diff options
author | Brian Starkey <brian.starkey@arm.com> | 2018-12-03 12:31:57 +0100 |
---|---|---|
committer | Liviu Dudau <Liviu.Dudau@arm.com> | 2019-01-11 18:52:06 +0100 |
commit | 3affaa5a7ca3ca114e01049bc45e3ed4a3955505 (patch) | |
tree | f2034bb450db2fdcfbe606b13cbdfc3d147d136e /Documentation/gpu/afbc.rst | |
parent | Linux 5.0-rc1 (diff) | |
download | linux-3affaa5a7ca3ca114e01049bc45e3ed4a3955505.tar.xz linux-3affaa5a7ca3ca114e01049bc45e3ed4a3955505.zip |
drm/afbc: Add AFBC modifier usage documentation
AFBC is a flexible, proprietary, lossless compression protocol and
format, with a number of defined DRM format modifiers. To facilitate
consistency and compatibility between different AFBC producers and
consumers, document the expectations for usage of the AFBC DRM format
modifiers in a new .rst chapter.
Signed-off-by: Brian Starkey <brian.starkey@arm.com>
Reviewed-by: Liviu Dudau <liviu.dudau@arm.com>
[Updated MAINTAINERS entry to show that "Mali DP Maintainers" is
actually a mailing list and added an SPDX-License-Identifier to
the documentation]
Signed-off-by: Liviu Dudau <liviu.dudau@arm.com>
Diffstat (limited to 'Documentation/gpu/afbc.rst')
-rw-r--r-- | Documentation/gpu/afbc.rst | 235 |
1 files changed, 235 insertions, 0 deletions
diff --git a/Documentation/gpu/afbc.rst b/Documentation/gpu/afbc.rst new file mode 100644 index 000000000000..4d38dc49d105 --- /dev/null +++ b/Documentation/gpu/afbc.rst @@ -0,0 +1,235 @@ +.. SPDX-License-Identifier: GPL-2.0+ + +=================================== + Arm Framebuffer Compression (AFBC) +=================================== + +AFBC is a proprietary lossless image compression protocol and format. +It provides fine-grained random access and minimizes the amount of +data transferred between IP blocks. + +AFBC can be enabled on drivers which support it via use of the AFBC +format modifiers defined in drm_fourcc.h. See DRM_FORMAT_MOD_ARM_AFBC(*). + +All users of the AFBC modifiers must follow the usage guidelines laid +out in this document, to ensure compatibility across different AFBC +producers and consumers. + +Components and Ordering +======================= + +AFBC streams can contain several components - where a component +corresponds to a color channel (i.e. R, G, B, X, A, Y, Cb, Cr). +The assignment of input/output color channels must be consistent +between the encoder and the decoder for correct operation, otherwise +the consumer will interpret the decoded data incorrectly. + +Furthermore, when the lossless colorspace transform is used +(AFBC_FORMAT_MOD_YTR, which should be enabled for RGB buffers for +maximum compression efficiency), the component order must be: + + * Component 0: R + * Component 1: G + * Component 2: B + +The component ordering is communicated via the fourcc code in the +fourcc:modifier pair. In general, component '0' is considered to +reside in the least-significant bits of the corresponding linear +format. For example, COMP(bits): + + * DRM_FORMAT_ABGR8888 + + * Component 0: R(8) + * Component 1: G(8) + * Component 2: B(8) + * Component 3: A(8) + + * DRM_FORMAT_BGR888 + + * Component 0: R(8) + * Component 1: G(8) + * Component 2: B(8) + + * DRM_FORMAT_YUYV + + * Component 0: Y(8) + * Component 1: Cb(8, 2x1 subsampled) + * Component 2: Cr(8, 2x1 subsampled) + +In AFBC, 'X' components are not treated any differently from any other +component. Therefore, an AFBC buffer with fourcc DRM_FORMAT_XBGR8888 +encodes with 4 components, like so: + + * DRM_FORMAT_XBGR8888 + + * Component 0: R(8) + * Component 1: G(8) + * Component 2: B(8) + * Component 3: X(8) + +Please note, however, that the inclusion of a "wasted" 'X' channel is +bad for compression efficiency, and so it's recommended to avoid +formats containing 'X' bits. If a fourth component is +required/expected by the encoder/decoder, then it is recommended to +instead use an equivalent format with alpha, setting all alpha bits to +'1'. If there is no requirement for a fourth component, then a format +which doesn't include alpha can be used, e.g. DRM_FORMAT_BGR888. + +Number of Planes +================ + +Formats which are typically multi-planar in linear layouts (e.g. YUV +420), can be encoded into one, or multiple, AFBC planes. As with +component order, the encoder and decoder must agree about the number +of planes in order to correctly decode the buffer. The fourcc code is +used to determine the number of encoded planes in an AFBC buffer, +matching the number of planes for the linear (unmodified) format. +Within each plane, the component ordering also follows the fourcc +code: + +For example: + + * DRM_FORMAT_YUYV: nplanes = 1 + + * Plane 0: + + * Component 0: Y(8) + * Component 1: Cb(8, 2x1 subsampled) + * Component 2: Cr(8, 2x1 subsampled) + + * DRM_FORMAT_NV12: nplanes = 2 + + * Plane 0: + + * Component 0: Y(8) + + * Plane 1: + + * Component 0: Cb(8, 2x1 subsampled) + * Component 1: Cr(8, 2x1 subsampled) + +Cross-device interoperability +============================= + +For maximum compatibility across devices, the table below defines +canonical formats for use between AFBC-enabled devices. Formats which +are listed here must be used exactly as specified when using the AFBC +modifiers. Formats which are not listed should be avoided. + +.. flat-table:: AFBC formats + + * - Fourcc code + - Description + - Planes/Components + + * - DRM_FORMAT_ABGR2101010 + - 10-bit per component RGB, with 2-bit alpha + - Plane 0: 4 components + * Component 0: R(10) + * Component 1: G(10) + * Component 2: B(10) + * Component 3: A(2) + + * - DRM_FORMAT_ABGR8888 + - 8-bit per component RGB, with 8-bit alpha + - Plane 0: 4 components + * Component 0: R(8) + * Component 1: G(8) + * Component 2: B(8) + * Component 3: A(8) + + * - DRM_FORMAT_BGR888 + - 8-bit per component RGB + - Plane 0: 3 components + * Component 0: R(8) + * Component 1: G(8) + * Component 2: B(8) + + * - DRM_FORMAT_BGR565 + - 5/6-bit per component RGB + - Plane 0: 3 components + * Component 0: R(5) + * Component 1: G(6) + * Component 2: B(5) + + * - DRM_FORMAT_ABGR1555 + - 5-bit per component RGB, with 1-bit alpha + - Plane 0: 4 components + * Component 0: R(5) + * Component 1: G(5) + * Component 2: B(5) + * Component 3: A(1) + + * - DRM_FORMAT_VUY888 + - 8-bit per component YCbCr 444, single plane + - Plane 0: 3 components + * Component 0: Y(8) + * Component 1: Cb(8) + * Component 2: Cr(8) + + * - DRM_FORMAT_VUY101010 + - 10-bit per component YCbCr 444, single plane + - Plane 0: 3 components + * Component 0: Y(10) + * Component 1: Cb(10) + * Component 2: Cr(10) + + * - DRM_FORMAT_YUYV + - 8-bit per component YCbCr 422, single plane + - Plane 0: 3 components + * Component 0: Y(8) + * Component 1: Cb(8, 2x1 subsampled) + * Component 2: Cr(8, 2x1 subsampled) + + * - DRM_FORMAT_NV16 + - 8-bit per component YCbCr 422, two plane + - Plane 0: 1 component + * Component 0: Y(8) + Plane 1: 2 components + * Component 0: Cb(8, 2x1 subsampled) + * Component 1: Cr(8, 2x1 subsampled) + + * - DRM_FORMAT_Y210 + - 10-bit per component YCbCr 422, single plane + - Plane 0: 3 components + * Component 0: Y(10) + * Component 1: Cb(10, 2x1 subsampled) + * Component 2: Cr(10, 2x1 subsampled) + + * - DRM_FORMAT_P210 + - 10-bit per component YCbCr 422, two plane + - Plane 0: 1 component + * Component 0: Y(10) + Plane 1: 2 components + * Component 0: Cb(10, 2x1 subsampled) + * Component 1: Cr(10, 2x1 subsampled) + + * - DRM_FORMAT_YUV420_8BIT + - 8-bit per component YCbCr 420, single plane + - Plane 0: 3 components + * Component 0: Y(8) + * Component 1: Cb(8, 2x2 subsampled) + * Component 2: Cr(8, 2x2 subsampled) + + * - DRM_FORMAT_YUV420_10BIT + - 10-bit per component YCbCr 420, single plane + - Plane 0: 3 components + * Component 0: Y(10) + * Component 1: Cb(10, 2x2 subsampled) + * Component 2: Cr(10, 2x2 subsampled) + + * - DRM_FORMAT_NV12 + - 8-bit per component YCbCr 420, two plane + - Plane 0: 1 component + * Component 0: Y(8) + Plane 1: 2 components + * Component 0: Cb(8, 2x2 subsampled) + * Component 1: Cr(8, 2x2 subsampled) + + * - DRM_FORMAT_P010 + - 10-bit per component YCbCr 420, two plane + - Plane 0: 1 component + * Component 0: Y(10) + Plane 1: 2 components + * Component 0: Cb(10, 2x2 subsampled) + * Component 1: Cr(10, 2x2 subsampled) |