diff options
author | Jean Delvare <khali@linux-fr.org> | 2007-05-01 23:26:35 +0200 |
---|---|---|
committer | Jean Delvare <khali@hyperion.delvare> | 2007-05-01 23:26:35 +0200 |
commit | eefcd75e72f382270f8f64e030550b10e3882b2b (patch) | |
tree | ccd55fa7068067ddd6299fe62dc15b22cc3ca46a /Documentation/i2c/writing-clients | |
parent | i2c: SPIN_LOCK_UNLOCKED cleanup (diff) | |
download | linux-eefcd75e72f382270f8f64e030550b10e3882b2b.tar.xz linux-eefcd75e72f382270f8f64e030550b10e3882b2b.zip |
i2c: Documentation update
Make the documentation on how to write and port i2c drivers more in
line with the current state of things:
* i2c-isa is deprecated and soon gone, so stop advertising it.
* Drop many sensors-specific references. Most of them were outdated
anyway.
* Update the example code to reflect the recent and not-so-recent
API and coding style preference changes.
* Simplify the example init and cleanup functions.
This should make things less complex to understand for newcomers.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Diffstat (limited to 'Documentation/i2c/writing-clients')
-rw-r--r-- | Documentation/i2c/writing-clients | 292 |
1 files changed, 31 insertions, 261 deletions
diff --git a/Documentation/i2c/writing-clients b/Documentation/i2c/writing-clients index f7e04ec849b1..3d8d36b0ad12 100644 --- a/Documentation/i2c/writing-clients +++ b/Documentation/i2c/writing-clients @@ -74,16 +74,13 @@ An example structure is below. struct foo_data { struct i2c_client client; - struct semaphore lock; /* For ISA access in `sensors' drivers. */ - int sysctl_id; /* To keep the /proc directory entry for - `sensors' drivers. */ enum chips type; /* To keep the chips type for `sensors' drivers. */ /* Because the i2c bus is slow, it is often useful to cache the read information of a chip for some time (for example, 1 or 2 seconds). It depends of course on the device whether this is really worthwhile or even sensible. */ - struct semaphore update_lock; /* When we are reading lots of information, + struct mutex update_lock; /* When we are reading lots of information, another process should not update the below information */ char valid; /* != 0 if the following fields are valid. */ @@ -104,8 +101,7 @@ some obscure clients). But we need generic reading and writing routines. I have found it useful to define foo_read and foo_write function for this. For some cases, it will be easier to call the i2c functions directly, but many chips have some kind of register-value idea that can easily -be encapsulated. Also, some chips have both ISA and I2C interfaces, and -it useful to abstract from this (only for `sensors' drivers). +be encapsulated. The below functions are simple examples, and should not be copied literally. @@ -128,24 +124,6 @@ literally. return i2c_smbus_write_word_data(client,reg,value); } -For sensors code, you may have to cope with ISA registers too. Something -like the below often works. Note the locking! - - int foo_read_value(struct i2c_client *client, u8 reg) - { - int res; - if (i2c_is_isa_client(client)) { - down(&(((struct foo_data *) (client->data)) -> lock)); - outb_p(reg,client->addr + FOO_ADDR_REG_OFFSET); - res = inb_p(client->addr + FOO_DATA_REG_OFFSET); - up(&(((struct foo_data *) (client->data)) -> lock)); - return res; - } else - return i2c_smbus_read_byte_data(client,reg); - } - -Writing is done the same way. - Probing and attaching ===================== @@ -257,10 +235,6 @@ detection algorithm. You do not have to use this parameter interface; but don't try to use function i2c_probe() if you don't. -NOTE: If you want to write a `sensors' driver, the interface is slightly - different! See below. - - Probing classes (Legacy model) ------------------------------ @@ -344,10 +318,6 @@ The detect client function is called by i2c_probe. The `kind' parameter contains -1 for a probed detection, 0 for a forced detection, or a positive number for a forced detection with a chip type forced. -Below, some things are only needed if this is a `sensors' driver. Those -parts are between /* SENSORS ONLY START */ and /* SENSORS ONLY END */ -markers. - Returning an error different from -ENODEV in a detect function will cause the detection to stop: other addresses and adapters won't be scanned. This should only be done on fatal or internal errors, such as a memory @@ -356,64 +326,20 @@ shortage or i2c_attach_client failing. For now, you can ignore the `flags' parameter. It is there for future use. int foo_detect_client(struct i2c_adapter *adapter, int address, - unsigned short flags, int kind) + int kind) { int err = 0; int i; - struct i2c_client *new_client; + struct i2c_client *client; struct foo_data *data; - const char *client_name = ""; /* For non-`sensors' drivers, put the real - name here! */ + const char *name = ""; /* Let's see whether this adapter can support what we need. - Please substitute the things you need here! - For `sensors' drivers, add `! is_isa &&' to the if statement */ + Please substitute the things you need here! */ if (!i2c_check_functionality(adapter,I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_WRITE_BYTE)) goto ERROR0; - /* SENSORS ONLY START */ - const char *type_name = ""; - int is_isa = i2c_is_isa_adapter(adapter); - - /* Do this only if the chip can additionally be found on the ISA bus - (hybrid chip). */ - - if (is_isa) { - - /* Discard immediately if this ISA range is already used */ - /* FIXME: never use check_region(), only request_region() */ - if (check_region(address,FOO_EXTENT)) - goto ERROR0; - - /* Probe whether there is anything on this address. - Some example code is below, but you will have to adapt this - for your own driver */ - - if (kind < 0) /* Only if no force parameter was used */ { - /* We may need long timeouts at least for some chips. */ - #define REALLY_SLOW_IO - i = inb_p(address + 1); - if (inb_p(address + 2) != i) - goto ERROR0; - if (inb_p(address + 3) != i) - goto ERROR0; - if (inb_p(address + 7) != i) - goto ERROR0; - #undef REALLY_SLOW_IO - - /* Let's just hope nothing breaks here */ - i = inb_p(address + 5) & 0x7f; - outb_p(~i & 0x7f,address+5); - if ((inb_p(address + 5) & 0x7f) != (~i & 0x7f)) { - outb_p(i,address+5); - return 0; - } - } - } - - /* SENSORS ONLY END */ - /* OK. For now, we presume we have a valid client. We now create the client structure, even though we cannot fill it completely yet. But it allows us to access several i2c functions safely */ @@ -423,13 +349,12 @@ For now, you can ignore the `flags' parameter. It is there for future use. goto ERROR0; } - new_client = &data->client; - i2c_set_clientdata(new_client, data); + client = &data->client; + i2c_set_clientdata(client, data); - new_client->addr = address; - new_client->adapter = adapter; - new_client->driver = &foo_driver; - new_client->flags = 0; + client->addr = address; + client->adapter = adapter; + client->driver = &foo_driver; /* Now, we do the remaining detection. If no `force' parameter is used. */ @@ -437,19 +362,17 @@ For now, you can ignore the `flags' parameter. It is there for future use. parameter was used. */ if (kind < 0) { /* The below is of course bogus */ - if (foo_read(new_client,FOO_REG_GENERIC) != FOO_GENERIC_VALUE) + if (foo_read(client, FOO_REG_GENERIC) != FOO_GENERIC_VALUE) goto ERROR1; } - /* SENSORS ONLY START */ - /* Next, specific detection. This is especially important for `sensors' devices. */ /* Determine the chip type. Not needed if a `force_CHIPTYPE' parameter was used. */ if (kind <= 0) { - i = foo_read(new_client,FOO_REG_CHIPTYPE); + i = foo_read(client, FOO_REG_CHIPTYPE); if (i == FOO_TYPE_1) kind = chip1; /* As defined in the enum */ else if (i == FOO_TYPE_2) @@ -463,63 +386,31 @@ For now, you can ignore the `flags' parameter. It is there for future use. /* Now set the type and chip names */ if (kind == chip1) { - type_name = "chip1"; /* For /proc entry */ - client_name = "CHIP 1"; + name = "chip1"; } else if (kind == chip2) { - type_name = "chip2"; /* For /proc entry */ - client_name = "CHIP 2"; + name = "chip2"; } - /* Reserve the ISA region */ - if (is_isa) - request_region(address,FOO_EXTENT,type_name); - - /* SENSORS ONLY END */ - /* Fill in the remaining client fields. */ - strcpy(new_client->name,client_name); - - /* SENSORS ONLY BEGIN */ + strlcpy(client->name, name, I2C_NAME_SIZE); data->type = kind; - /* SENSORS ONLY END */ - - data->valid = 0; /* Only if you use this field */ - init_MUTEX(&data->update_lock); /* Only if you use this field */ + mutex_init(&data->update_lock); /* Only if you use this field */ /* Any other initializations in data must be done here too. */ - /* Tell the i2c layer a new client has arrived */ - if ((err = i2c_attach_client(new_client))) - goto ERROR3; - - /* SENSORS ONLY BEGIN */ - /* Register a new directory entry with module sensors. See below for - the `template' structure. */ - if ((i = i2c_register_entry(new_client, type_name, - foo_dir_table_template,THIS_MODULE)) < 0) { - err = i; - goto ERROR4; - } - data->sysctl_id = i; - - /* SENSORS ONLY END */ - /* This function can write default values to the client registers, if needed. */ - foo_init_client(new_client); + foo_init_client(client); + + /* Tell the i2c layer a new client has arrived */ + if ((err = i2c_attach_client(client))) + goto ERROR1; + return 0; /* OK, this is not exactly good programming practice, usually. But it is very code-efficient in this case. */ - ERROR4: - i2c_detach_client(new_client); - ERROR3: - ERROR2: - /* SENSORS ONLY START */ - if (is_isa) - release_region(address,FOO_EXTENT); - /* SENSORS ONLY END */ ERROR1: kfree(data); ERROR0: @@ -536,22 +427,12 @@ much simpler than the attachment code, fortunately! int foo_detach_client(struct i2c_client *client) { - int err,i; - - /* SENSORS ONLY START */ - /* Deregister with the `i2c-proc' module. */ - i2c_deregister_entry(((struct lm78_data *)(client->data))->sysctl_id); - /* SENSORS ONLY END */ + int err; /* Try to detach the client from i2c space */ if ((err = i2c_detach_client(client))) return err; - /* HYBRID SENSORS CHIP ONLY START */ - if i2c_is_isa_client(client) - release_region(client->addr,LM78_EXTENT); - /* HYBRID SENSORS CHIP ONLY END */ - kfree(i2c_get_clientdata(client)); return 0; } @@ -564,42 +445,34 @@ When the kernel is booted, or when your foo driver module is inserted, you have to do some initializing. Fortunately, just attaching (registering) the driver module is usually enough. - /* Keep track of how far we got in the initialization process. If several - things have to initialized, and we fail halfway, only those things - have to be cleaned up! */ - static int __initdata foo_initialized = 0; - static int __init foo_init(void) { int res; - printk("foo version %s (%s)\n",FOO_VERSION,FOO_DATE); if ((res = i2c_add_driver(&foo_driver))) { printk("foo: Driver registration failed, module not inserted.\n"); - foo_cleanup(); return res; } - foo_initialized ++; return 0; } - void foo_cleanup(void) + static void __exit foo_cleanup(void) { - if (foo_initialized == 1) { - i2c_del_driver(&foo_driver); - foo_initialized --; - } + i2c_del_driver(&foo_driver); } /* Substitute your own name and email address */ MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>" MODULE_DESCRIPTION("Driver for Barf Inc. Foo I2C devices"); + /* a few non-GPL license types are also allowed */ + MODULE_LICENSE("GPL"); + module_init(foo_init); module_exit(foo_cleanup); Note that some functions are marked by `__init', and some data structures -by `__init_data'. Hose functions and structures can be removed after +by `__initdata'. These functions and structures can be removed after kernel booting (or module loading) is completed. @@ -729,110 +602,7 @@ General purpose routines Below all general purpose routines are listed, that were not mentioned before. - /* This call returns a unique low identifier for each registered adapter, - * or -1 if the adapter was not registered. + /* This call returns a unique low identifier for each registered adapter. */ extern int i2c_adapter_id(struct i2c_adapter *adap); - -The sensors sysctl/proc interface -================================= - -This section only applies if you write `sensors' drivers. - -Each sensors driver creates a directory in /proc/sys/dev/sensors for each -registered client. The directory is called something like foo-i2c-4-65. -The sensors module helps you to do this as easily as possible. - -The template ------------- - -You will need to define a ctl_table template. This template will automatically -be copied to a newly allocated structure and filled in where necessary when -you call sensors_register_entry. - -First, I will give an example definition. - static ctl_table foo_dir_table_template[] = { - { FOO_SYSCTL_FUNC1, "func1", NULL, 0, 0644, NULL, &i2c_proc_real, - &i2c_sysctl_real,NULL,&foo_func }, - { FOO_SYSCTL_FUNC2, "func2", NULL, 0, 0644, NULL, &i2c_proc_real, - &i2c_sysctl_real,NULL,&foo_func }, - { FOO_SYSCTL_DATA, "data", NULL, 0, 0644, NULL, &i2c_proc_real, - &i2c_sysctl_real,NULL,&foo_data }, - { 0 } - }; - -In the above example, three entries are defined. They can either be -accessed through the /proc interface, in the /proc/sys/dev/sensors/* -directories, as files named func1, func2 and data, or alternatively -through the sysctl interface, in the appropriate table, with identifiers -FOO_SYSCTL_FUNC1, FOO_SYSCTL_FUNC2 and FOO_SYSCTL_DATA. - -The third, sixth and ninth parameters should always be NULL, and the -fourth should always be 0. The fifth is the mode of the /proc file; -0644 is safe, as the file will be owned by root:root. - -The seventh and eighth parameters should be &i2c_proc_real and -&i2c_sysctl_real if you want to export lists of reals (scaled -integers). You can also use your own function for them, as usual. -Finally, the last parameter is the call-back to gather the data -(see below) if you use the *_proc_real functions. - - -Gathering the data ------------------- - -The call back functions (foo_func and foo_data in the above example) -can be called in several ways; the operation parameter determines -what should be done: - - * If operation == SENSORS_PROC_REAL_INFO, you must return the - magnitude (scaling) in nrels_mag; - * If operation == SENSORS_PROC_REAL_READ, you must read information - from the chip and return it in results. The number of integers - to display should be put in nrels_mag; - * If operation == SENSORS_PROC_REAL_WRITE, you must write the - supplied information to the chip. nrels_mag will contain the number - of integers, results the integers themselves. - -The *_proc_real functions will display the elements as reals for the -/proc interface. If you set the magnitude to 2, and supply 345 for -SENSORS_PROC_REAL_READ, it would display 3.45; and if the user would -write 45.6 to the /proc file, it would be returned as 4560 for -SENSORS_PROC_REAL_WRITE. A magnitude may even be negative! - -An example function: - - /* FOO_FROM_REG and FOO_TO_REG translate between scaled values and - register values. Note the use of the read cache. */ - void foo_in(struct i2c_client *client, int operation, int ctl_name, - int *nrels_mag, long *results) - { - struct foo_data *data = client->data; - int nr = ctl_name - FOO_SYSCTL_FUNC1; /* reduce to 0 upwards */ - - if (operation == SENSORS_PROC_REAL_INFO) - *nrels_mag = 2; - else if (operation == SENSORS_PROC_REAL_READ) { - /* Update the readings cache (if necessary) */ - foo_update_client(client); - /* Get the readings from the cache */ - results[0] = FOO_FROM_REG(data->foo_func_base[nr]); - results[1] = FOO_FROM_REG(data->foo_func_more[nr]); - results[2] = FOO_FROM_REG(data->foo_func_readonly[nr]); - *nrels_mag = 2; - } else if (operation == SENSORS_PROC_REAL_WRITE) { - if (*nrels_mag >= 1) { - /* Update the cache */ - data->foo_base[nr] = FOO_TO_REG(results[0]); - /* Update the chip */ - foo_write_value(client,FOO_REG_FUNC_BASE(nr),data->foo_base[nr]); - } - if (*nrels_mag >= 2) { - /* Update the cache */ - data->foo_more[nr] = FOO_TO_REG(results[1]); - /* Update the chip */ - foo_write_value(client,FOO_REG_FUNC_MORE(nr),data->foo_more[nr]); - } - } - } |