summaryrefslogtreecommitdiffstats
path: root/Documentation/sound
diff options
context:
space:
mode:
authorTakashi Iwai <tiwai@suse.de>2023-05-23 14:14:41 +0200
committerTakashi Iwai <tiwai@suse.de>2023-05-23 14:14:47 +0200
commit03a58514d494fe50c6a6cb56604bb7bd4f46e676 (patch)
tree898613d68d3a8fcc703fe770f2025548d58c97a9 /Documentation/sound
parentALSA: emu10k1: pass raw FX send config to snd_emu10k1_pcm_init_voice() (diff)
parentALSA: docs: Add MIDI 2.0 documentation (diff)
downloadlinux-03a58514d494fe50c6a6cb56604bb7bd4f46e676.tar.xz
linux-03a58514d494fe50c6a6cb56604bb7bd4f46e676.zip
Merge branch 'topic/midi20' into for-next
This is a (largish) patch set for adding the support of MIDI 2.0 functionality, mainly targeted for USB devices. MIDI 2.0 is a complete overhaul of the 40-years old MIDI 1.0. Unlike MIDI 1.0 byte stream, MIDI 2.0 uses packets in 32bit words for Universal MIDI Packet (UMP) protocol. It supports both MIDI 1.0 commands for compatibility and the extended MIDI 2.0 commands for higher resolutions and more functions. For supporting the UMP, the patch set extends the existing ALSA rawmidi and sequencer interfaces, and adds the USB MIDI 2.0 support to the standard USB-audio driver. The rawmidi for UMP has a different device name (/dev/snd/umpC*D*) and it reads/writes UMP packet data in 32bit CPU-native endianness. For the old MIDI 1.0 applications, the legacy rawmidi interface is provided, too. As default, USB-audio driver will take the alternate setting for MIDI 2.0 interface, and the compatibility with MIDI 1.0 is provided via the rawmidi common layer. However, user may let the driver falling back to the old MIDI 1.0 interface by a module option, too. A UMP-capable rawmidi device can create the corresponding ALSA sequencer client(s) to support the UMP Endpoint and UMP Group connections. As a nature of ALSA sequencer, arbitrary connections between clients/ports are allowed, and the ALSA sequencer core performs the automatic conversions for the connections between a new UMP sequencer client and a legacy MIDI 1.0 sequencer client. It allows the existing application to use MIDI 2.0 devices without changes. The MIDI-CI, which is another major extension in MIDI 2.0, isn't covered by this patch set. It would be implemented rather in user-space. Roughly speaking, the first half of this patch set is for extending the rawmidi and USB-audio, and the second half is for extending the ALSA sequencer interface. The patch set is based on 6.4-rc2 kernel, but all patches can be cleanly applicable on 6.2 and 6.3 kernels, too (while 6.1 and older kernels would need minor adjustment for uapi header changes). The updates for alsa-lib and alsa-utils will follow shortly later. The author thanks members of MIDI Association OS/API Working Group, especially Andrew Mee, for great helps for the initial design and debugging / testing the drivers. Link: https://lore.kernel.org/r/20230523075358.9672-1-tiwai@suse.de Signed-off-by: Takashi Iwai <tiwai@suse.de>
Diffstat (limited to 'Documentation/sound')
-rw-r--r--Documentation/sound/designs/index.rst1
-rw-r--r--Documentation/sound/designs/midi-2.0.rst351
2 files changed, 352 insertions, 0 deletions
diff --git a/Documentation/sound/designs/index.rst b/Documentation/sound/designs/index.rst
index 1eb08e7bae52..b79db9ad8732 100644
--- a/Documentation/sound/designs/index.rst
+++ b/Documentation/sound/designs/index.rst
@@ -15,3 +15,4 @@ Designs and Implementations
oss-emulation
seq-oss
jack-injection
+ midi-2.0
diff --git a/Documentation/sound/designs/midi-2.0.rst b/Documentation/sound/designs/midi-2.0.rst
new file mode 100644
index 000000000000..d55b0a4c6acb
--- /dev/null
+++ b/Documentation/sound/designs/midi-2.0.rst
@@ -0,0 +1,351 @@
+=================
+MIDI 2.0 on Linux
+=================
+
+General
+=======
+
+MIDI 2.0 is an extended protocol for providing higher resolutions and
+more fine controls over the legacy MIDI 1.0. The fundamental changes
+introduced for supporting MIDI 2.0 are:
+
+- Support of Universal MIDI Packet (UMP)
+- Support of MIDI 2.0 protocol messages
+- Transparent conversions between UMP and legacy MIDI 1.0 byte stream
+- MIDI-CI for property and profile configurations
+
+UMP is a new container format to hold all MIDI protocol 1.0 and MIDI
+2.0 protocol messages. Unlike the former byte stream, it's 32bit
+aligned, and each message can be put in a single packet. UMP can send
+the events up to 16 "UMP Groups", where each UMP Group contain up to
+16 MIDI channels.
+
+MIDI 2.0 protocol is an extended protocol to achieve the higher
+resolution and more controls over the old MIDI 1.0 protocol.
+
+MIDI-CI is a high-level protocol that can talk with the MIDI device
+for the flexible profiles and configurations. It's represented in the
+form of special SysEx.
+
+For Linux implementations, the kernel supports the UMP transport and
+the encoding/decoding of MIDI protocols on UMP, while MIDI-CI is
+supported in user-space over the standard SysEx.
+
+As of this writing, only USB MIDI device supports the UMP and Linux
+2.0 natively. The UMP support itself is pretty generic, hence it
+could be used by other transport layers, although it could be
+implemented differently (e.g. as a ALSA sequencer client), too.
+
+The access to UMP devices are provided in two ways: the access via
+rawmidi device and the access via ALSA sequencer API.
+
+ALSA sequencer API was extended to allow the payload of UMP packets.
+It's allowed to connect freely between MIDI 1.0 and MIDI 2.0 sequencer
+clients, and the events are converted transparently.
+
+
+Kernel Configuration
+====================
+
+The following new configs are added for supporting MIDI 2.0:
+`CONFIG_SND_UMP`, `CONFIG_SND_UMP_LEGACY_RAWMIDI`,
+`CONFIG_SND_SEQ_UMP`, `CONFIG_SND_SEQ_UMP_CLIENT`, and
+`CONFIG_SND_USB_AUDIO_MIDI_V2`. The first visible one is
+`CONFIG_SND_USB_AUDIO_MIDI_V2`, and when you choose it (to set `=y`),
+the core support for UMP (`CONFIG_SND_UMP`) and the sequencer binding
+(`CONFIG_SND_SEQ_UMP_CLIENT`) will be automatically selected.
+
+Additionally, `CONFIG_SND_UMP_LEGACY_RAWMIDI=y` will enable the
+support for the legacy raw MIDI device for UMP Endpoints.
+
+
+Rawmidi Device with USB MIDI 2.0
+================================
+
+When a device supports MIDI 2.0, the USB-audio driver probes and uses
+the MIDI 2.0 interface (that is found always at the altset 1) as
+default instead of the MIDI 1.0 interface (at altset 0). You can
+switch back to the binding with the old MIDI 1.0 interface by passing
+`midi2_enable=0` option to snd-usb-audio driver module, too.
+
+When the MIDI 2.0 device is probed, the kernel creates a rawmidi
+device for each UMP Endpoint of the device. Its device name is
+`/dev/snd/umpC*D*` and different from the standard rawmidi device name
+`/dev/snd/midiC*D*` for MIDI 1.0, in order to avoid confusing the
+legacy applications accessing mistakenly to UMP devices.
+
+You can read and write UMP packet data directly from/to this UMP
+rawmidi device. For example, reading via `hexdump` like below will
+show the incoming UMP packets of the card 0 device 0 in the hex
+format::
+
+ % hexdump -C /dev/snd/umpC0D0
+ 00000000 01 07 b0 20 00 07 b0 20 64 3c 90 20 64 3c 80 20 |... ... d<. d<. |
+
+Unlike the MIDI 1.0 byte stream, UMP is a 32bit packet, and the size
+for reading or writing the device is also aligned to 32bit (which is 4
+bytes).
+
+The 32-bit words in the UMP packet payload are always in CPU native
+endianness. Transport drivers are responsible to convert UMP words
+from / to system endianness to required transport endianness / byte
+order.
+
+When `CONFIG_SND_UMP_LEGACY_RAWMIDI` is set, the driver creates
+another standard raw MIDI device additionally as `/dev/snd/midiC*D*`.
+This contains 16 substreams, and each substream corresponds to a
+(0-based) UMP Group. Legacy applications can access to the specified
+group via each substream in MIDI 1.0 byte stream format. With the
+ALSA rawmidi API, you can open the arbitrary substream, while just
+opening `/dev/snd/midiC*D*` will end up with opening the first
+substream.
+
+Each UMP Endpoint can provide the additional information, constructed
+from USB MIDI 2.0 descriptors. And a UMP Endpoint may contain one or
+more UMP Blocks, where UMP Block is an abstraction introduced in the
+ALSA UMP implementations to represent the associations among UMP
+Groups. UMP Block corresponds to Group Terminal Block (GTB) in USB
+MIDI 2.0 specifications but provide a few more generic information.
+The information of UMP Endpoints and UMP Blocks are found in the proc
+file `/proc/asound/card*/midi*`. For example::
+
+ % cat /proc/asound/card1/midi0
+ ProtoZOA MIDI
+
+ Type: UMP
+ EP Name: ProtoZOA
+ EP Product ID: ABCD12345678
+ UMP Version: 0x0000
+ Protocol Caps: 0x00000100
+ Protocol: 0x00000100
+ Num Blocks: 3
+
+ Block 0 (ProtoZOA Main)
+ Direction: bidirection
+ Active: Yes
+ Groups: 1-1
+ Is MIDI1: No
+
+ Block 1 (ProtoZOA Ext IN)
+ Direction: output
+ Active: Yes
+ Groups: 2-2
+ Is MIDI1: Yes (Low Speed)
+ ....
+
+Note that `Groups` field shown in the proc file above indicates the
+1-based UMP Group numbers (from-to).
+
+Those additional UMP Endpoint and UMP Block information can be
+obtained via the new ioctls `SNDRV_UMP_IOCTL_ENDPOINT_INFO` and
+`SNDRV_UMP_IOCTL_BLOCK_INFO`, respectively.
+
+The rawmidi name and the UMP Endpoint name are usually identical, and
+in the case of USB MIDI, it's taken from `iInterface` of the
+corresponding USB MIDI interface descriptor. If it's not provided,
+it's copied from `iProduct` of the USB device descriptor as a
+fallback.
+
+The Endpoint Product ID is a string field and supposed to be unique.
+It's copied from `iSerialNumber` of the device for USB MIDI.
+
+The protocol capabilities and the actual protocol bits are defined in
+`asound.h`.
+
+
+ALSA Sequencer with USB MIDI 2.0
+================================
+
+In addition to the rawmidi interfaces, ALSA sequencer interface
+supports the new UMP MIDI 2.0 device, too. Now, each ALSA sequencer
+client may set its MIDI version (0, 1 or 2) to declare itself being
+either the legacy, UMP MIDI 1.0 or UMP MIDI 2.0 device, respectively.
+The first, legacy client is the one that sends/receives the old
+sequencer event as was. Meanwhile, UMP MIDI 1.0 and 2.0 clients send
+and receive in the extended event record for UMP. The MIDI version is
+seen in the new `midi_version` field of `snd_seq_client_info`.
+
+A UMP packet can be sent/received in a sequencer event embedded by
+specifying the new event flag bit `SNDRV_SEQ_EVENT_UMP`. When this
+flag is set, the event has 16 byte (128 bit) data payload for holding
+the UMP packet. Without the `SNDRV_SEQ_EVENT_UMP` bit flag, the event
+is treated as a legacy event as it was (with max 12 byte data
+payload).
+
+With `SNDRV_SEQ_EVENT_UMP` flag set, the type field of a UMP sequencer
+event is ignored (but it should be set to 0 as default).
+
+The type of each client can be seen in `/proc/asound/seq/clients`.
+For example::
+
+ % cat /proc/asound/seq/clients
+ Client info
+ cur clients : 3
+ ....
+ Client 14 : "Midi Through" [Kernel Legacy]
+ Port 0 : "Midi Through Port-0" (RWe-)
+ Client 20 : "ProtoZOA" [Kernel UMP MIDI1]
+ UMP Endpoint: ProtoZOA
+ UMP Block 0: ProtoZOA Main [Active]
+ Groups: 1-1
+ UMP Block 1: ProtoZOA Ext IN [Active]
+ Groups: 2-2
+ UMP Block 2: ProtoZOA Ext OUT [Active]
+ Groups: 3-3
+ Port 0 : "MIDI 2.0" (RWeX) [In/Out]
+ Port 1 : "ProtoZOA Main" (RWeX) [In/Out]
+ Port 2 : "ProtoZOA Ext IN" (-We-) [Out]
+ Port 3 : "ProtoZOA Ext OUT" (R-e-) [In]
+
+Here you can find two types of kernel clients, "Legacy" for client 14,
+and "UMP MIDI1" for client 20, which is a USB MIDI 2.0 device.
+A USB MIDI 2.0 client gives always the port 0 as "MIDI 2.0" and the
+rest ports from 1 for each UMP Group (e.g. port 1 for Group 1).
+In this example, the device has three active groups (Main, Ext IN and
+Ext OUT), and those are exposed as sequencer ports from 1 to 3.
+The "MIDI 2.0" port is for a UMP Endpoint, and its difference from
+other UMP Group ports is that UMP Endpoint port sends the events from
+the all ports on the device ("catch-all"), while each UMP Group port
+sends only the events from the given UMP Group.
+
+Note that, although each UMP sequencer client usually creates 16
+ports, those ports that don't belong to any UMP Blocks (or belonging
+to inactive UMP Blocks) are marked as inactive, and they don't appear
+in the proc outputs. In the example above, the sequencer ports from 4
+to 16 are present but not shown there.
+
+The proc file above shows the UMP Block information, too. The same
+entry (but with more detailed information) is found in the rawmidi
+proc output.
+
+When clients are connected between different MIDI versions, the events
+are translated automatically depending on the client's version, not
+only between the legacy and the UMP MIDI 1.0/2.0 types, but also
+between UMP MIDI 1.0 and 2.0 types, too. For example, running
+`aseqdump` program on the ProtoZOA Main port in the legacy mode will
+give you the output like::
+
+ % aseqdump -p 20:1
+ Waiting for data. Press Ctrl+C to end.
+ Source Event Ch Data
+ 20:1 Note on 0, note 60, velocity 100
+ 20:1 Note off 0, note 60, velocity 100
+ 20:1 Control change 0, controller 11, value 4
+
+When you run `aseqdump` in MIDI 2.0 mode, it'll receive the high
+precision data like::
+
+ % aseqdump -u 2 -p 20:1
+ Waiting for data. Press Ctrl+C to end.
+ Source Event Ch Data
+ 20:1 Note on 0, note 60, velocity 0xc924, attr type = 0, data = 0x0
+ 20:1 Note off 0, note 60, velocity 0xc924, attr type = 0, data = 0x0
+ 20:1 Control change 0, controller 11, value 0x2000000
+
+while the data is automatically converted by ALSA sequencer core.
+
+
+Rawmidi API Extensions
+======================
+
+* The additional UMP Endpoint information can be obtained via the new
+ ioctl `SNDRV_UMP_IOCTL_ENDPOINT_INFO`. It contains the associated
+ card and device numbers, the bit flags, the protocols, the number of
+ UMP Blocks, the name string of the endpoint, etc.
+
+ The protocols are specified in two field, the protocol capabilities
+ and the current protocol. Both contain the bit flags specifying the
+ MIDI protocol version (`SNDRV_UMP_EP_INFO_PROTO_MIDI1` or
+ `SNDRV_UMP_EP_INFO_PROTO_MIDI2`) in the upper byte and the jitter
+ reduction timestamp (`SNDRV_UMP_EP_INFO_PROTO_JRTS_TX` and
+ `SNDRV_UMP_EP_INFO_PROTO_JRTS_RX`) in the lower byte.
+
+ A UMP Endpoint may contain up to 32 UMP Blocks, and the number of
+ the currently assigned blocks are shown in the Endpoint information.
+
+* Each UMP Block information can be obtained via another new ioctl
+ `SNDRV_UMP_IOCTL_BLOCK_INFO`. The block ID number (0-based) has to
+ be passed for the block to query. The received data contains the
+ associated the direction of the block, the first associated group ID
+ (0-based) and the number of groups, the name string of the block,
+ etc.
+
+ The direction is either `SNDRV_UMP_DIR_INPUT`,
+ `SNDRV_UMP_DIR_OUTPUT` or `SNDRV_UMP_DIR_BIDIRECTION`.
+
+
+Control API Extensions
+======================
+
+* The new ioctl `SNDRV_CTL_IOCTL_UMP_NEXT_DEVICE` is introduced for
+ querying the next UMP rawmidi device, while the existing ioctl
+ `SNDRV_CTL_IOCTL_RAWMIDI_NEXT_DEVICE` queries only the legacy
+ rawmidi devices.
+
+ For setting the subdevice (substream number) to be opened, use the
+ ioctl `SNDRV_CTL_IOCTL_RAWMIDI_PREFER_SUBDEVICE` like the normal
+ rawmidi.
+
+* Two new ioctls `SNDRV_CTL_IOCTL_UMP_ENDPOINT_INFO` and
+ `SNDRV_CTL_IOCTL_UMP_BLOCK_INFO` provide the UMP Endpoint and UMP
+ Block information of the specified UMP device via ALSA control API
+ without opening the actual (UMP) rawmidi device.
+ The `card` field is ignored upon inquiry, always tied with the card
+ of the control interface.
+
+
+Sequencer API Extensions
+========================
+
+* `midi_version` field is added to `snd_seq_client_info` to indicate
+ the current MIDI version (either 0, 1 or 2) of each client.
+ When `midi_version` is 1 or 2, the alignment of read from a UMP
+ sequencer client is also changed from the former 28 bytes to 32
+ bytes for the extended payload. The alignment size for the write
+ isn't changed, but each event size may differ depending on the new
+ bit flag below.
+
+* `SNDRV_SEQ_EVENT_UMP` flag bit is added for each sequencer event
+ flags. When this bit flag is set, the sequencer event is extended
+ to have a larger payload of 16 bytes instead of the legacy 12
+ bytes, and the event contains the UMP packet in the payload.
+
+* The new sequencer port type bit (`SNDRV_SEQ_PORT_TYPE_MIDI_UMP`)
+ indicates the port being UMP-capable.
+
+* The sequencer ports have new capability bits to indicate the
+ inactive ports (`SNDRV_SEQ_PORT_CAP_INACTIVE`) and the UMP Endpoint
+ port (`SNDRV_SEQ_PORT_CAP_UMP_ENDPOINT`).
+
+* The event conversion of ALSA sequencer clients can be suppressed the
+ new filter bit `SNDRV_SEQ_FILTER_NO_CONVERT` set to the client info.
+ For example, the kernel pass-through client (`snd-seq-dummy`) sets
+ this flag internally.
+
+* The port information gained the new field `direction` to indicate
+ the direction of the port (either `SNDRV_SEQ_PORT_DIR_INPUT`,
+ `SNDRV_SEQ_PORT_DIR_OUTPUT` or `SNDRV_SEQ_PORT_DIR_BIDIRECTION`).
+
+* Another additional field for the port information is `ump_group`
+ which specifies the associated UMP Group Number (1-based).
+ When it's non-zero, the UMP group field in the UMP packet updated
+ upon delivery to the specified group (corrected to be 0-based).
+ Each sequencer port is supposed to set this field if it's a port to
+ specific to a certain UMP group.
+
+* Each client may set the additional event filter for UMP Groups in
+ `group_filter` bitmap. The filter consists of bitmap from 1-based
+ Group numbers. For example, when the bit 1 is set, messages from
+ Group 1 (i.e. the very first group) are filtered and not delivered.
+ The bit 0 is reserved for future use.
+
+* Two new ioctls are added for UMP-capable clients:
+ `SNDRV_SEQ_IOCTL_GET_CLIENT_UMP_INFO` and
+ `SNDRV_SEQ_IOCTL_SET_CLIENT_UMP_INFO`. They are used to get and set
+ either `snd_ump_endpoint_info` or `snd_ump_block_info` data
+ associated with the sequencer client. The USB MIDI driver provides
+ those information from the underlying UMP rawmidi, while a
+ user-space client may provide its own data via `*_SET` ioctl.
+ For an Endpoint data, pass 0 to the `type` field, while for a Block
+ data, pass the block number + 1 to the `type` field.
+ Setting the data for a kernel client shall result in an error.