summaryrefslogtreecommitdiffstats
path: root/Documentation/filesystems/idmappings.rst
diff options
context:
space:
mode:
authorChristian Brauner <christian.brauner@ubuntu.com>2021-07-27 12:44:16 +0200
committerChristian Brauner <christian.brauner@ubuntu.com>2021-08-11 15:28:32 +0200
commitad19607a90b29eef044660aba92a2a2d63b1e977 (patch)
treeb15205620f74c4d9898f0b754d3b571a04ed19b2 /Documentation/filesystems/idmappings.rst
parentLinux 5.14-rc3 (diff)
downloadlinux-ad19607a90b29eef044660aba92a2a2d63b1e977.tar.xz
linux-ad19607a90b29eef044660aba92a2a2d63b1e977.zip
doc: give a more thorough id handling explanation
Currently there's no document explaining how idmappings work at all. Add a document that gives an introduction and also goes into a bit more detail for more advanced use-cases. Link: https://lore.kernel.org/r/20210727104416.828293-1-brauner@kernel.org Cc: Seth Forshee <seth.forshee@digitalocean.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Aleksa Sarai <cyphar@cyphar.com> Cc: linux-fsdevel@vger.kernel.org Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Diffstat (limited to 'Documentation/filesystems/idmappings.rst')
-rw-r--r--Documentation/filesystems/idmappings.rst1026
1 files changed, 1026 insertions, 0 deletions
diff --git a/Documentation/filesystems/idmappings.rst b/Documentation/filesystems/idmappings.rst
new file mode 100644
index 000000000000..1229a75ec75d
--- /dev/null
+++ b/Documentation/filesystems/idmappings.rst
@@ -0,0 +1,1026 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Idmappings
+==========
+
+Most filesystem developers will have encountered idmappings. They are used when
+reading from or writing ownership to disk, reporting ownership to userspace, or
+for permission checking. This document is aimed at filesystem developers that
+want to know how idmappings work.
+
+Formal notes
+------------
+
+An idmapping is essentially a translation of a range of ids into another or the
+same range of ids. The notational convention for idmappings that is widely used
+in userspace is::
+
+ u:k:r
+
+``u`` indicates the first element in the upper idmapset ``U`` and ``k``
+indicates the first element in the lower idmapset ``K``. The ``r`` parameter
+indicates the range of the idmapping, i.e. how many ids are mapped. From now
+on, we will always prefix ids with ``u`` or ``k`` to make it clear whether
+we're talking about an id in the upper or lower idmapset.
+
+To see what this looks like in practice, let's take the following idmapping::
+
+ u22:k10000:r3
+
+and write down the mappings it will generate::
+
+ u22 -> k10000
+ u23 -> k10001
+ u24 -> k10002
+
+From a mathematical viewpoint ``U`` and ``K`` are well-ordered sets and an
+idmapping is an order isomorphism from ``U`` into ``K``. So ``U`` and ``K`` are
+order isomorphic. In fact, ``U`` and ``K`` are always well-ordered subsets of
+the set of all possible ids useable on a given system.
+
+Looking at this mathematically briefly will help us highlight some properties
+that make it easier to understand how we can translate between idmappings. For
+example, we know that the inverse idmapping is an order isomorphism as well::
+
+ k10000 -> u22
+ k10001 -> u23
+ k10002 -> u24
+
+Given that we are dealing with order isomorphisms plus the fact that we're
+dealing with subsets we can embedd idmappings into each other, i.e. we can
+sensibly translate between different idmappings. For example, assume we've been
+given the three idmappings::
+
+ 1. u0:k10000:r10000
+ 2. u0:k20000:r10000
+ 3. u0:k30000:r10000
+
+and id ``k11000`` which has been generated by the first idmapping by mapping
+``u1000`` from the upper idmapset down to ``k11000`` in the lower idmapset.
+
+Because we're dealing with order isomorphic subsets it is meaningful to ask
+what id ``k11000`` corresponds to in the second or third idmapping. The
+straightfoward algorithm to use is to apply the inverse of the first idmapping,
+mapping ``k11000`` up to ``u1000``. Afterwards, we can map ``u1000`` down using
+either the second idmapping mapping or third idmapping mapping. The second
+idmapping would map ``u1000`` down to ``21000``. The third idmapping would map
+``u1000`` down to ``u31000``.
+
+If we were given the same task for the following three idmappings::
+
+ 1. u0:k10000:r10000
+ 2. u0:k20000:r200
+ 3. u0:k30000:r300
+
+we would fail to translate as the sets aren't order isomorphic over the full
+range of the first idmapping anymore (However they are order isomorphic over
+the full range of the second idmapping.). Neither the second or third idmapping
+contain ``u1000`` in the upper idmapset ``U``. This is equivalent to not having
+an id mapped. We can simply say that ``u1000`` is unmapped in the second and
+third idmapping. The kernel will report unmapped ids as the overflowuid
+``(uid_t)-1`` or overflowgid ``(gid_t)-1`` to userspace.
+
+The algorithm to calculate what a given id maps to is pretty simple. First, we
+need to verify that the range can contain our target id. We will skip this step
+for simplicity. After that if we want to know what ``id`` maps to we can do
+simple calculations:
+
+- If we want to map from left to right::
+
+ u:k:r
+ id - u + k = n
+
+- If we want to map from right to left::
+
+ u:k:r
+ id - k + u = n
+
+Instead of "left to right" we can also say "down" and instead of "right to
+left" we can also say "up". Obviously mapping down and up invert each other.
+
+To see whether the simple formulas above work, consider the following two
+idmappings::
+
+ 1. u0:k20000:r10000
+ 2. u500:k30000:r10000
+
+Assume we are given ``k21000`` in the lower idmapset of the first idmapping. We
+want to know what id this was mapped from in the upper idmapset of the first
+idmapping. So we're mapping up in the first idmapping::
+
+ id - k + u = n
+ k21000 - k20000 + u0 = u1000
+
+Now assume we are given the id ``u1100`` in the upper idmapset of the second
+idmapping and we want to know what this id maps down to in the lower idmapset
+of the second idmapping. This means we're mapping down in the second
+idmapping::
+
+ id - u + k = n
+ u1100 - u500 + k30000 = k30600
+
+General notes
+-------------
+
+In the context of the kernel an idmapping can be interpreted as mapping a range
+of userspace ids into a range of kernel ids::
+
+ userspace-id:kernel-id:range
+
+A userspace id is always an element in the upper idmapset of an idmapping of
+type ``uid_t`` or ``gid_t`` and a kernel id is always an element in the lower
+idmapset of an idmapping of type ``kuid_t`` or ``kgid_t``. From now on
+"userspace id" will be used to refer to the well known ``uid_t`` and ``gid_t``
+types and "kernel id" will be used to refer to ``kuid_t`` and ``kgid_t``.
+
+The kernel is mostly concerned with kernel ids. They are used when performing
+permission checks and are stored in an inode's ``i_uid`` and ``i_gid`` field.
+A userspace id on the other hand is an id that is reported to userspace by the
+kernel, or is passed by userspace to the kernel, or a raw device id that is
+written or read from disk.
+
+Note that we are only concerned with idmappings as the kernel stores them not
+how userspace would specify them.
+
+For the rest of this document we will prefix all userspace ids with ``u`` and
+all kernel ids with ``k``. Ranges of idmappings will be prefixed with ``r``. So
+an idmapping will be written as ``u0:k10000:r10000``.
+
+For example, the id ``u1000`` is an id in the upper idmapset or "userspace
+idmapset" starting with ``u1000``. And it is mapped to ``k11000`` which is a
+kernel id in the lower idmapset or "kernel idmapset" starting with ``k10000``.
+
+A kernel id is always created by an idmapping. Such idmappings are associated
+with user namespaces. Since we mainly care about how idmappings work we're not
+going to be concerned with how idmappings are created nor how they are used
+outside of the filesystem context. This is best left to an explanation of user
+namespaces.
+
+The initial user namespace is special. It always has an idmapping of the
+following form::
+
+ u0:k0:r4294967295
+
+which is an identity idmapping over the full range of ids available on this
+system.
+
+Other user namespaces usually have non-identity idmappings such as::
+
+ u0:k10000:r10000
+
+When a process creates or wants to change ownership of a file, or when the
+ownership of a file is read from disk by a filesystem, the userspace id is
+immediately translated into a kernel id according to the idmapping associated
+with the relevant user namespace.
+
+For instance, consider a file that is stored on disk by a filesystem as being
+owned by ``u1000``:
+
+- If a filesystem were to be mounted in the initial user namespaces (as most
+ filesystems are) then the initial idmapping will be used. As we saw this is
+ simply the identity idmapping. This would mean id ``u1000`` read from disk
+ would be mapped to id ``k1000``. So an inode's ``i_uid`` and ``i_gid`` field
+ would contain ``k1000``.
+
+- If a filesystem were to be mounted with an idmapping of ``u0:k10000:r10000``
+ then ``u1000`` read from disk would be mapped to ``k11000``. So an inode's
+ ``i_uid`` and ``i_gid`` would contain ``k11000``.
+
+Translation algorithms
+----------------------
+
+We've already seen briefly that it is possible to translate between different
+idmappings. We'll now take a closer look how that works.
+
+Crossmapping
+~~~~~~~~~~~~
+
+This translation algorithm is used by the kernel in quite a few places. For
+example, it is used when reporting back the ownership of a file to userspace
+via the ``stat()`` system call family.
+
+If we've been given ``k11000`` from one idmapping we can map that id up in
+another idmapping. In order for this to work both idmappings need to contain
+the same kernel id in their kernel idmapsets. For example, consider the
+following idmappings::
+
+ 1. u0:k10000:r10000
+ 2. u20000:k10000:r10000
+
+and we are mapping ``u1000`` down to ``k11000`` in the first idmapping . We can
+then translate ``k11000`` into a userspace id in the second idmapping using the
+kernel idmapset of the second idmapping::
+
+ /* Map the kernel id up into a userspace id in the second idmapping. */
+ from_kuid(u20000:k10000:r10000, k11000) = u21000
+
+Note, how we can get back to the kernel id in the first idmapping by inverting
+the algorithm::
+
+ /* Map the userspace id down into a kernel id in the second idmapping. */
+ make_kuid(u20000:k10000:r10000, u21000) = k11000
+
+ /* Map the kernel id up into a userspace id in the first idmapping. */
+ from_kuid(u0:k10000:r10000, k11000) = u1000
+
+This algorithm allows us to answer the question what userspace id a given
+kernel id corresponds to in a given idmapping. In order to be able to answer
+this question both idmappings need to contain the same kernel id in their
+respective kernel idmapsets.
+
+For example, when the kernel reads a raw userspace id from disk it maps it down
+into a kernel id according to the idmapping associated with the filesystem.
+Let's assume the filesystem was mounted with an idmapping of
+``u0:k20000:r10000`` and it reads a file owned by ``u1000`` from disk. This
+means ``u1000`` will be mapped to ``k21000`` which is what will be stored in
+the inode's ``i_uid`` and ``i_gid`` field.
+
+When someone in userspace calls ``stat()`` or a related function to get
+ownership information about the file the kernel can't simply map the id back up
+according to the filesystem's idmapping as this would give the wrong owner if
+the caller is using an idmapping.
+
+So the kernel will map the id back up in the idmapping of the caller. Let's
+assume the caller has the slighly unconventional idmapping
+``u3000:k20000:r10000`` then ``k21000`` would map back up to ``u4000``.
+Consequently the user would see that this file is owned by ``u4000``.
+
+Remapping
+~~~~~~~~~
+
+It is possible to translate a kernel id from one idmapping to another one via
+the userspace idmapset of the two idmappings. This is equivalent to remapping
+a kernel id.
+
+Let's look at an example. We are given the following two idmappings::
+
+ 1. u0:k10000:r10000
+ 2. u0:k20000:r10000
+
+and we are given ``k11000`` in the first idmapping. In order to translate this
+kernel id in the first idmapping into a kernel id in the second idmapping we
+need to perform two steps:
+
+1. Map the kernel id up into a userspace id in the first idmapping::
+
+ /* Map the kernel id up into a userspace id in the first idmapping. */
+ from_kuid(u0:k10000:r10000, k11000) = u1000
+
+2. Map the userspace id down into a kernel id in the second idmapping::
+
+ /* Map the userspace id down into a kernel id in the second idmapping. */
+ make_kuid(u0:k20000:r10000, u1000) = k21000
+
+As you can see we used the userspace idmapset in both idmappings to translate
+the kernel id in one idmapping to a kernel id in another idmapping.
+
+This allows us to answer the question what kernel id we would need to use to
+get the same userspace id in another idmapping. In order to be able to answer
+this question both idmappings need to contain the same userspace id in their
+respective userspace idmapsets.
+
+Note, how we can easily get back to the kernel id in the first idmapping by
+inverting the algorithm:
+
+1. Map the kernel id up into a userspace id in the second idmapping::
+
+ /* Map the kernel id up into a userspace id in the second idmapping. */
+ from_kuid(u0:k20000:r10000, k21000) = u1000
+
+2. Map the userspace id down into a kernel id in the first idmapping::
+
+ /* Map the userspace id down into a kernel id in the first idmapping. */
+ make_kuid(u0:k10000:r10000, u1000) = k11000
+
+Another way to look at this translation is to treat it as inverting one
+idmapping and applying another idmapping if both idmappings have the relevant
+userspace id mapped. This will come in handy when working with idmapped mounts.
+
+Invalid translations
+~~~~~~~~~~~~~~~~~~~~
+
+It is never valid to use an id in the kernel idmapset of one idmapping as the
+id in the userspace idmapset of another or the same idmapping. While the kernel
+idmapset always indicates an idmapset in the kernel id space the userspace
+idmapset indicates a userspace id. So the following translations are forbidden::
+
+ /* Map the userspace id down into a kernel id in the first idmapping. */
+ make_kuid(u0:k10000:r10000, u1000) = k11000
+
+ /* INVALID: Map the kernel id down into a kernel id in the second idmapping. */
+ make_kuid(u10000:k20000:r10000, k110000) = k21000
+ ~~~~~~~
+
+and equally wrong::
+
+ /* Map the kernel id up into a userspace id in the first idmapping. */
+ from_kuid(u0:k10000:r10000, k11000) = u1000
+
+ /* INVALID: Map the userspace id up into a userspace id in the second idmapping. */
+ from_kuid(u20000:k0:r10000, u1000) = k21000
+ ~~~~~
+
+Idmappings when creating filesystem objects
+-------------------------------------------
+
+The concepts of mapping an id down or mapping an id up are expressed in the two
+kernel functions filesystem developers are rather familiar with and which we've
+already used in this document::
+
+ /* Map the userspace id down into a kernel id. */
+ make_kuid(idmapping, uid)
+
+ /* Map the kernel id up into a userspace id. */
+ from_kuid(idmapping, kuid)
+
+We will take an abbreviated look into how idmappings figure into creating
+filesystem objects. For simplicity we will only look at what happens when the
+VFS has already completed path lookup right before it calls into the filesystem
+itself. So we're concerned with what happens when e.g. ``vfs_mkdir()`` is
+called. We will also assume that the directory we're creating filesystem
+objects in is readable and writable for everyone.
+
+When creating a filesystem object the caller will look at the caller's
+filesystem ids. These are just regular ``uid_t`` and ``gid_t`` userspace ids
+but they are exclusively used when determining file ownership which is why they
+are called "filesystem ids". They are usually identical to the uid and gid of
+the caller but can differ. We will just assume they are always identical to not
+get lost in too many details.
+
+When the caller enters the kernel two things happen:
+
+1. Map the caller's userspace ids down into kernel ids in the caller's
+ idmapping.
+ (To be precise, the kernel will simply look at the kernel ids stashed in the
+ credentials of the current task but for our education we'll pretend this
+ translation happens just in time.)
+2. Verify that the caller's kernel ids can be mapped up to userspace ids in the
+ filesystem's idmapping.
+
+The second step is important as regular filesystem will ultimately need to map
+the kernel id back up into a userspace id when writing to disk.
+So with the second step the kernel guarantees that a valid userspace id can be
+written to disk. If it can't the kernel will refuse the creation request to not
+even remotely risk filesystem corruption.
+
+The astute reader will have realized that this is simply a varation of the
+crossmapping algorithm we mentioned above in a previous section. First, the
+kernel maps the caller's userspace id down into a kernel id according to the
+caller's idmapping and then maps that kernel id up according to the
+filesystem's idmapping.
+
+Example 1
+~~~~~~~~~
+
+::
+
+ caller id: u1000
+ caller idmapping: u0:k0:r4294967295
+ filesystem idmapping: u0:k0:r4294967295
+
+Both the caller and the filesystem use the identity idmapping:
+
+1. Map the caller's userspace ids into kernel ids in the caller's idmapping::
+
+ make_kuid(u0:k0:r4294967295, u1000) = k1000
+
+2. Verify that the caller's kernel ids can be mapped to userspace ids in the
+ filesystem's idmapping.
+
+ For this second step the kernel will call the function
+ ``fsuidgid_has_mapping()`` which ultimately boils down to calling
+ ``from_kuid()``::
+
+ from_kuid(u0:k0:r4294967295, k1000) = u1000
+
+In this example both idmappings are the same so there's nothing exciting going
+on. Ultimately the userspace id that lands on disk will be ``u1000``.
+
+Example 2
+~~~~~~~~~
+
+::
+
+ caller id: u1000
+ caller idmapping: u0:k10000:r10000
+ filesystem idmapping: u0:k20000:r10000
+
+1. Map the caller's userspace ids down into kernel ids in the caller's
+ idmapping::
+
+ make_kuid(u0:k10000:r10000, u1000) = k11000
+
+2. Verify that the caller's kernel ids can be mapped up to userspace ids in the
+ filesystem's idmapping::
+
+ from_kuid(u0:k20000:r10000, k11000) = u-1
+
+It's immediately clear that while the caller's userspace id could be
+successfully mapped down into kernel ids in the caller's idmapping the kernel
+ids could not be mapped up according to the filesystem's idmapping. So the
+kernel will deny this creation request.
+
+Note that while this example is less common, because most filesystem can't be
+mounted with non-initial idmappings this is a general problem as we can see in
+the next examples.
+
+Example 3
+~~~~~~~~~
+
+::
+
+ caller id: u1000
+ caller idmapping: u0:k10000:r10000
+ filesystem idmapping: u0:k0:r4294967295
+
+1. Map the caller's userspace ids down into kernel ids in the caller's
+ idmapping::
+
+ make_kuid(u0:k10000:r10000, u1000) = k11000
+
+2. Verify that the caller's kernel ids can be mapped up to userspace ids in the
+ filesystem's idmapping::
+
+ from_kuid(u0:k0:r4294967295, k11000) = u11000
+
+We can see that the translation always succeeds. The userspace id that the
+filesystem will ultimately put to disk will always be identical to the value of
+the kernel id that was created in the caller's idmapping. This has mainly two
+consequences.
+
+First, that we can't allow a caller to ultimately write to disk with another
+userspace id. We could only do this if we were to mount the whole fileystem
+with the caller's or another idmapping. But that solution is limited to a few
+filesystems and not very flexible. But this is a use-case that is pretty
+important in containerized workloads.
+
+Second, the caller will usually not be able to create any files or access
+directories that have stricter permissions because none of the filesystem's
+kernel ids map up into valid userspace ids in the caller's idmapping
+
+1. Map raw userspace ids down to kernel ids in the filesystem's idmapping::
+
+ make_kuid(u0:k0:r4294967295, u1000) = k1000
+
+2. Map kernel ids up to userspace ids in the caller's idmapping::
+
+ from_kuid(u0:k10000:r10000, k1000) = u-1
+
+Example 4
+~~~~~~~~~
+
+::
+
+ file id: u1000
+ caller idmapping: u0:k10000:r10000
+ filesystem idmapping: u0:k0:r4294967295
+
+In order to report ownership to userspace the kernel uses the crossmapping
+algorithm introduced in a previous section:
+
+1. Map the userspace id on disk down into a kernel id in the filesystem's
+ idmapping::
+
+ make_kuid(u0:k0:r4294967295, u1000) = k1000
+
+2. Map the kernel id up into a userspace id in the caller's idmapping::
+
+ from_kuid(u0:k10000:r10000, k1000) = u-1
+
+The crossmapping algorithm fails in this case because the kernel id in the
+filesystem idmapping cannot be mapped up to a userspace id in the caller's
+idmapping. Thus, the kernel will report the ownership of this file as the
+overflowid.
+
+Example 5
+~~~~~~~~~
+
+::
+
+ file id: u1000
+ caller idmapping: u0:k10000:r10000
+ filesystem idmapping: u0:k20000:r10000
+
+In order to report ownership to userspace the kernel uses the crossmapping
+algorithm introduced in a previous section:
+
+1. Map the userspace id on disk down into a kernel id in the filesystem's
+ idmapping::
+
+ make_kuid(u0:k20000:r10000, u1000) = k21000
+
+2. Map the kernel id up into a userspace id in the caller's idmapping::
+
+ from_kuid(u0:k10000:r10000, k21000) = u-1
+
+Again, the crossmapping algorithm fails in this case because the kernel id in
+the filesystem idmapping cannot be mapped to a userspace id in the caller's
+idmapping. Thus, the kernel will report the ownership of this file as the
+overflowid.
+
+Note how in the last two examples things would be simple if the caller would be
+using the initial idmapping. For a filesystem mounted with the initial
+idmapping it would be trivial. So we only consider a filesystem with an
+idmapping of ``u0:k20000:r10000``:
+
+1. Map the userspace id on disk down into a kernel id in the filesystem's
+ idmapping::
+
+ make_kuid(u0:k20000:r10000, u1000) = k21000
+
+2. Map the kernel id up into a userspace id in the caller's idmapping::
+
+ from_kuid(u0:k0:r4294967295, k21000) = u21000
+
+Idmappings on idmapped mounts
+-----------------------------
+
+The examples we've seen in the previous section where the caller's idmapping
+and the filesystem's idmapping are incompatible causes various issues for
+workloads. For a more complex but common example, consider two containers
+started on the host. To completely prevent the two containers from affecting
+each other, an administrator may often use different non-overlapping idmappings
+for the two containers::
+
+ container1 idmapping: u0:k10000:r10000
+ container2 idmapping: u0:k20000:r10000
+ filesystem idmapping: u0:k30000:r10000
+
+An administrator wanting to provide easy read-write access to the following set
+of files::
+
+ dir id: u0
+ dir/file1 id: u1000
+ dir/file2 id: u2000
+
+to both containers currently can't.
+
+Of course the administrator has the option to recursively change ownership via
+``chown()``. For example, they could change ownership so that ``dir`` and all
+files below it can be crossmapped from the filesystem's into the container's
+idmapping. Let's assume they change ownership so it is compatible with the
+first container's idmapping::
+
+ dir id: u10000
+ dir/file1 id: u11000
+ dir/file2 id: u12000
+
+This would still leave ``dir`` rather useless to the second container. In fact,
+``dir`` and all files below it would continue to appear owned by the overflowid
+for the second container.
+
+Or consider another increasingly popular example. Some service managers such as
+systemd implement a concept called "portable home directories". A user may want
+to use their home directories on different machines where they are assigned
+different login userspace ids. Most users will have ``u1000`` as the login id
+on their machine at home and all files in their home directory will usually be
+owned by ``u1000``. At uni or at work they may have another login id such as
+``u1125``. This makes it rather difficult to interact with their home directory
+on their work machine.
+
+In both cases changing ownership recursively has grave implications. The most
+obvious one is that ownership is changed globally and permanently. In the home
+directory case this change in ownership would even need to happen everytime the
+user switches from their home to their work machine. For really large sets of
+files this becomes increasingly costly.
+
+If the user is lucky, they are dealing with a filesystem that is mountable
+inside user namespaces. But this would also change ownership globally and the
+change in ownership is tied to the lifetime of the filesystem mount, i.e. the
+superblock. The only way to change ownership is to completely unmount the
+filesystem and mount it again in another user namespace. This is usually
+impossible because it would mean that all users currently accessing the
+filesystem can't anymore. And it means that ``dir`` still can't be shared
+between two containers with different idmappings.
+But usually the user doesn't even have this option since most filesystems
+aren't mountable inside containers. And not having them mountable might be
+desirable as it doesn't require the filesystem to deal with malicious
+filesystem images.
+
+But the usecases mentioned above and more can be handled by idmapped mounts.
+They allow to expose the same set of dentries with different ownership at
+different mounts. This is achieved by marking the mounts with a user namespace
+through the ``mount_setattr()`` system call. The idmapping associated with it
+is then used to translate from the caller's idmapping to the filesystem's
+idmapping and vica versa using the remapping algorithm we introduced above.
+
+Idmapped mounts make it possible to change ownership in a temporary and
+localized way. The ownership changes are restricted to a specific mount and the
+ownership changes are tied to the lifetime of the mount. All other users and
+locations where the filesystem is exposed are unaffected.
+
+Filesystems that support idmapped mounts don't have any real reason to support
+being mountable inside user namespaces. A filesystem could be exposed
+completely under an idmapped mount to get the same effect. This has the
+advantage that filesystems can leave the creation of the superblock to
+privileged users in the initial user namespace.
+
+However, it is perfectly possible to combine idmapped mounts with filesystems
+mountable inside user namespaces. We will touch on this further below.
+
+Remapping helpers
+~~~~~~~~~~~~~~~~~
+
+Idmapping functions were added that translate between idmappings. They make use
+of the remapping algorithm we've introduced earlier. We're going to look at
+two:
+
+- ``i_uid_into_mnt()`` and ``i_gid_into_mnt()``
+
+ The ``i_*id_into_mnt()`` functions translate filesystem's kernel ids into
+ kernel ids in the mount's idmapping::
+
+ /* Map the filesystem's kernel id up into a userspace id in the filesystem's idmapping. */
+ from_kuid(filesystem, kid) = uid
+
+ /* Map the filesystem's userspace id down ito a kernel id in the mount's idmapping. */
+ make_kuid(mount, uid) = kuid
+
+- ``mapped_fsuid()`` and ``mapped_fsgid()``
+
+ The ``mapped_fs*id()`` functions translate the caller's kernel ids into
+ kernel ids in the filesystem's idmapping. This translation is achieved by
+ remapping the caller's kernel ids using the mount's idmapping::
+
+ /* Map the caller's kernel id up into a userspace id in the mount's idmapping. */
+ from_kuid(mount, kid) = uid
+
+ /* Map the mount's userspace id down into a kernel id in the filesystem's idmapping. */
+ make_kuid(filesystem, uid) = kuid
+
+Note that these two functions invert each other. Consider the following
+idmappings::
+
+ caller idmapping: u0:k10000:r10000
+ filesystem idmapping: u0:k20000:r10000
+ mount idmapping: u0:k10000:r10000
+
+Assume a file owned by ``u1000`` is read from disk. The filesystem maps this id
+to ``k21000`` according to it's idmapping. This is what is stored in the
+inode's ``i_uid`` and ``i_gid`` fields.
+
+When the caller queries the ownership of this file via ``stat()`` the kernel
+would usually simply use the crossmapping algorithm and map the filesystem's
+kernel id up to a userspace id in the caller's idmapping.
+
+But when the caller is accessing the file on an idmapped mount the kernel will
+first call ``i_uid_into_mnt()`` thereby translating the filesystem's kernel id
+into a kernel id in the mount's idmapping::
+
+ i_uid_into_mnt(k21000):
+ /* Map the filesystem's kernel id up into a userspace id. */
+ from_kuid(u0:k20000:r10000, k21000) = u1000
+
+ /* Map the filesystem's userspace id down ito a kernel id in the mount's idmapping. */
+ make_kuid(u0:k10000:r10000, u1000) = k11000
+
+Finally, when the kernel reports the owner to the caller it will turn the
+kernel id in the mount's idmapping into a userspace id in the caller's
+idmapping::
+
+ from_kuid(u0:k10000:r10000, k11000) = u1000
+
+We can test whether this algorithm really works by verifying what happens when
+we create a new file. Let's say the user is creating a file with ``u1000``.
+
+The kernel maps this to ``k11000`` in the caller's idmapping. Usually the
+kernel would now apply the crossmapping, verifying that ``k11000`` can be
+mapped to a userspace id in the filesystem's idmapping. Since ``k11000`` can't
+be mapped up in the filesystem's idmapping directly this creation request
+fails.
+
+But when the caller is accessing the file on an idmapped mount the kernel will
+first call ``mapped_fs*id()`` thereby translating the caller's kernel id into
+a kernel id according to the mount's idmapping::
+
+ mapped_fsuid(k11000):
+ /* Map the caller's kernel id up into a userspace id in the mount's idmapping. */
+ from_kuid(u0:k10000:r10000, k11000) = u1000
+
+ /* Map the mount's userspace id down into a kernel id in the filesystem's idmapping. */
+ make_kuid(u0:k20000:r10000, u1000) = k21000
+
+When finally writing to disk the kernel will then map ``k21000`` up into a
+userspace id in the filesystem's idmapping::
+
+ from_kuid(u0:k20000:r10000, k21000) = u1000
+
+As we can see, we end up with an invertible and therefore information
+preserving algorithm. A file created from ``u1000`` on an idmapped mount will
+also be reported as being owned by ``u1000`` and vica versa.
+
+Let's now briefly reconsider the failing examples from earlier in the context
+of idmapped mounts.
+
+Example 2 reconsidered
+~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ caller id: u1000
+ caller idmapping: u0:k10000:r10000
+ filesystem idmapping: u0:k20000:r10000
+ mount idmapping: u0:k10000:r10000
+
+When the caller is using a non-initial idmapping the common case is to attach
+the same idmapping to the mount. We now perform three steps:
+
+1. Map the caller's userspace ids into kernel ids in the caller's idmapping::
+
+ make_kuid(u0:k10000:r10000, u1000) = k11000
+
+2. Translate the caller's kernel id into a kernel id in the filesystem's
+ idmapping::
+
+ mapped_fsuid(k11000):
+ /* Map the kernel id up into a userspace id in the mount's idmapping. */
+ from_kuid(u0:k10000:r10000, k11000) = u1000
+
+ /* Map the userspace id down into a kernel id in the filesystem's idmapping. */
+ make_kuid(u0:k20000:r10000, u1000) = k21000
+
+2. Verify that the caller's kernel ids can be mapped to userspace ids in the
+ filesystem's idmapping::
+
+ from_kuid(u0:k20000:r10000, k21000) = u1000
+
+So the ownership that lands on disk will be ``u1000``.
+
+Example 3 reconsidered
+~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ caller id: u1000
+ caller idmapping: u0:k10000:r10000
+ filesystem idmapping: u0:k0:r4294967295
+ mount idmapping: u0:k10000:r10000
+
+The same translation algorithm works with the third example.
+
+1. Map the caller's userspace ids into kernel ids in the caller's idmapping::
+
+ make_kuid(u0:k10000:r10000, u1000) = k11000
+
+2. Translate the caller's kernel id into a kernel id in the filesystem's
+ idmapping::
+
+ mapped_fsuid(k11000):
+ /* Map the kernel id up into a userspace id in the mount's idmapping. */
+ from_kuid(u0:k10000:r10000, k11000) = u1000
+
+ /* Map the userspace id down into a kernel id in the filesystem's idmapping. */
+ make_kuid(u0:k0:r4294967295, u1000) = k1000
+
+2. Verify that the caller's kernel ids can be mapped to userspace ids in the
+ filesystem's idmapping::
+
+ from_kuid(u0:k0:r4294967295, k21000) = u1000
+
+So the ownership that lands on disk will be ``u1000``.
+
+Example 4 reconsidered
+~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ file id: u1000
+ caller idmapping: u0:k10000:r10000
+ filesystem idmapping: u0:k0:r4294967295
+ mount idmapping: u0:k10000:r10000
+
+In order to report ownership to userspace the kernel now does three steps using
+the translation algorithm we introduced earlier:
+
+1. Map the userspace id on disk down into a kernel id in the filesystem's
+ idmapping::
+
+ make_kuid(u0:k0:r4294967295, u1000) = k1000
+
+2. Translate the kernel id into a kernel id in the mount's idmapping::
+
+ i_uid_into_mnt(k1000):
+ /* Map the kernel id up into a userspace id in the filesystem's idmapping. */
+ from_kuid(u0:k0:r4294967295, k1000) = u1000
+
+ /* Map the userspace id down into a kernel id in the mounts's idmapping. */
+ make_kuid(u0:k10000:r10000, u1000) = k11000
+
+3. Map the kernel id up into a userspace id in the caller's idmapping::
+
+ from_kuid(u0:k10000:r10000, k11000) = u1000
+
+Earlier, the caller's kernel id couldn't be crossmapped in the filesystems's
+idmapping. With the idmapped mount in place it now can be crossmapped into the
+filesystem's idmapping via the mount's idmapping. The file will now be created
+with ``u1000`` according to the mount's idmapping.
+
+Example 5 reconsidered
+~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ file id: u1000
+ caller idmapping: u0:k10000:r10000
+ filesystem idmapping: u0:k20000:r10000
+ mount idmapping: u0:k10000:r10000
+
+Again, in order to report ownership to userspace the kernel now does three
+steps using the translation algorithm we introduced earlier:
+
+1. Map the userspace id on disk down into a kernel id in the filesystem's
+ idmapping::
+
+ make_kuid(u0:k20000:r10000, u1000) = k21000
+
+2. Translate the kernel id into a kernel id in the mount's idmapping::
+
+ i_uid_into_mnt(k21000):
+ /* Map the kernel id up into a userspace id in the filesystem's idmapping. */
+ from_kuid(u0:k20000:r10000, k21000) = u1000
+
+ /* Map the userspace id down into a kernel id in the mounts's idmapping. */
+ make_kuid(u0:k10000:r10000, u1000) = k11000
+
+3. Map the kernel id up into a userspace id in the caller's idmapping::
+
+ from_kuid(u0:k10000:r10000, k11000) = u1000
+
+Earlier, the file's kernel id couldn't be crossmapped in the filesystems's
+idmapping. With the idmapped mount in place it now can be crossmapped into the
+filesystem's idmapping via the mount's idmapping. The file is now owned by
+``u1000`` according to the mount's idmapping.
+
+Changing ownership on a home directory
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+We've seen above how idmapped mounts can be used to translate between
+idmappings when either the caller, the filesystem or both uses a non-initial
+idmapping. A wide range of usecases exist when the caller is using
+a non-initial idmapping. This mostly happens in the context of containerized
+workloads. The consequence is as we have seen that for both, filesystem's
+mounted with the initial idmapping and filesystems mounted with non-initial
+idmappings, access to the filesystem isn't working because the kernel ids can't
+be crossmapped between the caller's and the filesystem's idmapping.
+
+As we've seen above idmapped mounts provide a solution to this by remapping the
+caller's or filesystem's idmapping according to the mount's idmapping.
+
+Aside from containerized workloads, idmapped mounts have the advantage that
+they also work when both the caller and the filesystem use the initial
+idmapping which means users on the host can change the ownership of directories
+and files on a per-mount basis.
+
+Consider our previous example where a user has their home directory on portable
+storage. At home they have id ``u1000`` and all files in their home directory
+are owned by ``u1000`` whereas at uni or work they have login id ``u1125``.
+
+Taking their home directory with them becomes problematic. They can't easily
+access their files, they might not be able to write to disk without applying
+lax permissions or ACLs and even if they can, they will end up with an annoying
+mix of files and directories owned by ``u1000`` and ``u1125``.
+
+Idmapped mounts allow to solve this problem. A user can create an idmapped
+mount for their home directory on their work computer or their computer at home
+depending on what ownership they would prefer to end up on the portable storage
+itself.
+
+Let's assume they want all files on disk to belong to ``u1000``. When the user
+plugs in their portable storage at their work station they can setup a job that
+creates an idmapped mount with the minimal idmapping ``u1000:k1125:r1``. So now
+when they create a file the kernel performs the following steps we already know
+from above:::
+
+ caller id: u1125
+ caller idmapping: u0:k0:r4294967295
+ filesystem idmapping: u0:k0:r4294967295
+ mount idmapping: u1000:k1125:r1
+
+1. Map the caller's userspace ids into kernel ids in the caller's idmapping::
+
+ make_kuid(u0:k0:r4294967295, u1125) = k1125
+
+2. Translate the caller's kernel id into a kernel id in the filesystem's
+ idmapping::
+
+ mapped_fsuid(k1125):
+ /* Map the kernel id up into a userspace id in the mount's idmapping. */
+ from_kuid(u1000:k1125:r1, k1125) = u1000
+
+ /* Map the userspace id down into a kernel id in the filesystem's idmapping. */
+ make_kuid(u0:k0:r4294967295, u1000) = k1000
+
+2. Verify that the caller's kernel ids can be mapped to userspace ids in the
+ filesystem's idmapping::
+
+ from_kuid(u0:k0:r4294967295, k1000) = u1000
+
+So ultimately the file will be created with ``u1000`` on disk.
+
+Now let's briefly look at what ownership the caller with id ``u1125`` will see
+on their work computer:
+
+::
+
+ file id: u1000
+ caller idmapping: u0:k0:r4294967295
+ filesystem idmapping: u0:k0:r4294967295
+ mount idmapping: u1000:k1125:r1
+
+1. Map the userspace id on disk down into a kernel id in the filesystem's
+ idmapping::
+
+ make_kuid(u0:k0:r4294967295, u1000) = k1000
+
+2. Translate the kernel id into a kernel id in the mount's idmapping::
+
+ i_uid_into_mnt(k1000):
+ /* Map the kernel id up into a userspace id in the filesystem's idmapping. */
+ from_kuid(u0:k0:r4294967295, k1000) = u1000
+
+ /* Map the userspace id down into a kernel id in the mounts's idmapping. */
+ make_kuid(u1000:k1125:r1, u1000) = k1125
+
+3. Map the kernel id up into a userspace id in the caller's idmapping::
+
+ from_kuid(u0:k0:r4294967295, k1125) = u1125
+
+So ultimately the caller will be reported that the file belongs to ``u1125``
+which is the caller's userspace id on their workstation in our example.
+
+The raw userspace id that is put on disk is ``u1000`` so when the user takes
+their home directory back to their home computer where they are assigned
+``u1000`` using the initial idmapping and mount the filesystem with the initial
+idmapping they will see all those files owned by ``u1000``.
+
+Shortcircuting
+--------------
+
+Currently, the implementation of idmapped mounts enforces that the filesystem
+is mounted with the initial idmapping. The reason is simply that none of the
+filesystems that we targeted were mountable with a non-initial idmapping. But
+that might change soon enough. As we've seen above, thanks to the properties of
+idmappings the translation works for both filesystems mounted with the initial
+idmapping and filesystem with non-initial idmappings.
+
+Based on this current restriction to filesystem mounted with the initial
+idmapping two noticeable shortcuts have been taken:
+
+1. We always stash a reference to the initial user namespace in ``struct
+ vfsmount``. Idmapped mounts are thus mounts that have a non-initial user
+ namespace attached to them.
+
+ In order to support idmapped mounts this needs to be changed. Instead of
+ stashing the initial user namespace the user namespace the filesystem was
+ mounted with must be stashed. An idmapped mount is then any mount that has
+ a different user namespace attached then the filesystem was mounted with.
+ This has no user-visible consequences.
+
+2. The translation algorithms in ``mapped_fs*id()`` and ``i_*id_into_mnt()``
+ are simplified.
+
+ Let's consider ``mapped_fs*id()`` first. This function translates the
+ caller's kernel id into a kernel id in the filesystem's idmapping via
+ a mount's idmapping. The full algorithm is::
+
+ mapped_fsuid(kid):
+ /* Map the kernel id up into a userspace id in the mount's idmapping. */
+ from_kuid(mount-idmapping, kid) = uid
+
+ /* Map the userspace id down into a kernel id in the filesystem's idmapping. */
+ make_kuid(filesystem-idmapping, uid) = kuid
+
+ We know that the filesystem is always mounted with the initial idmapping as
+ we enforce this in ``mount_setattr()``. So this can be shortened to::
+
+ mapped_fsuid(kid):
+ /* Map the kernel id up into a userspace id in the mount's idmapping. */
+ from_kuid(mount-idmapping, kid) = uid
+
+ /* Map the userspace id down into a kernel id in the filesystem's idmapping. */
+ KUIDT_INIT(uid) = kuid
+
+ Similarly, for ``i_*id_into_mnt()`` which translated the filesystem's kernel
+ id into a mount's kernel id::
+
+ i_uid_into_mnt(kid):
+ /* Map the kernel id up into a userspace id in the filesystem's idmapping. */
+ from_kuid(filesystem-idmapping, kid) = uid
+
+ /* Map the userspace id down into a kernel id in the mounts's idmapping. */
+ make_kuid(mount-idmapping, uid) = kuid
+
+ Again, we know that the filesystem is always mounted with the initial
+ idmapping as we enforce this in ``mount_setattr()``. So this can be
+ shortened to::
+
+ i_uid_into_mnt(kid):
+ /* Map the kernel id up into a userspace id in the filesystem's idmapping. */
+ __kuid_val(kid) = uid
+
+ /* Map the userspace id down into a kernel id in the mounts's idmapping. */
+ make_kuid(mount-idmapping, uid) = kuid
+
+Handling filesystems mounted with non-initial idmappings requires that the
+translation functions be converted to their full form. They can still be
+shortcircuited on non-idmapped mounts. This has no user-visible consequences.