summaryrefslogtreecommitdiffstats
path: root/Documentation/filesystems/mandatory-locking.txt
diff options
context:
space:
mode:
authorMauro Carvalho Chehab <mchehab+huawei@kernel.org>2020-04-27 23:17:08 +0200
committerJonathan Corbet <corbet@lwn.net>2020-05-05 17:22:22 +0200
commita02dcdf65bcfca1068e9c6d2cbafdab724cfbce9 (patch)
treea5974af76e77059cf2655e434be5e0a82382c4c8 /Documentation/filesystems/mandatory-locking.txt
parentdocs: filesystems: convert locks.txt to ReST (diff)
downloadlinux-a02dcdf65bcfca1068e9c6d2cbafdab724cfbce9.tar.xz
linux-a02dcdf65bcfca1068e9c6d2cbafdab724cfbce9.zip
docs: filesystems: convert mandatory-locking.txt to ReST
- Add a SPDX header; - Adjust document title; - Some whitespace fixes and new line breaks; - Use notes markups; - Add it to filesystems/index.rst. Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org> Link: https://lore.kernel.org/r/aecd6259fe9f99b2c2b3440eab6a2b989125e00d.1588021877.git.mchehab+huawei@kernel.org Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Diffstat (limited to 'Documentation/filesystems/mandatory-locking.txt')
-rw-r--r--Documentation/filesystems/mandatory-locking.txt181
1 files changed, 0 insertions, 181 deletions
diff --git a/Documentation/filesystems/mandatory-locking.txt b/Documentation/filesystems/mandatory-locking.txt
deleted file mode 100644
index a251ca33164a..000000000000
--- a/Documentation/filesystems/mandatory-locking.txt
+++ /dev/null
@@ -1,181 +0,0 @@
- Mandatory File Locking For The Linux Operating System
-
- Andy Walker <andy@lysaker.kvaerner.no>
-
- 15 April 1996
- (Updated September 2007)
-
-0. Why you should avoid mandatory locking
------------------------------------------
-
-The Linux implementation is prey to a number of difficult-to-fix race
-conditions which in practice make it not dependable:
-
- - The write system call checks for a mandatory lock only once
- at its start. It is therefore possible for a lock request to
- be granted after this check but before the data is modified.
- A process may then see file data change even while a mandatory
- lock was held.
- - Similarly, an exclusive lock may be granted on a file after
- the kernel has decided to proceed with a read, but before the
- read has actually completed, and the reading process may see
- the file data in a state which should not have been visible
- to it.
- - Similar races make the claimed mutual exclusion between lock
- and mmap similarly unreliable.
-
-1. What is mandatory locking?
-------------------------------
-
-Mandatory locking is kernel enforced file locking, as opposed to the more usual
-cooperative file locking used to guarantee sequential access to files among
-processes. File locks are applied using the flock() and fcntl() system calls
-(and the lockf() library routine which is a wrapper around fcntl().) It is
-normally a process' responsibility to check for locks on a file it wishes to
-update, before applying its own lock, updating the file and unlocking it again.
-The most commonly used example of this (and in the case of sendmail, the most
-troublesome) is access to a user's mailbox. The mail user agent and the mail
-transfer agent must guard against updating the mailbox at the same time, and
-prevent reading the mailbox while it is being updated.
-
-In a perfect world all processes would use and honour a cooperative, or
-"advisory" locking scheme. However, the world isn't perfect, and there's
-a lot of poorly written code out there.
-
-In trying to address this problem, the designers of System V UNIX came up
-with a "mandatory" locking scheme, whereby the operating system kernel would
-block attempts by a process to write to a file that another process holds a
-"read" -or- "shared" lock on, and block attempts to both read and write to a
-file that a process holds a "write " -or- "exclusive" lock on.
-
-The System V mandatory locking scheme was intended to have as little impact as
-possible on existing user code. The scheme is based on marking individual files
-as candidates for mandatory locking, and using the existing fcntl()/lockf()
-interface for applying locks just as if they were normal, advisory locks.
-
-Note 1: In saying "file" in the paragraphs above I am actually not telling
-the whole truth. System V locking is based on fcntl(). The granularity of
-fcntl() is such that it allows the locking of byte ranges in files, in addition
-to entire files, so the mandatory locking rules also have byte level
-granularity.
-
-Note 2: POSIX.1 does not specify any scheme for mandatory locking, despite
-borrowing the fcntl() locking scheme from System V. The mandatory locking
-scheme is defined by the System V Interface Definition (SVID) Version 3.
-
-2. Marking a file for mandatory locking
----------------------------------------
-
-A file is marked as a candidate for mandatory locking by setting the group-id
-bit in its file mode but removing the group-execute bit. This is an otherwise
-meaningless combination, and was chosen by the System V implementors so as not
-to break existing user programs.
-
-Note that the group-id bit is usually automatically cleared by the kernel when
-a setgid file is written to. This is a security measure. The kernel has been
-modified to recognize the special case of a mandatory lock candidate and to
-refrain from clearing this bit. Similarly the kernel has been modified not
-to run mandatory lock candidates with setgid privileges.
-
-3. Available implementations
-----------------------------
-
-I have considered the implementations of mandatory locking available with
-SunOS 4.1.x, Solaris 2.x and HP-UX 9.x.
-
-Generally I have tried to make the most sense out of the behaviour exhibited
-by these three reference systems. There are many anomalies.
-
-All the reference systems reject all calls to open() for a file on which
-another process has outstanding mandatory locks. This is in direct
-contravention of SVID 3, which states that only calls to open() with the
-O_TRUNC flag set should be rejected. The Linux implementation follows the SVID
-definition, which is the "Right Thing", since only calls with O_TRUNC can
-modify the contents of the file.
-
-HP-UX even disallows open() with O_TRUNC for a file with advisory locks, not
-just mandatory locks. That would appear to contravene POSIX.1.
-
-mmap() is another interesting case. All the operating systems mentioned
-prevent mandatory locks from being applied to an mmap()'ed file, but HP-UX
-also disallows advisory locks for such a file. SVID actually specifies the
-paranoid HP-UX behaviour.
-
-In my opinion only MAP_SHARED mappings should be immune from locking, and then
-only from mandatory locks - that is what is currently implemented.
-
-SunOS is so hopeless that it doesn't even honour the O_NONBLOCK flag for
-mandatory locks, so reads and writes to locked files always block when they
-should return EAGAIN.
-
-I'm afraid that this is such an esoteric area that the semantics described
-below are just as valid as any others, so long as the main points seem to
-agree.
-
-4. Semantics
-------------
-
-1. Mandatory locks can only be applied via the fcntl()/lockf() locking
- interface - in other words the System V/POSIX interface. BSD style
- locks using flock() never result in a mandatory lock.
-
-2. If a process has locked a region of a file with a mandatory read lock, then
- other processes are permitted to read from that region. If any of these
- processes attempts to write to the region it will block until the lock is
- released, unless the process has opened the file with the O_NONBLOCK
- flag in which case the system call will return immediately with the error
- status EAGAIN.
-
-3. If a process has locked a region of a file with a mandatory write lock, all
- attempts to read or write to that region block until the lock is released,
- unless a process has opened the file with the O_NONBLOCK flag in which case
- the system call will return immediately with the error status EAGAIN.
-
-4. Calls to open() with O_TRUNC, or to creat(), on a existing file that has
- any mandatory locks owned by other processes will be rejected with the
- error status EAGAIN.
-
-5. Attempts to apply a mandatory lock to a file that is memory mapped and
- shared (via mmap() with MAP_SHARED) will be rejected with the error status
- EAGAIN.
-
-6. Attempts to create a shared memory map of a file (via mmap() with MAP_SHARED)
- that has any mandatory locks in effect will be rejected with the error status
- EAGAIN.
-
-5. Which system calls are affected?
------------------------------------
-
-Those which modify a file's contents, not just the inode. That gives read(),
-write(), readv(), writev(), open(), creat(), mmap(), truncate() and
-ftruncate(). truncate() and ftruncate() are considered to be "write" actions
-for the purposes of mandatory locking.
-
-The affected region is usually defined as stretching from the current position
-for the total number of bytes read or written. For the truncate calls it is
-defined as the bytes of a file removed or added (we must also consider bytes
-added, as a lock can specify just "the whole file", rather than a specific
-range of bytes.)
-
-Note 3: I may have overlooked some system calls that need mandatory lock
-checking in my eagerness to get this code out the door. Please let me know, or
-better still fix the system calls yourself and submit a patch to me or Linus.
-
-6. Warning!
------------
-
-Not even root can override a mandatory lock, so runaway processes can wreak
-havoc if they lock crucial files. The way around it is to change the file
-permissions (remove the setgid bit) before trying to read or write to it.
-Of course, that might be a bit tricky if the system is hung :-(
-
-7. The "mand" mount option
---------------------------
-Mandatory locking is disabled on all filesystems by default, and must be
-administratively enabled by mounting with "-o mand". That mount option
-is only allowed if the mounting task has the CAP_SYS_ADMIN capability.
-
-Since kernel v4.5, it is possible to disable mandatory locking
-altogether by setting CONFIG_MANDATORY_FILE_LOCKING to "n". A kernel
-with this disabled will reject attempts to mount filesystems with the
-"mand" mount option with the error status EPERM.