summaryrefslogtreecommitdiffstats
path: root/Documentation/powerpc/booting.rst
diff options
context:
space:
mode:
authorRob Herring <robh@kernel.org>2020-10-08 16:24:20 +0200
committerRob Herring <robh@kernel.org>2020-10-13 20:33:16 +0200
commit441848282c59038b6e9a57b233ac6a9449430648 (patch)
tree4b1a46b81446fd61f55779497a875adfbd694e66 /Documentation/powerpc/booting.rst
parentdt-bindings: update usb-c-connector example (diff)
downloadlinux-441848282c59038b6e9a57b233ac6a9449430648.tar.xz
linux-441848282c59038b6e9a57b233ac6a9449430648.zip
dt: Remove booting-without-of.rst
booting-without-of.rst is an ancient document that first outlined Flattened DeviceTree on PowerPC initially. The DT world has evolved a lot in the 15 years since and booting-without-of.rst is pretty stale. The name of the document itself is confusing if you don't understand the evolution from real 'OpenFirmware'. Most of what booting-without-of.rst contains is now in the DT specification (which evolved out of the ePAPR). The few things that weren't documented in the DT specification are now. All that remains is the boot entry details, so let's move these to arch specific documents. The exception is arm which already has the same details documented. Cc: Frank Rowand <frowand.list@gmail.com> Cc: Mauro Carvalho Chehab <mchehab@kernel.org> Cc: Geert Uytterhoeven <geert+renesas@glider.be> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linuxppc-dev@lists.ozlabs.org Cc: linux-mips@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-sh@vger.kernel.org Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: Borislav Petkov <bp@suse.de> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Signed-off-by: Rob Herring <robh@kernel.org>
Diffstat (limited to 'Documentation/powerpc/booting.rst')
-rw-r--r--Documentation/powerpc/booting.rst110
1 files changed, 110 insertions, 0 deletions
diff --git a/Documentation/powerpc/booting.rst b/Documentation/powerpc/booting.rst
new file mode 100644
index 000000000000..2d0ec2ff2b57
--- /dev/null
+++ b/Documentation/powerpc/booting.rst
@@ -0,0 +1,110 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+DeviceTree Booting
+------------------
+
+During the development of the Linux/ppc64 kernel, and more specifically, the
+addition of new platform types outside of the old IBM pSeries/iSeries pair, it
+was decided to enforce some strict rules regarding the kernel entry and
+bootloader <-> kernel interfaces, in order to avoid the degeneration that had
+become the ppc32 kernel entry point and the way a new platform should be added
+to the kernel. The legacy iSeries platform breaks those rules as it predates
+this scheme, but no new board support will be accepted in the main tree that
+doesn't follow them properly. In addition, since the advent of the arch/powerpc
+merged architecture for ppc32 and ppc64, new 32-bit platforms and 32-bit
+platforms which move into arch/powerpc will be required to use these rules as
+well.
+
+The main requirement that will be defined in more detail below is the presence
+of a device-tree whose format is defined after Open Firmware specification.
+However, in order to make life easier to embedded board vendors, the kernel
+doesn't require the device-tree to represent every device in the system and only
+requires some nodes and properties to be present. For example, the kernel does
+not require you to create a node for every PCI device in the system. It is a
+requirement to have a node for PCI host bridges in order to provide interrupt
+routing information and memory/IO ranges, among others. It is also recommended
+to define nodes for on chip devices and other buses that don't specifically fit
+in an existing OF specification. This creates a great flexibility in the way the
+kernel can then probe those and match drivers to device, without having to hard
+code all sorts of tables. It also makes it more flexible for board vendors to do
+minor hardware upgrades without significantly impacting the kernel code or
+cluttering it with special cases.
+
+
+Entry point
+~~~~~~~~~~~
+
+There is one single entry point to the kernel, at the start
+of the kernel image. That entry point supports two calling
+conventions:
+
+ a) Boot from Open Firmware. If your firmware is compatible
+ with Open Firmware (IEEE 1275) or provides an OF compatible
+ client interface API (support for "interpret" callback of
+ forth words isn't required), you can enter the kernel with:
+
+ r5 : OF callback pointer as defined by IEEE 1275
+ bindings to powerpc. Only the 32-bit client interface
+ is currently supported
+
+ r3, r4 : address & length of an initrd if any or 0
+
+ The MMU is either on or off; the kernel will run the
+ trampoline located in arch/powerpc/kernel/prom_init.c to
+ extract the device-tree and other information from open
+ firmware and build a flattened device-tree as described
+ in b). prom_init() will then re-enter the kernel using
+ the second method. This trampoline code runs in the
+ context of the firmware, which is supposed to handle all
+ exceptions during that time.
+
+ b) Direct entry with a flattened device-tree block. This entry
+ point is called by a) after the OF trampoline and can also be
+ called directly by a bootloader that does not support the Open
+ Firmware client interface. It is also used by "kexec" to
+ implement "hot" booting of a new kernel from a previous
+ running one. This method is what I will describe in more
+ details in this document, as method a) is simply standard Open
+ Firmware, and thus should be implemented according to the
+ various standard documents defining it and its binding to the
+ PowerPC platform. The entry point definition then becomes:
+
+ r3 : physical pointer to the device-tree block
+ (defined in chapter II) in RAM
+
+ r4 : physical pointer to the kernel itself. This is
+ used by the assembly code to properly disable the MMU
+ in case you are entering the kernel with MMU enabled
+ and a non-1:1 mapping.
+
+ r5 : NULL (as to differentiate with method a)
+
+Note about SMP entry: Either your firmware puts your other
+CPUs in some sleep loop or spin loop in ROM where you can get
+them out via a soft reset or some other means, in which case
+you don't need to care, or you'll have to enter the kernel
+with all CPUs. The way to do that with method b) will be
+described in a later revision of this document.
+
+Board supports (platforms) are not exclusive config options. An
+arbitrary set of board supports can be built in a single kernel
+image. The kernel will "know" what set of functions to use for a
+given platform based on the content of the device-tree. Thus, you
+should:
+
+ a) add your platform support as a _boolean_ option in
+ arch/powerpc/Kconfig, following the example of PPC_PSERIES,
+ PPC_PMAC and PPC_MAPLE. The later is probably a good
+ example of a board support to start from.
+
+ b) create your main platform file as
+ "arch/powerpc/platforms/myplatform/myboard_setup.c" and add it
+ to the Makefile under the condition of your ``CONFIG_``
+ option. This file will define a structure of type "ppc_md"
+ containing the various callbacks that the generic code will
+ use to get to your platform specific code
+
+A kernel image may support multiple platforms, but only if the
+platforms feature the same core architecture. A single kernel build
+cannot support both configurations with Book E and configurations
+with classic Powerpc architectures.