summaryrefslogtreecommitdiffstats
path: root/Documentation/networking/tcp-thin.txt
diff options
context:
space:
mode:
authorAndreas Petlund <apetlund@simula.no>2010-02-18 03:45:45 +0100
committerDavid S. Miller <davem@davemloft.net>2010-02-19 00:43:07 +0100
commit5aa4b32fc86408705337e941ed716880c63d1590 (patch)
tree7385d30e16f2c7203a74a3723728b7e8c6ecfa7b /Documentation/networking/tcp-thin.txt
parenttokenring: convert to use netdev_for_each_mc_addr (diff)
downloadlinux-5aa4b32fc86408705337e941ed716880c63d1590.tar.xz
linux-5aa4b32fc86408705337e941ed716880c63d1590.zip
net: TCP thin-stream detection
Inline function to dynamically detect thin streams based on the number of packets in flight. Used to dynamically trigger thin-stream mechanisms if enabled by ioctl or sysctl. Signed-off-by: Andreas Petlund <apetlund@simula.no> Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'Documentation/networking/tcp-thin.txt')
-rw-r--r--Documentation/networking/tcp-thin.txt47
1 files changed, 47 insertions, 0 deletions
diff --git a/Documentation/networking/tcp-thin.txt b/Documentation/networking/tcp-thin.txt
new file mode 100644
index 000000000000..151e229980f1
--- /dev/null
+++ b/Documentation/networking/tcp-thin.txt
@@ -0,0 +1,47 @@
+Thin-streams and TCP
+====================
+A wide range of Internet-based services that use reliable transport
+protocols display what we call thin-stream properties. This means
+that the application sends data with such a low rate that the
+retransmission mechanisms of the transport protocol are not fully
+effective. In time-dependent scenarios (like online games, control
+systems, stock trading etc.) where the user experience depends
+on the data delivery latency, packet loss can be devastating for
+the service quality. Extreme latencies are caused by TCP's
+dependency on the arrival of new data from the application to trigger
+retransmissions effectively through fast retransmit instead of
+waiting for long timeouts.
+
+After analysing a large number of time-dependent interactive
+applications, we have seen that they often produce thin streams
+and also stay with this traffic pattern throughout its entire
+lifespan. The combination of time-dependency and the fact that the
+streams provoke high latencies when using TCP is unfortunate.
+
+In order to reduce application-layer latency when packets are lost,
+a set of mechanisms has been made, which address these latency issues
+for thin streams. In short, if the kernel detects a thin stream,
+the retransmission mechanisms are modified in the following manner:
+
+1) If the stream is thin, fast retransmit on the first dupACK.
+2) If the stream is thin, do not apply exponential backoff.
+
+These enhancements are applied only if the stream is detected as
+thin. This is accomplished by defining a threshold for the number
+of packets in flight. If there are less than 4 packets in flight,
+fast retransmissions can not be triggered, and the stream is prone
+to experience high retransmission latencies.
+
+Since these mechanisms are targeted at time-dependent applications,
+they must be specifically activated by the application using the
+TCP_THIN_LINEAR_TIMEOUTS and TCP_THIN_DUPACK IOCTLS or the
+tcp_thin_linear_timeouts and tcp_thin_dupack sysctls. Both
+modifications are turned off by default.
+
+References
+==========
+More information on the modifications, as well as a wide range of
+experimental data can be found here:
+"Improving latency for interactive, thin-stream applications over
+reliable transport"
+http://simula.no/research/nd/publications/Simula.nd.477/simula_pdf_file