diff options
author | Mauro Carvalho Chehab <mchehab+samsung@kernel.org> | 2019-06-27 20:39:22 +0200 |
---|---|---|
committer | Mauro Carvalho Chehab <mchehab+samsung@kernel.org> | 2019-07-15 16:03:02 +0200 |
commit | baa293e9544bea71361950d071579f0e4d5713ed (patch) | |
tree | 29e0400c806016783a3fd7a380be40a201956653 /Documentation/pwm.txt | |
parent | docs: admin-guide: add a series of orphaned documents (diff) | |
download | linux-baa293e9544bea71361950d071579f0e4d5713ed.tar.xz linux-baa293e9544bea71361950d071579f0e4d5713ed.zip |
docs: driver-api: add a series of orphaned documents
There are lots of documents under Documentation/*.txt and a few other
orphan documents elsehwere that belong to the driver-API book.
Move them to their right place.
Reviewed-by: Cornelia Huck <cohuck@redhat.com> # vfio-related parts
Acked-by: Logan Gunthorpe <logang@deltatee.com> # switchtec
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Diffstat (limited to 'Documentation/pwm.txt')
-rw-r--r-- | Documentation/pwm.txt | 165 |
1 files changed, 0 insertions, 165 deletions
diff --git a/Documentation/pwm.txt b/Documentation/pwm.txt deleted file mode 100644 index ab62f1bb0366..000000000000 --- a/Documentation/pwm.txt +++ /dev/null @@ -1,165 +0,0 @@ -====================================== -Pulse Width Modulation (PWM) interface -====================================== - -This provides an overview about the Linux PWM interface - -PWMs are commonly used for controlling LEDs, fans or vibrators in -cell phones. PWMs with a fixed purpose have no need implementing -the Linux PWM API (although they could). However, PWMs are often -found as discrete devices on SoCs which have no fixed purpose. It's -up to the board designer to connect them to LEDs or fans. To provide -this kind of flexibility the generic PWM API exists. - -Identifying PWMs ----------------- - -Users of the legacy PWM API use unique IDs to refer to PWM devices. - -Instead of referring to a PWM device via its unique ID, board setup code -should instead register a static mapping that can be used to match PWM -consumers to providers, as given in the following example:: - - static struct pwm_lookup board_pwm_lookup[] = { - PWM_LOOKUP("tegra-pwm", 0, "pwm-backlight", NULL, - 50000, PWM_POLARITY_NORMAL), - }; - - static void __init board_init(void) - { - ... - pwm_add_table(board_pwm_lookup, ARRAY_SIZE(board_pwm_lookup)); - ... - } - -Using PWMs ----------- - -Legacy users can request a PWM device using pwm_request() and free it -after usage with pwm_free(). - -New users should use the pwm_get() function and pass to it the consumer -device or a consumer name. pwm_put() is used to free the PWM device. Managed -variants of these functions, devm_pwm_get() and devm_pwm_put(), also exist. - -After being requested, a PWM has to be configured using:: - - int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state); - -This API controls both the PWM period/duty_cycle config and the -enable/disable state. - -The pwm_config(), pwm_enable() and pwm_disable() functions are just wrappers -around pwm_apply_state() and should not be used if the user wants to change -several parameter at once. For example, if you see pwm_config() and -pwm_{enable,disable}() calls in the same function, this probably means you -should switch to pwm_apply_state(). - -The PWM user API also allows one to query the PWM state with pwm_get_state(). - -In addition to the PWM state, the PWM API also exposes PWM arguments, which -are the reference PWM config one should use on this PWM. -PWM arguments are usually platform-specific and allows the PWM user to only -care about dutycycle relatively to the full period (like, duty = 50% of the -period). struct pwm_args contains 2 fields (period and polarity) and should -be used to set the initial PWM config (usually done in the probe function -of the PWM user). PWM arguments are retrieved with pwm_get_args(). - -All consumers should really be reconfiguring the PWM upon resume as -appropriate. This is the only way to ensure that everything is resumed in -the proper order. - -Using PWMs with the sysfs interface ------------------------------------ - -If CONFIG_SYSFS is enabled in your kernel configuration a simple sysfs -interface is provided to use the PWMs from userspace. It is exposed at -/sys/class/pwm/. Each probed PWM controller/chip will be exported as -pwmchipN, where N is the base of the PWM chip. Inside the directory you -will find: - - npwm - The number of PWM channels this chip supports (read-only). - - export - Exports a PWM channel for use with sysfs (write-only). - - unexport - Unexports a PWM channel from sysfs (write-only). - -The PWM channels are numbered using a per-chip index from 0 to npwm-1. - -When a PWM channel is exported a pwmX directory will be created in the -pwmchipN directory it is associated with, where X is the number of the -channel that was exported. The following properties will then be available: - - period - The total period of the PWM signal (read/write). - Value is in nanoseconds and is the sum of the active and inactive - time of the PWM. - - duty_cycle - The active time of the PWM signal (read/write). - Value is in nanoseconds and must be less than the period. - - polarity - Changes the polarity of the PWM signal (read/write). - Writes to this property only work if the PWM chip supports changing - the polarity. The polarity can only be changed if the PWM is not - enabled. Value is the string "normal" or "inversed". - - enable - Enable/disable the PWM signal (read/write). - - - 0 - disabled - - 1 - enabled - -Implementing a PWM driver -------------------------- - -Currently there are two ways to implement pwm drivers. Traditionally -there only has been the barebone API meaning that each driver has -to implement the pwm_*() functions itself. This means that it's impossible -to have multiple PWM drivers in the system. For this reason it's mandatory -for new drivers to use the generic PWM framework. - -A new PWM controller/chip can be added using pwmchip_add() and removed -again with pwmchip_remove(). pwmchip_add() takes a filled in struct -pwm_chip as argument which provides a description of the PWM chip, the -number of PWM devices provided by the chip and the chip-specific -implementation of the supported PWM operations to the framework. - -When implementing polarity support in a PWM driver, make sure to respect the -signal conventions in the PWM framework. By definition, normal polarity -characterizes a signal starts high for the duration of the duty cycle and -goes low for the remainder of the period. Conversely, a signal with inversed -polarity starts low for the duration of the duty cycle and goes high for the -remainder of the period. - -Drivers are encouraged to implement ->apply() instead of the legacy -->enable(), ->disable() and ->config() methods. Doing that should provide -atomicity in the PWM config workflow, which is required when the PWM controls -a critical device (like a regulator). - -The implementation of ->get_state() (a method used to retrieve initial PWM -state) is also encouraged for the same reason: letting the PWM user know -about the current PWM state would allow him to avoid glitches. - -Drivers should not implement any power management. In other words, -consumers should implement it as described in the "Using PWMs" section. - -Locking -------- - -The PWM core list manipulations are protected by a mutex, so pwm_request() -and pwm_free() may not be called from an atomic context. Currently the -PWM core does not enforce any locking to pwm_enable(), pwm_disable() and -pwm_config(), so the calling context is currently driver specific. This -is an issue derived from the former barebone API and should be fixed soon. - -Helpers -------- - -Currently a PWM can only be configured with period_ns and duty_ns. For several -use cases freq_hz and duty_percent might be better. Instead of calculating -this in your driver please consider adding appropriate helpers to the framework. |