitions +------------------ + + (1) Current stream: This is classified as the stream on which operation has + to be performed like prepare, enable, disable, de-prepare etc. + + (2) Active stream: This is classified as the stream which is already active + on Bus other than current stream. There can be multiple active streams + on the Bus. + +SoundWire Bus manages stream operations for each stream getting +rendered/captured on the SoundWire Bus. This section explains Bus operations +done for each of the stream allocated/released on Bus. Following are the +stream states maintained by the Bus for each of the audio stream. + + +SoundWire stream states +----------------------- + +Below shows the SoundWire stream states and state transition diagram. :: + + +-----------+ +------------+ +----------+ +----------+ + | ALLOCATED +---->| CONFIGURED +---->| PREPARED +---->| ENABLED | + | STATE | | STATE | | STATE | | STATE | + +-----------+ +------------+ +----------+ +----+-----+ + ^ + | + | + v + +----------+ +------------+ +----+-----+ + | RELEASED |<----------+ DEPREPARED |<-------+ DISABLED | + | STATE | | STATE | | STATE | + +----------+ +------------+ +----------+ + +NOTE: State transition between prepare and deprepare is supported in Spec +but not in the software (subsystem) + +NOTE2: Stream state transition checks need to be handled by caller +framework, for example ALSA/ASoC. No checks for stream transition exist in +SoundWire subsystem. + +Stream State Operations +----------------------- + +Below section explains the operations done by the Bus on Master(s) and +Slave(s) as part of stream state transitions. + +SDW_STREAM_ALLOCATED +~~~~~~~~~~~~~~~~~~~~ + +Allocation state for stream. This is the entry state +of the stream. Operations performed before entering in this state: + + (1) A stream runtime is allocated for the stream. This stream + runtime is used as a reference for all the operations performed + on the stream. + + (2) The resources required for holding stream runtime information are + allocated and initialized. This holds all stream related information + such as stream type (PCM/PDM) and parameters, Master and Slave + interface associated with the stream, stream state etc. + +After all above operations are successful, stream state is set to +``SDW_STREAM_ALLOCATED``. + +Bus implements below API for allocate a stream which needs to be called once +per stream. From ASoC DPCM framework, this stream state maybe linked to +.startup() operation. + + .. code-block:: c + int sdw_alloc_stream(char * stream_name); + + +SDW_STREAM_CONFIGURED +~~~~~~~~~~~~~~~~~~~~~ + +Configuration state of stream. Operations performed before entering in +this state: + + (1) The resources allocated for stream information in SDW_STREAM_ALLOCATED + state are updated here. This includes stream parameters, Master(s) + and Slave(s) runtime information associated with current stream. + + (2) All the Master(s) and Slave(s) associated with current stream provide + the port information to Bus which includes port numbers allocated by + Master(s) and Slave(s) for current stream and their channel mask. + +After all above operations are successful, stream state is set to +``SDW_STREAM_CONFIGURED``. + +Bus implements below APIs for CONFIG state which needs to be called by +the respective Master(s) and Slave(s) associated with stream. These APIs can +only be invoked once by respective Master(s) and Slave(s). From ASoC DPCM +framework, this stream state is linked to .hw_params() operation. + + .. code-block:: c + int sdw_stream_add_master(struct sdw_bus * bus, + struct sdw_stream_config * stream_config, + struct sdw_ports_config * ports_config, + struct sdw_stream_runtime * stream); + + int sdw_stream_add_slave(struct sdw_slave * slave, + struct sdw_stream_config * stream_config, + struct sdw_ports_config * ports_config, + struct sdw_stream_runtime * stream); + + +SDW_STREAM_PREPARED +~~~~~~~~~~~~~~~~~~~ + +Prepare state of stream. Operations performed before entering in this state: + + (1) Bus parameters such as bandwidth, frame shape, clock frequency, + are computed based on current stream as well as already active + stream(s) on Bus. Re-computation is required to accommodate current + stream on the Bus. + + (2) Transport and port parameters of all Master(s) and Slave(s) port(s) are + computed for the current as well as already active stream based on frame + shape and clock frequency computed in step 1. + + (3) Computed Bus and transport parameters are programmed in Master(s) and + Slave(s) registers. The banked registers programming is done on the + alternate bank (bank currently unused). Port(s) are enabled for the + already active stream(s) on the alternate bank (bank currently unused). + This is done in order to not disrupt already active stream(s). + + (4) Once all the values are programmed, Bus initiates switch to alternate + bank where all new values programmed gets into effect. + + (5) Ports of Master(s) and Slave(s) for current stream are prepared by + programming PrepareCtrl register. + +After all above operations are successful, stream state is set to +``SDW_STREAM_PREPARED``. + +Bus implements below API for PREPARE state which needs to be called once per +stream. From ASoC DPCM framework, this stream state is linked to +.prepare() operation. + + .. code-block:: c + int sdw_prepare_stream(struct sdw_stream_runtime * stream); + + +SDW_STREAM_ENABLED +~~~~~~~~~~~~~~~~~~ + +Enable state of stream. The data port(s) are enabled upon entering this state. +Operations performed before entering in this state: + + (1) All the values computed in SDW_STREAM_PREPARED state are programmed + in alternate bank (bank currently unused). It includes programming of + already active stream(s) as well. + + (2) All the Master(s) and Slave(s) port(s) for the current stream are + enabled on alternate bank (bank currently unused) by programming + ChannelEn register. + + (3) Once all the values are programmed, Bus initiates switch to alternate + bank where all new values programmed gets into effect and port(s) + associated with current stream are enabled. + +After all above operations are successful, stream state is set to +``SDW_STREAM_ENABLED``. + +Bus implements below API for ENABLE state which needs to be called once per +stream. From ASoC DPCM framework, this stream state is linked to +.trigger() start operation. + + .. code-block:: c + int sdw_enable_stream(struct sdw_stream_runtime * stream); + +SDW_STREAM_DISABLED +~~~~~~~~~~~~~~~~~~~ + +Disable state of stream. The data port(s) are disabled upon exiting this state. +Operations performed before entering in this state: + + (1) All the Master(s) and Slave(s) port(s) for the current stream are + disabled on alternate bank (bank currently unused) by programming + ChannelEn register. + + (2) All the current configuration of Bus and active stream(s) are programmed + into alternate bank (bank currently unused). + + (3) Once all the values are programmed, Bus initiates switch to alternate + bank where all new values programmed gets into effect and port(s) associated + with current stream are disabled. + +After all above operations are successful, stream state is set to +``SDW_STREAM_DISABLED``. + +Bus implements below API for DISABLED state which needs to be called once +per stream. From ASoC DPCM framework, this stream state is linked to +.trigger() stop operation. + + .. code-block:: c + int sdw_disable_stream(struct sdw_stream_runtime * stream); + + +SDW_STREAM_DEPREPARED +~~~~~~~~~~~~~~~~~~~~~ + +De-prepare state of stream. Operations performed before entering in this +state: + + (1) All the port(s) of Master(s) and Slave(s) for current stream are + de-prepared by programming PrepareCtrl register. + + (2) The payload bandwidth of current stream is reduced from the total + bandwidth requirement of bus and new parameters calculated and + applied by performing bank switch etc. + +After all above operations are successful, stream state is set to +``SDW_STREAM_DEPREPARED``. + +Bus implements below API for DEPREPARED state which needs to be called once +per stream. From ASoC DPCM framework, this stream state is linked to +.trigger() stop operation. + + .. code-block:: c + int sdw_deprepare_stream(struct sdw_stream_runtime * stream); + + +SDW_STREAM_RELEASED +~~~~~~~~~~~~~~~~~~~ + +Release state of stream. Operations performed before entering in this state: + + (1) Release port resources for all Master(s) and Slave(s) port(s) + associated with current stream. + + (2) Release Master(s) and Slave(s) runtime resources associated with + current stream. + + (3) Release stream runtime resources associated with current stream. + +After all above operations are successful, stream state is set to +``SDW_STREAM_RELEASED``. + +Bus implements below APIs for RELEASE state which needs to be called by +all the Master(s) and Slave(s) associated with stream. From ASoC DPCM +framework, this stream state is linked to .hw_free() operation. + + .. code-block:: c + int sdw_stream_remove_master(struct sdw_bus * bus, + struct sdw_stream_runtime * stream); + int sdw_stream_remove_slave(struct sdw_slave * slave, + struct sdw_stream_runtime * stream); + + +The .shutdown() ASoC DPCM operation calls below Bus API to release +stream assigned as part of ALLOCATED state. + +In .shutdown() the data structure maintaining stream state are freed up. + + .. code-block:: c + void sdw_release_stream(struct sdw_stream_runtime * stream); + +Not Supported +============= + +1. A single port with multiple channels supported cannot be used between two +streams or across stream. For example a port with 4 channels cannot be used +to handle 2 independent stereo streams even though it's possible in theory +in SoundWire. |