diff options
author | Daniel Jordan <daniel.m.jordan@oracle.com> | 2019-12-03 20:31:14 +0100 |
---|---|---|
committer | Herbert Xu <herbert@gondor.apana.org.au> | 2019-12-11 09:37:02 +0100 |
commit | bfcdcef8c8e3469f4d6c082a1da27a6ef77e5715 (patch) | |
tree | 0797276d0ff411c30e50080c9c286be1df8560b8 /Documentation/padata.txt | |
parent | padata: remove reorder_objects (diff) | |
download | linux-bfcdcef8c8e3469f4d6c082a1da27a6ef77e5715.tar.xz linux-bfcdcef8c8e3469f4d6c082a1da27a6ef77e5715.zip |
padata: update documentation
Remove references to unused functions, standardize language, update to
reflect new functionality, migrate to rst format, and fix all kernel-doc
warnings.
Fixes: 815613da6a67 ("kernel/padata.c: removed unused code")
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: linux-crypto@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'Documentation/padata.txt')
-rw-r--r-- | Documentation/padata.txt | 139 |
1 files changed, 0 insertions, 139 deletions
diff --git a/Documentation/padata.txt b/Documentation/padata.txt deleted file mode 100644 index b45df9c6547b..000000000000 --- a/Documentation/padata.txt +++ /dev/null @@ -1,139 +0,0 @@ -======================================= -The padata parallel execution mechanism -======================================= - -:Last updated: for 2.6.36 - -Padata is a mechanism by which the kernel can farm work out to be done in -parallel on multiple CPUs while retaining the ordering of tasks. It was -developed for use with the IPsec code, which needs to be able to perform -encryption and decryption on large numbers of packets without reordering -those packets. The crypto developers made a point of writing padata in a -sufficiently general fashion that it could be put to other uses as well. - -The first step in using padata is to set up a padata_instance structure for -overall control of how tasks are to be run:: - - #include <linux/padata.h> - - struct padata_instance *padata_alloc(const char *name, - const struct cpumask *pcpumask, - const struct cpumask *cbcpumask); - -'name' simply identifies the instance. - -The pcpumask describes which processors will be used to execute work -submitted to this instance in parallel. The cbcpumask defines which -processors are allowed to be used as the serialization callback processor. -The workqueue wq is where the work will actually be done; it should be -a multithreaded queue, naturally. - -To allocate a padata instance with the cpu_possible_mask for both -cpumasks this helper function can be used:: - - struct padata_instance *padata_alloc_possible(struct workqueue_struct *wq); - -Note: Padata maintains two kinds of cpumasks internally. The user supplied -cpumasks, submitted by padata_alloc/padata_alloc_possible and the 'usable' -cpumasks. The usable cpumasks are always a subset of active CPUs in the -user supplied cpumasks; these are the cpumasks padata actually uses. So -it is legal to supply a cpumask to padata that contains offline CPUs. -Once an offline CPU in the user supplied cpumask comes online, padata -is going to use it. - -There are functions for enabling and disabling the instance:: - - int padata_start(struct padata_instance *pinst); - void padata_stop(struct padata_instance *pinst); - -These functions are setting or clearing the "PADATA_INIT" flag; -if that flag is not set, other functions will refuse to work. -padata_start returns zero on success (flag set) or -EINVAL if the -padata cpumask contains no active CPU (flag not set). -padata_stop clears the flag and blocks until the padata instance -is unused. - -The list of CPUs to be used can be adjusted with these functions:: - - int padata_set_cpumasks(struct padata_instance *pinst, - cpumask_var_t pcpumask, - cpumask_var_t cbcpumask); - int padata_set_cpumask(struct padata_instance *pinst, int cpumask_type, - cpumask_var_t cpumask); - int padata_add_cpu(struct padata_instance *pinst, int cpu, int mask); - int padata_remove_cpu(struct padata_instance *pinst, int cpu, int mask); - -Changing the CPU masks are expensive operations, though, so it should not be -done with great frequency. - -It's possible to change both cpumasks of a padata instance with -padata_set_cpumasks by specifying the cpumasks for parallel execution (pcpumask) -and for the serial callback function (cbcpumask). padata_set_cpumask is used to -change just one of the cpumasks. Here cpumask_type is one of PADATA_CPU_SERIAL, -PADATA_CPU_PARALLEL and cpumask specifies the new cpumask to use. -To simply add or remove one CPU from a certain cpumask the functions -padata_add_cpu/padata_remove_cpu are used. cpu specifies the CPU to add or -remove and mask is one of PADATA_CPU_SERIAL, PADATA_CPU_PARALLEL. - -Actually submitting work to the padata instance requires the creation of a -padata_priv structure:: - - struct padata_priv { - /* Other stuff here... */ - void (*parallel)(struct padata_priv *padata); - void (*serial)(struct padata_priv *padata); - }; - -This structure will almost certainly be embedded within some larger -structure specific to the work to be done. Most of its fields are private to -padata, but the structure should be zeroed at initialisation time, and the -parallel() and serial() functions should be provided. Those functions will -be called in the process of getting the work done as we will see -momentarily. - -The submission of work is done with:: - - int padata_do_parallel(struct padata_instance *pinst, - struct padata_priv *padata, int cb_cpu); - -The pinst and padata structures must be set up as described above; cb_cpu -specifies which CPU will be used for the final callback when the work is -done; it must be in the current instance's CPU mask. The return value from -padata_do_parallel() is zero on success, indicating that the work is in -progress. -EBUSY means that somebody, somewhere else is messing with the -instance's CPU mask, while -EINVAL is a complaint about cb_cpu not being -in that CPU mask or about a not running instance. - -Each task submitted to padata_do_parallel() will, in turn, be passed to -exactly one call to the above-mentioned parallel() function, on one CPU, so -true parallelism is achieved by submitting multiple tasks. parallel() runs with -software interrupts disabled and thus cannot sleep. The parallel() -function gets the padata_priv structure pointer as its lone parameter; -information about the actual work to be done is probably obtained by using -container_of() to find the enclosing structure. - -Note that parallel() has no return value; the padata subsystem assumes that -parallel() will take responsibility for the task from this point. The work -need not be completed during this call, but, if parallel() leaves work -outstanding, it should be prepared to be called again with a new job before -the previous one completes. When a task does complete, parallel() (or -whatever function actually finishes the job) should inform padata of the -fact with a call to:: - - void padata_do_serial(struct padata_priv *padata); - -At some point in the future, padata_do_serial() will trigger a call to the -serial() function in the padata_priv structure. That call will happen on -the CPU requested in the initial call to padata_do_parallel(); it, too, is -run with local software interrupts disabled. -Note that this call may be deferred for a while since the padata code takes -pains to ensure that tasks are completed in the order in which they were -submitted. - -The one remaining function in the padata API should be called to clean up -when a padata instance is no longer needed:: - - void padata_free(struct padata_instance *pinst); - -This function will busy-wait while any remaining tasks are completed, so it -might be best not to call it while there is work outstanding. |