diff options
author | Takashi Iwai <tiwai@suse.de> | 2016-11-09 13:01:05 +0100 |
---|---|---|
committer | Takashi Iwai <tiwai@suse.de> | 2016-11-10 17:59:19 +0100 |
commit | 9000d69925ac45dcb346b5ea68e71b83cd897d3d (patch) | |
tree | 2fc73220166d2a9283864dd9904f8f99c9c156a1 /Documentation/sound/alsa | |
parent | ALSA: doc: ReSTize writing-an-alsa-driver document (diff) | |
download | linux-9000d69925ac45dcb346b5ea68e71b83cd897d3d.tar.xz linux-9000d69925ac45dcb346b5ea68e71b83cd897d3d.zip |
ALSA: doc: ReSTize HD-Audio document
The original HD-Audio.txt was already in asciidoc format, so it's a
simple conversion in the end.
A new subdirectory, Documentation/sound/hd-audio, is created and the
document is moved there with another file name to match better with
the recent Documentation tree structure.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Diffstat (limited to 'Documentation/sound/alsa')
-rw-r--r-- | Documentation/sound/alsa/HD-Audio.txt | 853 |
1 files changed, 0 insertions, 853 deletions
diff --git a/Documentation/sound/alsa/HD-Audio.txt b/Documentation/sound/alsa/HD-Audio.txt deleted file mode 100644 index d4510ebf2e8c..000000000000 --- a/Documentation/sound/alsa/HD-Audio.txt +++ /dev/null @@ -1,853 +0,0 @@ -MORE NOTES ON HD-AUDIO DRIVER -============================= - Takashi Iwai <tiwai@suse.de> - - -GENERAL -------- - -HD-audio is the new standard on-board audio component on modern PCs -after AC97. Although Linux has been supporting HD-audio since long -time ago, there are often problems with new machines. A part of the -problem is broken BIOS, and the rest is the driver implementation. -This document explains the brief trouble-shooting and debugging -methods for the HD-audio hardware. - -The HD-audio component consists of two parts: the controller chip and -the codec chips on the HD-audio bus. Linux provides a single driver -for all controllers, snd-hda-intel. Although the driver name contains -a word of a well-known hardware vendor, it's not specific to it but for -all controller chips by other companies. Since the HD-audio -controllers are supposed to be compatible, the single snd-hda-driver -should work in most cases. But, not surprisingly, there are known -bugs and issues specific to each controller type. The snd-hda-intel -driver has a bunch of workarounds for these as described below. - -A controller may have multiple codecs. Usually you have one audio -codec and optionally one modem codec. In theory, there might be -multiple audio codecs, e.g. for analog and digital outputs, and the -driver might not work properly because of conflict of mixer elements. -This should be fixed in future if such hardware really exists. - -The snd-hda-intel driver has several different codec parsers depending -on the codec. It has a generic parser as a fallback, but this -functionality is fairly limited until now. Instead of the generic -parser, usually the codec-specific parser (coded in patch_*.c) is used -for the codec-specific implementations. The details about the -codec-specific problems are explained in the later sections. - -If you are interested in the deep debugging of HD-audio, read the -HD-audio specification at first. The specification is found on -Intel's web page, for example: - -- http://www.intel.com/standards/hdaudio/ - - -HD-AUDIO CONTROLLER -------------------- - -DMA-Position Problem -~~~~~~~~~~~~~~~~~~~~ -The most common problem of the controller is the inaccurate DMA -pointer reporting. The DMA pointer for playback and capture can be -read in two ways, either via a LPIB register or via a position-buffer -map. As default the driver tries to read from the io-mapped -position-buffer, and falls back to LPIB if the position-buffer appears -dead. However, this detection isn't perfect on some devices. In such -a case, you can change the default method via `position_fix` option. - -`position_fix=1` means to use LPIB method explicitly. -`position_fix=2` means to use the position-buffer. -`position_fix=3` means to use a combination of both methods, needed -for some VIA controllers. The capture stream position is corrected -by comparing both LPIB and position-buffer values. -`position_fix=4` is another combination available for all controllers, -and uses LPIB for the playback and the position-buffer for the capture -streams. -0 is the default value for all other -controllers, the automatic check and fallback to LPIB as described in -the above. If you get a problem of repeated sounds, this option might -help. - -In addition to that, every controller is known to be broken regarding -the wake-up timing. It wakes up a few samples before actually -processing the data on the buffer. This caused a lot of problems, for -example, with ALSA dmix or JACK. Since 2.6.27 kernel, the driver puts -an artificial delay to the wake up timing. This delay is controlled -via `bdl_pos_adj` option. - -When `bdl_pos_adj` is a negative value (as default), it's assigned to -an appropriate value depending on the controller chip. For Intel -chips, it'd be 1 while it'd be 32 for others. Usually this works. -Only in case it doesn't work and you get warning messages, you should -change this parameter to other values. - - -Codec-Probing Problem -~~~~~~~~~~~~~~~~~~~~~ -A less often but a more severe problem is the codec probing. When -BIOS reports the available codec slots wrongly, the driver gets -confused and tries to access the non-existing codec slot. This often -results in the total screw-up, and destructs the further communication -with the codec chips. The symptom appears usually as error messages -like: ------------------------------------------------------------------------- - hda_intel: azx_get_response timeout, switching to polling mode: - last cmd=0x12345678 - hda_intel: azx_get_response timeout, switching to single_cmd mode: - last cmd=0x12345678 ------------------------------------------------------------------------- - -The first line is a warning, and this is usually relatively harmless. -It means that the codec response isn't notified via an IRQ. The -driver uses explicit polling method to read the response. It gives -very slight CPU overhead, but you'd unlikely notice it. - -The second line is, however, a fatal error. If this happens, usually -it means that something is really wrong. Most likely you are -accessing a non-existing codec slot. - -Thus, if the second error message appears, try to narrow the probed -codec slots via `probe_mask` option. It's a bitmask, and each bit -corresponds to the codec slot. For example, to probe only the first -slot, pass `probe_mask=1`. For the first and the third slots, pass -`probe_mask=5` (where 5 = 1 | 4), and so on. - -Since 2.6.29 kernel, the driver has a more robust probing method, so -this error might happen rarely, though. - -On a machine with a broken BIOS, sometimes you need to force the -driver to probe the codec slots the hardware doesn't report for use. -In such a case, turn the bit 8 (0x100) of `probe_mask` option on. -Then the rest 8 bits are passed as the codec slots to probe -unconditionally. For example, `probe_mask=0x103` will force to probe -the codec slots 0 and 1 no matter what the hardware reports. - - -Interrupt Handling -~~~~~~~~~~~~~~~~~~ -HD-audio driver uses MSI as default (if available) since 2.6.33 -kernel as MSI works better on some machines, and in general, it's -better for performance. However, Nvidia controllers showed bad -regressions with MSI (especially in a combination with AMD chipset), -thus we disabled MSI for them. - -There seem also still other devices that don't work with MSI. If you -see a regression wrt the sound quality (stuttering, etc) or a lock-up -in the recent kernel, try to pass `enable_msi=0` option to disable -MSI. If it works, you can add the known bad device to the blacklist -defined in hda_intel.c. In such a case, please report and give the -patch back to the upstream developer. - - -HD-AUDIO CODEC --------------- - -Model Option -~~~~~~~~~~~~ -The most common problem regarding the HD-audio driver is the -unsupported codec features or the mismatched device configuration. -Most of codec-specific code has several preset models, either to -override the BIOS setup or to provide more comprehensive features. - -The driver checks PCI SSID and looks through the static configuration -table until any matching entry is found. If you have a new machine, -you may see a message like below: ------------------------------------------------------------------------- - hda_codec: ALC880: BIOS auto-probing. ------------------------------------------------------------------------- -Meanwhile, in the earlier versions, you would see a message like: ------------------------------------------------------------------------- - hda_codec: Unknown model for ALC880, trying auto-probe from BIOS... ------------------------------------------------------------------------- -Even if you see such a message, DON'T PANIC. Take a deep breath and -keep your towel. First of all, it's an informational message, no -warning, no error. This means that the PCI SSID of your device isn't -listed in the known preset model (white-)list. But, this doesn't mean -that the driver is broken. Many codec-drivers provide the automatic -configuration mechanism based on the BIOS setup. - -The HD-audio codec has usually "pin" widgets, and BIOS sets the default -configuration of each pin, which indicates the location, the -connection type, the jack color, etc. The HD-audio driver can guess -the right connection judging from these default configuration values. -However -- some codec-support codes, such as patch_analog.c, don't -support the automatic probing (yet as of 2.6.28). And, BIOS is often, -yes, pretty often broken. It sets up wrong values and screws up the -driver. - -The preset model (or recently called as "fix-up") is provided -basically to overcome such a situation. When the matching preset -model is found in the white-list, the driver assumes the static -configuration of that preset with the correct pin setup, etc. -Thus, if you have a newer machine with a slightly different PCI SSID -(or codec SSID) from the existing one, you may have a good chance to -re-use the same model. You can pass the `model` option to specify the -preset model instead of PCI (and codec-) SSID look-up. - -What `model` option values are available depends on the codec chip. -Check your codec chip from the codec proc file (see "Codec Proc-File" -section below). It will show the vendor/product name of your codec -chip. Then, see Documentation/sound/alsa/HD-Audio-Models.txt file, -the section of HD-audio driver. You can find a list of codecs -and `model` options belonging to each codec. For example, for Realtek -ALC262 codec chip, pass `model=ultra` for devices that are compatible -with Samsung Q1 Ultra. - -Thus, the first thing you can do for any brand-new, unsupported and -non-working HD-audio hardware is to check HD-audio codec and several -different `model` option values. If you have any luck, some of them -might suit with your device well. - -There are a few special model option values: -- when 'nofixup' is passed, the device-specific fixups in the codec - parser are skipped. -- when `generic` is passed, the codec-specific parser is skipped and - only the generic parser is used. - - -Speaker and Headphone Output -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -One of the most frequent (and obvious) bugs with HD-audio is the -silent output from either or both of a built-in speaker and a -headphone jack. In general, you should try a headphone output at -first. A speaker output often requires more additional controls like -the external amplifier bits. Thus a headphone output has a slightly -better chance. - -Before making a bug report, double-check whether the mixer is set up -correctly. The recent version of snd-hda-intel driver provides mostly -"Master" volume control as well as "Front" volume (where Front -indicates the front-channels). In addition, there can be individual -"Headphone" and "Speaker" controls. - -Ditto for the speaker output. There can be "External Amplifier" -switch on some codecs. Turn on this if present. - -Another related problem is the automatic mute of speaker output by -headphone plugging. This feature is implemented in most cases, but -not on every preset model or codec-support code. - -In anyway, try a different model option if you have such a problem. -Some other models may match better and give you more matching -functionality. If none of the available models works, send a bug -report. See the bug report section for details. - -If you are masochistic enough to debug the driver problem, note the -following: - -- The speaker (and the headphone, too) output often requires the - external amplifier. This can be set usually via EAPD verb or a - certain GPIO. If the codec pin supports EAPD, you have a better - chance via SET_EAPD_BTL verb (0x70c). On others, GPIO pin (mostly - it's either GPIO0 or GPIO1) may turn on/off EAPD. -- Some Realtek codecs require special vendor-specific coefficients to - turn on the amplifier. See patch_realtek.c. -- IDT codecs may have extra power-enable/disable controls on each - analog pin. See patch_sigmatel.c. -- Very rare but some devices don't accept the pin-detection verb until - triggered. Issuing GET_PIN_SENSE verb (0xf09) may result in the - codec-communication stall. Some examples are found in - patch_realtek.c. - - -Capture Problems -~~~~~~~~~~~~~~~~ -The capture problems are often because of missing setups of mixers. -Thus, before submitting a bug report, make sure that you set up the -mixer correctly. For example, both "Capture Volume" and "Capture -Switch" have to be set properly in addition to the right "Capture -Source" or "Input Source" selection. Some devices have "Mic Boost" -volume or switch. - -When the PCM device is opened via "default" PCM (without pulse-audio -plugin), you'll likely have "Digital Capture Volume" control as well. -This is provided for the extra gain/attenuation of the signal in -software, especially for the inputs without the hardware volume -control such as digital microphones. Unless really needed, this -should be set to exactly 50%, corresponding to 0dB -- neither extra -gain nor attenuation. When you use "hw" PCM, i.e., a raw access PCM, -this control will have no influence, though. - -It's known that some codecs / devices have fairly bad analog circuits, -and the recorded sound contains a certain DC-offset. This is no bug -of the driver. - -Most of modern laptops have no analog CD-input connection. Thus, the -recording from CD input won't work in many cases although the driver -provides it as the capture source. Use CDDA instead. - -The automatic switching of the built-in and external mic per plugging -is implemented on some codec models but not on every model. Partly -because of my laziness but mostly lack of testers. Feel free to -submit the improvement patch to the author. - - -Direct Debugging -~~~~~~~~~~~~~~~~ -If no model option gives you a better result, and you are a tough guy -to fight against evil, try debugging via hitting the raw HD-audio -codec verbs to the device. Some tools are available: hda-emu and -hda-analyzer. The detailed description is found in the sections -below. You'd need to enable hwdep for using these tools. See "Kernel -Configuration" section. - - -OTHER ISSUES ------------- - -Kernel Configuration -~~~~~~~~~~~~~~~~~~~~ -In general, I recommend you to enable the sound debug option, -`CONFIG_SND_DEBUG=y`, no matter whether you are debugging or not. -This enables snd_printd() macro and others, and you'll get additional -kernel messages at probing. - -In addition, you can enable `CONFIG_SND_DEBUG_VERBOSE=y`. But this -will give you far more messages. Thus turn this on only when you are -sure to want it. - -Don't forget to turn on the appropriate `CONFIG_SND_HDA_CODEC_*` -options. Note that each of them corresponds to the codec chip, not -the controller chip. Thus, even if lspci shows the Nvidia controller, -you may need to choose the option for other vendors. If you are -unsure, just select all yes. - -`CONFIG_SND_HDA_HWDEP` is a useful option for debugging the driver. -When this is enabled, the driver creates hardware-dependent devices -(one per each codec), and you have a raw access to the device via -these device files. For example, `hwC0D2` will be created for the -codec slot #2 of the first card (#0). For debug-tools such as -hda-verb and hda-analyzer, the hwdep device has to be enabled. -Thus, it'd be better to turn this on always. - -`CONFIG_SND_HDA_RECONFIG` is a new option, and this depends on the -hwdep option above. When enabled, you'll have some sysfs files under -the corresponding hwdep directory. See "HD-audio reconfiguration" -section below. - -`CONFIG_SND_HDA_POWER_SAVE` option enables the power-saving feature. -See "Power-saving" section below. - - -Codec Proc-File -~~~~~~~~~~~~~~~ -The codec proc-file is a treasure-chest for debugging HD-audio. -It shows most of useful information of each codec widget. - -The proc file is located in /proc/asound/card*/codec#*, one file per -each codec slot. You can know the codec vendor, product id and -names, the type of each widget, capabilities and so on. -This file, however, doesn't show the jack sensing state, so far. This -is because the jack-sensing might be depending on the trigger state. - -This file will be picked up by the debug tools, and also it can be fed -to the emulator as the primary codec information. See the debug tools -section below. - -This proc file can be also used to check whether the generic parser is -used. When the generic parser is used, the vendor/product ID name -will appear as "Realtek ID 0262", instead of "Realtek ALC262". - - -HD-Audio Reconfiguration -~~~~~~~~~~~~~~~~~~~~~~~~ -This is an experimental feature to allow you re-configure the HD-audio -codec dynamically without reloading the driver. The following sysfs -files are available under each codec-hwdep device directory (e.g. -/sys/class/sound/hwC0D0): - -vendor_id:: - Shows the 32bit codec vendor-id hex number. You can change the - vendor-id value by writing to this file. -subsystem_id:: - Shows the 32bit codec subsystem-id hex number. You can change the - subsystem-id value by writing to this file. -revision_id:: - Shows the 32bit codec revision-id hex number. You can change the - revision-id value by writing to this file. -afg:: - Shows the AFG ID. This is read-only. -mfg:: - Shows the MFG ID. This is read-only. -name:: - Shows the codec name string. Can be changed by writing to this - file. -modelname:: - Shows the currently set `model` option. Can be changed by writing - to this file. -init_verbs:: - The extra verbs to execute at initialization. You can add a verb by - writing to this file. Pass three numbers: nid, verb and parameter - (separated with a space). -hints:: - Shows / stores hint strings for codec parsers for any use. - Its format is `key = value`. For example, passing `jack_detect = no` - will disable the jack detection of the machine completely. -init_pin_configs:: - Shows the initial pin default config values set by BIOS. -driver_pin_configs:: - Shows the pin default values set by the codec parser explicitly. - This doesn't show all pin values but only the changed values by - the parser. That is, if the parser doesn't change the pin default - config values by itself, this will contain nothing. -user_pin_configs:: - Shows the pin default config values to override the BIOS setup. - Writing this (with two numbers, NID and value) appends the new - value. The given will be used instead of the initial BIOS value at - the next reconfiguration time. Note that this config will override - even the driver pin configs, too. -reconfig:: - Triggers the codec re-configuration. When any value is written to - this file, the driver re-initialize and parses the codec tree - again. All the changes done by the sysfs entries above are taken - into account. -clear:: - Resets the codec, removes the mixer elements and PCM stuff of the - specified codec, and clear all init verbs and hints. - -For example, when you want to change the pin default configuration -value of the pin widget 0x14 to 0x9993013f, and let the driver -re-configure based on that state, run like below: ------------------------------------------------------------------------- - # echo 0x14 0x9993013f > /sys/class/sound/hwC0D0/user_pin_configs - # echo 1 > /sys/class/sound/hwC0D0/reconfig ------------------------------------------------------------------------- - - -Hint Strings -~~~~~~~~~~~~ -The codec parser have several switches and adjustment knobs for -matching better with the actual codec or device behavior. Many of -them can be adjusted dynamically via "hints" strings as mentioned in -the section above. For example, by passing `jack_detect = no` string -via sysfs or a patch file, you can disable the jack detection, thus -the codec parser will skip the features like auto-mute or mic -auto-switch. As a boolean value, either `yes`, `no`, `true`, `false`, -`1` or `0` can be passed. - -The generic parser supports the following hints: - -- jack_detect (bool): specify whether the jack detection is available - at all on this machine; default true -- inv_jack_detect (bool): indicates that the jack detection logic is - inverted -- trigger_sense (bool): indicates that the jack detection needs the - explicit call of AC_VERB_SET_PIN_SENSE verb -- inv_eapd (bool): indicates that the EAPD is implemented in the - inverted logic -- pcm_format_first (bool): sets the PCM format before the stream tag - and channel ID -- sticky_stream (bool): keep the PCM format, stream tag and ID as long - as possible; default true -- spdif_status_reset (bool): reset the SPDIF status bits at each time - the SPDIF stream is set up -- pin_amp_workaround (bool): the output pin may have multiple amp - values -- single_adc_amp (bool): ADCs can have only single input amps -- auto_mute (bool): enable/disable the headphone auto-mute feature; - default true -- auto_mic (bool): enable/disable the mic auto-switch feature; default - true -- line_in_auto_switch (bool): enable/disable the line-in auto-switch - feature; default false -- need_dac_fix (bool): limits the DACs depending on the channel count -- primary_hp (bool): probe headphone jacks as the primary outputs; - default true -- multi_io (bool): try probing multi-I/O config (e.g. shared - line-in/surround, mic/clfe jacks) -- multi_cap_vol (bool): provide multiple capture volumes -- inv_dmic_split (bool): provide split internal mic volume/switch for - phase-inverted digital mics -- indep_hp (bool): provide the independent headphone PCM stream and - the corresponding mixer control, if available -- add_stereo_mix_input (bool): add the stereo mix (analog-loopback - mix) to the input mux if available -- add_jack_modes (bool): add "xxx Jack Mode" enum controls to each - I/O jack for allowing to change the headphone amp and mic bias VREF - capabilities -- power_save_node (bool): advanced power management for each widget, - controlling the power sate (D0/D3) of each widget node depending on - the actual pin and stream states -- power_down_unused (bool): power down the unused widgets, a subset of - power_save_node, and will be dropped in future -- add_hp_mic (bool): add the headphone to capture source if possible -- hp_mic_detect (bool): enable/disable the hp/mic shared input for a - single built-in mic case; default true -- mixer_nid (int): specifies the widget NID of the analog-loopback - mixer - - -Early Patching -~~~~~~~~~~~~~~ -When CONFIG_SND_HDA_PATCH_LOADER=y is set, you can pass a "patch" as a -firmware file for modifying the HD-audio setup before initializing the -codec. This can work basically like the reconfiguration via sysfs in -the above, but it does it before the first codec configuration. - -A patch file is a plain text file which looks like below: - ------------------------------------------------------------------------- - [codec] - 0x12345678 0xabcd1234 2 - - [model] - auto - - [pincfg] - 0x12 0x411111f0 - - [verb] - 0x20 0x500 0x03 - 0x20 0x400 0xff - - [hint] - jack_detect = no ------------------------------------------------------------------------- - -The file needs to have a line `[codec]`. The next line should contain -three numbers indicating the codec vendor-id (0x12345678 in the -example), the codec subsystem-id (0xabcd1234) and the address (2) of -the codec. The rest patch entries are applied to this specified codec -until another codec entry is given. Passing 0 or a negative number to -the first or the second value will make the check of the corresponding -field be skipped. It'll be useful for really broken devices that don't -initialize SSID properly. - -The `[model]` line allows to change the model name of the each codec. -In the example above, it will be changed to model=auto. -Note that this overrides the module option. - -After the `[pincfg]` line, the contents are parsed as the initial -default pin-configurations just like `user_pin_configs` sysfs above. -The values can be shown in user_pin_configs sysfs file, too. - -Similarly, the lines after `[verb]` are parsed as `init_verbs` -sysfs entries, and the lines after `[hint]` are parsed as `hints` -sysfs entries, respectively. - -Another example to override the codec vendor id from 0x12345678 to -0xdeadbeef is like below: ------------------------------------------------------------------------- - [codec] - 0x12345678 0xabcd1234 2 - - [vendor_id] - 0xdeadbeef ------------------------------------------------------------------------- - -In the similar way, you can override the codec subsystem_id via -`[subsystem_id]`, the revision id via `[revision_id]` line. -Also, the codec chip name can be rewritten via `[chip_name]` line. ------------------------------------------------------------------------- - [codec] - 0x12345678 0xabcd1234 2 - - [subsystem_id] - 0xffff1111 - - [revision_id] - 0x10 - - [chip_name] - My-own NEWS-0002 ------------------------------------------------------------------------- - -The hd-audio driver reads the file via request_firmware(). Thus, -a patch file has to be located on the appropriate firmware path, -typically, /lib/firmware. For example, when you pass the option -`patch=hda-init.fw`, the file /lib/firmware/hda-init.fw must be -present. - -The patch module option is specific to each card instance, and you -need to give one file name for each instance, separated by commas. -For example, if you have two cards, one for an on-board analog and one -for an HDMI video board, you may pass patch option like below: ------------------------------------------------------------------------- - options snd-hda-intel patch=on-board-patch,hdmi-patch ------------------------------------------------------------------------- - - -Power-Saving -~~~~~~~~~~~~ -The power-saving is a kind of auto-suspend of the device. When the -device is inactive for a certain time, the device is automatically -turned off to save the power. The time to go down is specified via -`power_save` module option, and this option can be changed dynamically -via sysfs. - -The power-saving won't work when the analog loopback is enabled on -some codecs. Make sure that you mute all unneeded signal routes when -you want the power-saving. - -The power-saving feature might cause audible click noises at each -power-down/up depending on the device. Some of them might be -solvable, but some are hard, I'm afraid. Some distros such as -openSUSE enables the power-saving feature automatically when the power -cable is unplugged. Thus, if you hear noises, suspect first the -power-saving. See /sys/module/snd_hda_intel/parameters/power_save to -check the current value. If it's non-zero, the feature is turned on. - -The recent kernel supports the runtime PM for the HD-audio controller -chip, too. It means that the HD-audio controller is also powered up / -down dynamically. The feature is enabled only for certain controller -chips like Intel LynxPoint. You can enable/disable this feature -forcibly by setting `power_save_controller` option, which is also -available at /sys/module/snd_hda_intel/parameters directory. - - -Tracepoints -~~~~~~~~~~~ -The hd-audio driver gives a few basic tracepoints. -`hda:hda_send_cmd` traces each CORB write while `hda:hda_get_response` -traces the response from RIRB (only when read from the codec driver). -`hda:hda_bus_reset` traces the bus-reset due to fatal error, etc, -`hda:hda_unsol_event` traces the unsolicited events, and -`hda:hda_power_down` and `hda:hda_power_up` trace the power down/up -via power-saving behavior. - -Enabling all tracepoints can be done like ------------------------------------------------------------------------- - # echo 1 > /sys/kernel/debug/tracing/events/hda/enable ------------------------------------------------------------------------- -then after some commands, you can traces from -/sys/kernel/debug/tracing/trace file. For example, when you want to -trace what codec command is sent, enable the tracepoint like: ------------------------------------------------------------------------- - # cat /sys/kernel/debug/tracing/trace - # tracer: nop - # - # TASK-PID CPU# TIMESTAMP FUNCTION - # | | | | | - <...>-7807 [002] 105147.774889: hda_send_cmd: [0:0] val=e3a019 - <...>-7807 [002] 105147.774893: hda_send_cmd: [0:0] val=e39019 - <...>-7807 [002] 105147.999542: hda_send_cmd: [0:0] val=e3a01a - <...>-7807 [002] 105147.999543: hda_send_cmd: [0:0] val=e3901a - <...>-26764 [001] 349222.837143: hda_send_cmd: [0:0] val=e3a019 - <...>-26764 [001] 349222.837148: hda_send_cmd: [0:0] val=e39019 - <...>-26764 [001] 349223.058539: hda_send_cmd: [0:0] val=e3a01a - <...>-26764 [001] 349223.058541: hda_send_cmd: [0:0] val=e3901a ------------------------------------------------------------------------- -Here `[0:0]` indicates the card number and the codec address, and -`val` shows the value sent to the codec, respectively. The value is -a packed value, and you can decode it via hda-decode-verb program -included in hda-emu package below. For example, the value e3a019 is -to set the left output-amp value to 25. ------------------------------------------------------------------------- - % hda-decode-verb 0xe3a019 - raw value = 0x00e3a019 - cid = 0, nid = 0x0e, verb = 0x3a0, parm = 0x19 - raw value: verb = 0x3a0, parm = 0x19 - verbname = set_amp_gain_mute - amp raw val = 0xa019 - output, left, idx=0, mute=0, val=25 ------------------------------------------------------------------------- - - -Development Tree -~~~~~~~~~~~~~~~~ -The latest development codes for HD-audio are found on sound git tree: - -- git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound.git - -The master branch or for-next branches can be used as the main -development branches in general while the development for the current -and next kernels are found in for-linus and for-next branches, -respectively. - - -Sending a Bug Report -~~~~~~~~~~~~~~~~~~~~ -If any model or module options don't work for your device, it's time -to send a bug report to the developers. Give the following in your -bug report: - -- Hardware vendor, product and model names -- Kernel version (and ALSA-driver version if you built externally) -- `alsa-info.sh` output; run with `--no-upload` option. See the - section below about alsa-info - -If it's a regression, at best, send alsa-info outputs of both working -and non-working kernels. This is really helpful because we can -compare the codec registers directly. - -Send a bug report either the followings: - -kernel-bugzilla:: - https://bugzilla.kernel.org/ -alsa-devel ML:: - alsa-devel@alsa-project.org - - -DEBUG TOOLS ------------ - -This section describes some tools available for debugging HD-audio -problems. - -alsa-info -~~~~~~~~~ -The script `alsa-info.sh` is a very useful tool to gather the audio -device information. It's included in alsa-utils package. The latest -version can be found on git repository: - -- git://git.alsa-project.org/alsa-utils.git - -The script can be fetched directly from the following URL, too: - -- http://www.alsa-project.org/alsa-info.sh - -Run this script as root, and it will gather the important information -such as the module lists, module parameters, proc file contents -including the codec proc files, mixer outputs and the control -elements. As default, it will store the information onto a web server -on alsa-project.org. But, if you send a bug report, it'd be better to -run with `--no-upload` option, and attach the generated file. - -There are some other useful options. See `--help` option output for -details. - -When a probe error occurs or when the driver obviously assigns a -mismatched model, it'd be helpful to load the driver with -`probe_only=1` option (at best after the cold reboot) and run -alsa-info at this state. With this option, the driver won't configure -the mixer and PCM but just tries to probe the codec slot. After -probing, the proc file is available, so you can get the raw codec -information before modified by the driver. Of course, the driver -isn't usable with `probe_only=1`. But you can continue the -configuration via hwdep sysfs file if hda-reconfig option is enabled. -Using `probe_only` mask 2 skips the reset of HDA codecs (use -`probe_only=3` as module option). The hwdep interface can be used -to determine the BIOS codec initialization. - - -hda-verb -~~~~~~~~ -hda-verb is a tiny program that allows you to access the HD-audio -codec directly. You can execute a raw HD-audio codec verb with this. -This program accesses the hwdep device, thus you need to enable the -kernel config `CONFIG_SND_HDA_HWDEP=y` beforehand. - -The hda-verb program takes four arguments: the hwdep device file, the -widget NID, the verb and the parameter. When you access to the codec -on the slot 2 of the card 0, pass /dev/snd/hwC0D2 to the first -argument, typically. (However, the real path name depends on the -system.) - -The second parameter is the widget number-id to access. The third -parameter can be either a hex/digit number or a string corresponding -to a verb. Similarly, the last parameter is the value to write, or -can be a string for the parameter type. - ------------------------------------------------------------------------- - % hda-verb /dev/snd/hwC0D0 0x12 0x701 2 - nid = 0x12, verb = 0x701, param = 0x2 - value = 0x0 - - % hda-verb /dev/snd/hwC0D0 0x0 PARAMETERS VENDOR_ID - nid = 0x0, verb = 0xf00, param = 0x0 - value = 0x10ec0262 - - % hda-verb /dev/snd/hwC0D0 2 set_a 0xb080 - nid = 0x2, verb = 0x300, param = 0xb080 - value = 0x0 ------------------------------------------------------------------------- - -Although you can issue any verbs with this program, the driver state -won't be always updated. For example, the volume values are usually -cached in the driver, and thus changing the widget amp value directly -via hda-verb won't change the mixer value. - -The hda-verb program is included now in alsa-tools: - -- git://git.alsa-project.org/alsa-tools.git - -Also, the old stand-alone package is found in the ftp directory: - -- ftp://ftp.suse.com/pub/people/tiwai/misc/ - -Also a git repository is available: - -- git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/hda-verb.git - -See README file in the tarball for more details about hda-verb -program. - - -hda-analyzer -~~~~~~~~~~~~ -hda-analyzer provides a graphical interface to access the raw HD-audio -control, based on pyGTK2 binding. It's a more powerful version of -hda-verb. The program gives you an easy-to-use GUI stuff for showing -the widget information and adjusting the amp values, as well as the -proc-compatible output. - -The hda-analyzer: - -- http://git.alsa-project.org/?p=alsa.git;a=tree;f=hda-analyzer - -is a part of alsa.git repository in alsa-project.org: - -- git://git.alsa-project.org/alsa.git - -Codecgraph -~~~~~~~~~~ -Codecgraph is a utility program to generate a graph and visualizes the -codec-node connection of a codec chip. It's especially useful when -you analyze or debug a codec without a proper datasheet. The program -parses the given codec proc file and converts to SVG via graphiz -program. - -The tarball and GIT trees are found in the web page at: - -- http://helllabs.org/codecgraph/ - - -hda-emu -~~~~~~~ -hda-emu is an HD-audio emulator. The main purpose of this program is -to debug an HD-audio codec without the real hardware. Thus, it -doesn't emulate the behavior with the real audio I/O, but it just -dumps the codec register changes and the ALSA-driver internal changes -at probing and operating the HD-audio driver. - -The program requires a codec proc-file to simulate. Get a proc file -for the target codec beforehand, or pick up an example codec from the -codec proc collections in the tarball. Then, run the program with the -proc file, and the hda-emu program will start parsing the codec file -and simulates the HD-audio driver: - ------------------------------------------------------------------------- - % hda-emu codecs/stac9200-dell-d820-laptop - # Parsing.. - hda_codec: Unknown model for STAC9200, using BIOS defaults - hda_codec: pin nid 08 bios pin config 40c003fa - .... ------------------------------------------------------------------------- - -The program gives you only a very dumb command-line interface. You -can get a proc-file dump at the current state, get a list of control -(mixer) elements, set/get the control element value, simulate the PCM -operation, the jack plugging simulation, etc. - -The program is found in the git repository below: - -- git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/hda-emu.git - -See README file in the repository for more details about hda-emu -program. - - -hda-jack-retask -~~~~~~~~~~~~~~~ -hda-jack-retask is a user-friendly GUI program to manipulate the -HD-audio pin control for jack retasking. If you have a problem about -the jack assignment, try this program and check whether you can get -useful results. Once when you figure out the proper pin assignment, -it can be fixed either in the driver code statically or via passing a -firmware patch file (see "Early Patching" section). - -The program is included in alsa-tools now: - -- git://git.alsa-project.org/alsa-tools.git - |