diff options
author | Jakub Kicinski <kuba@kernel.org> | 2022-07-21 22:03:39 +0200 |
---|---|---|
committer | Jakub Kicinski <kuba@kernel.org> | 2022-07-21 22:03:39 +0200 |
commit | 6e0e846ee2ab01bc44254e6a0a6a6a0db1cba16d (patch) | |
tree | e2a39b9ff9fbfa9adbaa004e3b42047664a8e57d /Documentation/networking/dsa/dsa.rst | |
parent | net/cdc_ncm: Increase NTB max RX/TX values to 64kb (diff) | |
parent | Merge tag 'net-5.19-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/net... (diff) | |
download | linux-6e0e846ee2ab01bc44254e6a0a6a6a0db1cba16d.tar.xz linux-6e0e846ee2ab01bc44254e6a0a6a6a0db1cba16d.zip |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
No conflicts.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Diffstat (limited to 'Documentation/networking/dsa/dsa.rst')
-rw-r--r-- | Documentation/networking/dsa/dsa.rst | 363 |
1 files changed, 303 insertions, 60 deletions
diff --git a/Documentation/networking/dsa/dsa.rst b/Documentation/networking/dsa/dsa.rst index ed7fa76e7a40..d742ba6bd211 100644 --- a/Documentation/networking/dsa/dsa.rst +++ b/Documentation/networking/dsa/dsa.rst @@ -503,26 +503,108 @@ per-port PHY specific details: interface connection, MDIO bus location, etc. Driver development ================== -DSA switch drivers need to implement a dsa_switch_ops structure which will +DSA switch drivers need to implement a ``dsa_switch_ops`` structure which will contain the various members described below. -``register_switch_driver()`` registers this dsa_switch_ops in its internal list -of drivers to probe for. ``unregister_switch_driver()`` does the exact opposite. +Probing, registration and device lifetime +----------------------------------------- -Unless requested differently by setting the priv_size member accordingly, DSA -does not allocate any driver private context space. +DSA switches are regular ``device`` structures on buses (be they platform, SPI, +I2C, MDIO or otherwise). The DSA framework is not involved in their probing +with the device core. + +Switch registration from the perspective of a driver means passing a valid +``struct dsa_switch`` pointer to ``dsa_register_switch()``, usually from the +switch driver's probing function. The following members must be valid in the +provided structure: + +- ``ds->dev``: will be used to parse the switch's OF node or platform data. + +- ``ds->num_ports``: will be used to create the port list for this switch, and + to validate the port indices provided in the OF node. + +- ``ds->ops``: a pointer to the ``dsa_switch_ops`` structure holding the DSA + method implementations. + +- ``ds->priv``: backpointer to a driver-private data structure which can be + retrieved in all further DSA method callbacks. + +In addition, the following flags in the ``dsa_switch`` structure may optionally +be configured to obtain driver-specific behavior from the DSA core. Their +behavior when set is documented through comments in ``include/net/dsa.h``. + +- ``ds->vlan_filtering_is_global`` + +- ``ds->needs_standalone_vlan_filtering`` + +- ``ds->configure_vlan_while_not_filtering`` + +- ``ds->untag_bridge_pvid`` + +- ``ds->assisted_learning_on_cpu_port`` + +- ``ds->mtu_enforcement_ingress`` + +- ``ds->fdb_isolation`` + +Internally, DSA keeps an array of switch trees (group of switches) global to +the kernel, and attaches a ``dsa_switch`` structure to a tree on registration. +The tree ID to which the switch is attached is determined by the first u32 +number of the ``dsa,member`` property of the switch's OF node (0 if missing). +The switch ID within the tree is determined by the second u32 number of the +same OF property (0 if missing). Registering multiple switches with the same +switch ID and tree ID is illegal and will cause an error. Using platform data, +a single switch and a single switch tree is permitted. + +In case of a tree with multiple switches, probing takes place asymmetrically. +The first N-1 callers of ``dsa_register_switch()`` only add their ports to the +port list of the tree (``dst->ports``), each port having a backpointer to its +associated switch (``dp->ds``). Then, these switches exit their +``dsa_register_switch()`` call early, because ``dsa_tree_setup_routing_table()`` +has determined that the tree is not yet complete (not all ports referenced by +DSA links are present in the tree's port list). The tree becomes complete when +the last switch calls ``dsa_register_switch()``, and this triggers the effective +continuation of initialization (including the call to ``ds->ops->setup()``) for +all switches within that tree, all as part of the calling context of the last +switch's probe function. + +The opposite of registration takes place when calling ``dsa_unregister_switch()``, +which removes a switch's ports from the port list of the tree. The entire tree +is torn down when the first switch unregisters. + +It is mandatory for DSA switch drivers to implement the ``shutdown()`` callback +of their respective bus, and call ``dsa_switch_shutdown()`` from it (a minimal +version of the full teardown performed by ``dsa_unregister_switch()``). +The reason is that DSA keeps a reference on the master net device, and if the +driver for the master device decides to unbind on shutdown, DSA's reference +will block that operation from finalizing. + +Either ``dsa_switch_shutdown()`` or ``dsa_unregister_switch()`` must be called, +but not both, and the device driver model permits the bus' ``remove()`` method +to be called even if ``shutdown()`` was already called. Therefore, drivers are +expected to implement a mutual exclusion method between ``remove()`` and +``shutdown()`` by setting their drvdata to NULL after any of these has run, and +checking whether the drvdata is NULL before proceeding to take any action. + +After ``dsa_switch_shutdown()`` or ``dsa_unregister_switch()`` was called, no +further callbacks via the provided ``dsa_switch_ops`` may take place, and the +driver may free the data structures associated with the ``dsa_switch``. Switch configuration -------------------- -- ``tag_protocol``: this is to indicate what kind of tagging protocol is supported, - should be a valid value from the ``dsa_tag_protocol`` enum +- ``get_tag_protocol``: this is to indicate what kind of tagging protocol is + supported, should be a valid value from the ``dsa_tag_protocol`` enum. + The returned information does not have to be static; the driver is passed the + CPU port number, as well as the tagging protocol of a possibly stacked + upstream switch, in case there are hardware limitations in terms of supported + tag formats. -- ``probe``: probe routine which will be invoked by the DSA platform device upon - registration to test for the presence/absence of a switch device. For MDIO - devices, it is recommended to issue a read towards internal registers using - the switch pseudo-PHY and return whether this is a supported device. For other - buses, return a non-NULL string +- ``change_tag_protocol``: when the default tagging protocol has compatibility + problems with the master or other issues, the driver may support changing it + at runtime, either through a device tree property or through sysfs. In that + case, further calls to ``get_tag_protocol`` should report the protocol in + current use. - ``setup``: setup function for the switch, this function is responsible for setting up the ``dsa_switch_ops`` private structure with all it needs: register maps, @@ -535,7 +617,17 @@ Switch configuration fully configured and ready to serve any kind of request. It is recommended to issue a software reset of the switch during this setup function in order to avoid relying on what a previous software agent such as a bootloader/firmware - may have previously configured. + may have previously configured. The method responsible for undoing any + applicable allocations or operations done here is ``teardown``. + +- ``port_setup`` and ``port_teardown``: methods for initialization and + destruction of per-port data structures. It is mandatory for some operations + such as registering and unregistering devlink port regions to be done from + these methods, otherwise they are optional. A port will be torn down only if + it has been previously set up. It is possible for a port to be set up during + probing only to be torn down immediately afterwards, for example in case its + PHY cannot be found. In this case, probing of the DSA switch continues + without that particular port. PHY devices and link management ------------------------------- @@ -635,26 +727,198 @@ Power management ``BR_STATE_DISABLED`` and propagating changes to the hardware if this port is disabled while being a bridge member +Address databases +----------------- + +Switching hardware is expected to have a table for FDB entries, however not all +of them are active at the same time. An address database is the subset (partition) +of FDB entries that is active (can be matched by address learning on RX, or FDB +lookup on TX) depending on the state of the port. An address database may +occasionally be called "FID" (Filtering ID) in this document, although the +underlying implementation may choose whatever is available to the hardware. + +For example, all ports that belong to a VLAN-unaware bridge (which is +*currently* VLAN-unaware) are expected to learn source addresses in the +database associated by the driver with that bridge (and not with other +VLAN-unaware bridges). During forwarding and FDB lookup, a packet received on a +VLAN-unaware bridge port should be able to find a VLAN-unaware FDB entry having +the same MAC DA as the packet, which is present on another port member of the +same bridge. At the same time, the FDB lookup process must be able to not find +an FDB entry having the same MAC DA as the packet, if that entry points towards +a port which is a member of a different VLAN-unaware bridge (and is therefore +associated with a different address database). + +Similarly, each VLAN of each offloaded VLAN-aware bridge should have an +associated address database, which is shared by all ports which are members of +that VLAN, but not shared by ports belonging to different bridges that are +members of the same VID. + +In this context, a VLAN-unaware database means that all packets are expected to +match on it irrespective of VLAN ID (only MAC address lookup), whereas a +VLAN-aware database means that packets are supposed to match based on the VLAN +ID from the classified 802.1Q header (or the pvid if untagged). + +At the bridge layer, VLAN-unaware FDB entries have the special VID value of 0, +whereas VLAN-aware FDB entries have non-zero VID values. Note that a +VLAN-unaware bridge may have VLAN-aware (non-zero VID) FDB entries, and a +VLAN-aware bridge may have VLAN-unaware FDB entries. As in hardware, the +software bridge keeps separate address databases, and offloads to hardware the +FDB entries belonging to these databases, through switchdev, asynchronously +relative to the moment when the databases become active or inactive. + +When a user port operates in standalone mode, its driver should configure it to +use a separate database called a port private database. This is different from +the databases described above, and should impede operation as standalone port +(packet in, packet out to the CPU port) as little as possible. For example, +on ingress, it should not attempt to learn the MAC SA of ingress traffic, since +learning is a bridging layer service and this is a standalone port, therefore +it would consume useless space. With no address learning, the port private +database should be empty in a naive implementation, and in this case, all +received packets should be trivially flooded to the CPU port. + +DSA (cascade) and CPU ports are also called "shared" ports because they service +multiple address databases, and the database that a packet should be associated +to is usually embedded in the DSA tag. This means that the CPU port may +simultaneously transport packets coming from a standalone port (which were +classified by hardware in one address database), and from a bridge port (which +were classified to a different address database). + +Switch drivers which satisfy certain criteria are able to optimize the naive +configuration by removing the CPU port from the flooding domain of the switch, +and just program the hardware with FDB entries pointing towards the CPU port +for which it is known that software is interested in those MAC addresses. +Packets which do not match a known FDB entry will not be delivered to the CPU, +which will save CPU cycles required for creating an skb just to drop it. + +DSA is able to perform host address filtering for the following kinds of +addresses: + +- Primary unicast MAC addresses of ports (``dev->dev_addr``). These are + associated with the port private database of the respective user port, + and the driver is notified to install them through ``port_fdb_add`` towards + the CPU port. + +- Secondary unicast and multicast MAC addresses of ports (addresses added + through ``dev_uc_add()`` and ``dev_mc_add()``). These are also associated + with the port private database of the respective user port. + +- Local/permanent bridge FDB entries (``BR_FDB_LOCAL``). These are the MAC + addresses of the bridge ports, for which packets must be terminated locally + and not forwarded. They are associated with the address database for that + bridge. + +- Static bridge FDB entries installed towards foreign (non-DSA) interfaces + present in the same bridge as some DSA switch ports. These are also + associated with the address database for that bridge. + +- Dynamically learned FDB entries on foreign interfaces present in the same + bridge as some DSA switch ports, only if ``ds->assisted_learning_on_cpu_port`` + is set to true by the driver. These are associated with the address database + for that bridge. + +For various operations detailed below, DSA provides a ``dsa_db`` structure +which can be of the following types: + +- ``DSA_DB_PORT``: the FDB (or MDB) entry to be installed or deleted belongs to + the port private database of user port ``db->dp``. +- ``DSA_DB_BRIDGE``: the entry belongs to one of the address databases of bridge + ``db->bridge``. Separation between the VLAN-unaware database and the per-VID + databases of this bridge is expected to be done by the driver. +- ``DSA_DB_LAG``: the entry belongs to the address database of LAG ``db->lag``. + Note: ``DSA_DB_LAG`` is currently unused and may be removed in the future. + +The drivers which act upon the ``dsa_db`` argument in ``port_fdb_add``, +``port_mdb_add`` etc should declare ``ds->fdb_isolation`` as true. + +DSA associates each offloaded bridge and each offloaded LAG with a one-based ID +(``struct dsa_bridge :: num``, ``struct dsa_lag :: id``) for the purposes of +refcounting addresses on shared ports. Drivers may piggyback on DSA's numbering +scheme (the ID is readable through ``db->bridge.num`` and ``db->lag.id`` or may +implement their own. + +Only the drivers which declare support for FDB isolation are notified of FDB +entries on the CPU port belonging to ``DSA_DB_PORT`` databases. +For compatibility/legacy reasons, ``DSA_DB_BRIDGE`` addresses are notified to +drivers even if they do not support FDB isolation. However, ``db->bridge.num`` +and ``db->lag.id`` are always set to 0 in that case (to denote the lack of +isolation, for refcounting purposes). + +Note that it is not mandatory for a switch driver to implement physically +separate address databases for each standalone user port. Since FDB entries in +the port private databases will always point to the CPU port, there is no risk +for incorrect forwarding decisions. In this case, all standalone ports may +share the same database, but the reference counting of host-filtered addresses +(not deleting the FDB entry for a port's MAC address if it's still in use by +another port) becomes the responsibility of the driver, because DSA is unaware +that the port databases are in fact shared. This can be achieved by calling +``dsa_fdb_present_in_other_db()`` and ``dsa_mdb_present_in_other_db()``. +The down side is that the RX filtering lists of each user port are in fact +shared, which means that user port A may accept a packet with a MAC DA it +shouldn't have, only because that MAC address was in the RX filtering list of +user port B. These packets will still be dropped in software, however. + Bridge layer ------------ +Offloading the bridge forwarding plane is optional and handled by the methods +below. They may be absent, return -EOPNOTSUPP, or ``ds->max_num_bridges`` may +be non-zero and exceeded, and in this case, joining a bridge port is still +possible, but the packet forwarding will take place in software, and the ports +under a software bridge must remain configured in the same way as for +standalone operation, i.e. have all bridging service functions (address +learning etc) disabled, and send all received packets to the CPU port only. + +Concretely, a port starts offloading the forwarding plane of a bridge once it +returns success to the ``port_bridge_join`` method, and stops doing so after +``port_bridge_leave`` has been called. Offloading the bridge means autonomously +learning FDB entries in accordance with the software bridge port's state, and +autonomously forwarding (or flooding) received packets without CPU intervention. +This is optional even when offloading a bridge port. Tagging protocol drivers +are expected to call ``dsa_default_offload_fwd_mark(skb)`` for packets which +have already been autonomously forwarded in the forwarding domain of the +ingress switch port. DSA, through ``dsa_port_devlink_setup()``, considers all +switch ports part of the same tree ID to be part of the same bridge forwarding +domain (capable of autonomous forwarding to each other). + +Offloading the TX forwarding process of a bridge is a distinct concept from +simply offloading its forwarding plane, and refers to the ability of certain +driver and tag protocol combinations to transmit a single skb coming from the +bridge device's transmit function to potentially multiple egress ports (and +thereby avoid its cloning in software). + +Packets for which the bridge requests this behavior are called data plane +packets and have ``skb->offload_fwd_mark`` set to true in the tag protocol +driver's ``xmit`` function. Data plane packets are subject to FDB lookup, +hardware learning on the CPU port, and do not override the port STP state. +Additionally, replication of data plane packets (multicast, flooding) is +handled in hardware and the bridge driver will transmit a single skb for each +packet that may or may not need replication. + +When the TX forwarding offload is enabled, the tag protocol driver is +responsible to inject packets into the data plane of the hardware towards the +correct bridging domain (FID) that the port is a part of. The port may be +VLAN-unaware, and in this case the FID must be equal to the FID used by the +driver for its VLAN-unaware address database associated with that bridge. +Alternatively, the bridge may be VLAN-aware, and in that case, it is guaranteed +that the packet is also VLAN-tagged with the VLAN ID that the bridge processed +this packet in. It is the responsibility of the hardware to untag the VID on +the egress-untagged ports, or keep the tag on the egress-tagged ones. + - ``port_bridge_join``: bridge layer function invoked when a given switch port is added to a bridge, this function should do what's necessary at the switch level to permit the joining port to be added to the relevant logical domain for it to ingress/egress traffic with other members of the bridge. + By setting the ``tx_fwd_offload`` argument to true, the TX forwarding process + of this bridge is also offloaded. - ``port_bridge_leave``: bridge layer function invoked when a given switch port is removed from a bridge, this function should do what's necessary at the switch level to deny the leaving port from ingress/egress traffic from the - remaining bridge members. When the port leaves the bridge, it should be aged - out at the switch hardware for the switch to (re) learn MAC addresses behind - this port. + remaining bridge members. - ``port_stp_state_set``: bridge layer function invoked when a given switch port STP state is computed by the bridge layer and should be propagated to switch - hardware to forward/block/learn traffic. The switch driver is responsible for - computing a STP state change based on current and asked parameters and perform - the relevant ageing based on the intersection results + hardware to forward/block/learn traffic. - ``port_bridge_flags``: bridge layer function invoked when a port must configure its settings for e.g. flooding of unknown traffic or source address @@ -667,21 +931,11 @@ Bridge layer CPU port, and flooding towards the CPU port should also be enabled, due to a lack of an explicit address filtering mechanism in the DSA core. -- ``port_bridge_tx_fwd_offload``: bridge layer function invoked after - ``port_bridge_join`` when a driver sets ``ds->num_fwd_offloading_bridges`` to - a non-zero value. Returning success in this function activates the TX - forwarding offload bridge feature for this port, which enables the tagging - protocol driver to inject data plane packets towards the bridging domain that - the port is a part of. Data plane packets are subject to FDB lookup, hardware - learning on the CPU port, and do not override the port STP state. - Additionally, replication of data plane packets (multicast, flooding) is - handled in hardware and the bridge driver will transmit a single skb for each - packet that needs replication. The method is provided as a configuration - point for drivers that need to configure the hardware for enabling this - feature. - -- ``port_bridge_tx_fwd_unoffload``: bridge layer function invoked when a driver - leaves a bridge port which had the TX forwarding offload feature enabled. +- ``port_fast_age``: bridge layer function invoked when flushing the + dynamically learned FDB entries on the port is necessary. This is called when + transitioning from an STP state where learning should take place to an STP + state where it shouldn't, or when leaving a bridge, or when address learning + is turned off via ``port_bridge_flags``. Bridge VLAN filtering --------------------- @@ -697,55 +951,44 @@ Bridge VLAN filtering allowed. - ``port_vlan_add``: bridge layer function invoked when a VLAN is configured - (tagged or untagged) for the given switch port. If the operation is not - supported by the hardware, this function should return ``-EOPNOTSUPP`` to - inform the bridge code to fallback to a software implementation. + (tagged or untagged) for the given switch port. The CPU port becomes a member + of a VLAN only if a foreign bridge port is also a member of it (and + forwarding needs to take place in software), or the VLAN is installed to the + VLAN group of the bridge device itself, for termination purposes + (``bridge vlan add dev br0 vid 100 self``). VLANs on shared ports are + reference counted and removed when there is no user left. Drivers do not need + to manually install a VLAN on the CPU port. - ``port_vlan_del``: bridge layer function invoked when a VLAN is removed from the given switch port -- ``port_vlan_dump``: bridge layer function invoked with a switchdev callback - function that the driver has to call for each VLAN the given port is a member - of. A switchdev object is used to carry the VID and bridge flags. - - ``port_fdb_add``: bridge layer function invoked when the bridge wants to install a Forwarding Database entry, the switch hardware should be programmed with the specified address in the specified VLAN Id in the forwarding database - associated with this VLAN ID. If the operation is not supported, this - function should return ``-EOPNOTSUPP`` to inform the bridge code to fallback to - a software implementation. - -.. note:: VLAN ID 0 corresponds to the port private database, which, in the context - of DSA, would be its port-based VLAN, used by the associated bridge device. + associated with this VLAN ID. - ``port_fdb_del``: bridge layer function invoked when the bridge wants to remove a Forwarding Database entry, the switch hardware should be programmed to delete the specified MAC address from the specified VLAN ID if it was mapped into this port forwarding database -- ``port_fdb_dump``: bridge layer function invoked with a switchdev callback - function that the driver has to call for each MAC address known to be behind - the given port. A switchdev object is used to carry the VID and FDB info. +- ``port_fdb_dump``: bridge bypass function invoked by ``ndo_fdb_dump`` on the + physical DSA port interfaces. Since DSA does not attempt to keep in sync its + hardware FDB entries with the software bridge, this method is implemented as + a means to view the entries visible on user ports in the hardware database. + The entries reported by this function have the ``self`` flag in the output of + the ``bridge fdb show`` command. - ``port_mdb_add``: bridge layer function invoked when the bridge wants to install - a multicast database entry. If the operation is not supported, this function - should return ``-EOPNOTSUPP`` to inform the bridge code to fallback to a - software implementation. The switch hardware should be programmed with the + a multicast database entry. The switch hardware should be programmed with the specified address in the specified VLAN ID in the forwarding database associated with this VLAN ID. -.. note:: VLAN ID 0 corresponds to the port private database, which, in the context - of DSA, would be its port-based VLAN, used by the associated bridge device. - - ``port_mdb_del``: bridge layer function invoked when the bridge wants to remove a multicast database entry, the switch hardware should be programmed to delete the specified MAC address from the specified VLAN ID if it was mapped into this port forwarding database. -- ``port_mdb_dump``: bridge layer function invoked with a switchdev callback - function that the driver has to call for each MAC address known to be behind - the given port. A switchdev object is used to carry the VID and MDB info. - Link aggregation ---------------- |